nn.py 259.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'conv2d',
    'softmax',
    'pool2d',
    'batch_norm',
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
dengkaipeng 已提交
84
    'spectral_norm',
X
Xin Pan 已提交
85 86 87 88 89 90 91
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'unsqueeze',
    'lod_reset',
    'image_resize',
    'resize_bilinear',
K
Kaipeng Deng 已提交
92
    'resize_trilinear',
93
    'resize_nearest',
X
Xin Pan 已提交
94 95 96 97 98 99 100 101 102 103 104 105
    'relu',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'gaussian_random',
    'sampling_id',
    'shape',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
M
minqiyang 已提交
106
    'hash',
D
dengkaipeng 已提交
107
    'grid_sampler',
G
gmcather 已提交
108
    'log_loss',
Q
Qiao Longfei 已提交
109
    'bilinear_tensor_product',
C
chengduo 已提交
110 111
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
H
heqiaozhi 已提交
112
    'continuous_value_model',
113
    'unfold',
C
cjt222 已提交
114
    'deformable_roi_pooling',
115
    'shard_index',
H
huangjun12 已提交
116
    'hard_swish',
K
Kaipeng Deng 已提交
117
    'mish',
118
    'uniform_random',
myq406450149's avatar
myq406450149 已提交
119
    'unbind',
Y
Yu Yang 已提交
120 121
]

122
OP_NAMEMAPPING = {
123 124 125 126 127 128 129 130
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
131
    'elementwise_mod': 'remainder',
132 133
}

Y
Yu Yang 已提交
134

135 136
def _get_reduce_dim(dim, input):
    """
137
    Internal function for reduce_sum, reduce_mean, reduce_prod.
138 139 140 141 142 143 144 145 146
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
147 148 149 150
                "The type of dim must be int, list, tuple or range, but received {}".format(
                    type(axis)
                )
            )
151 152 153 154 155 156 157 158 159 160
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


161
@dygraph_only
162 163 164
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
165 166 167 168
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
169
        op = getattr(_legacy_C_ops, op_name)
170 171 172
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
173 174
            op = getattr(
                _C_ops,
175 176
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
177 178 179
            out = op(x, y)

        if _in_legacy_dygraph():
180
            op = getattr(_legacy_C_ops, op_name)
181
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
182 183 184 185 186 187 188 189 190 191 192 193 194 195
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
196
    r"""
197 198
    :api_attr: Static Graph

199
    **Fully Connected Layer**
Y
Yu Yang 已提交
200

201 202 203
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
204
    which represents a fully connected weight matrix from each input unit to
205 206 207 208
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
209
    is not None, a bias variable will be created and added to the output.
210
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
211

212
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
213

214 215 216 217
    .. math::

        Out = Act({XW + b})

218
    When the input is a list of Tensor(or LoDTensor):
219 220 221

    .. math::

222
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
223 224 225

    In the above equation:

226 227 228
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
229
    * :math:`b`: The bias parameter created by this layer (if needed).
230
    * :math:`Act`: The activation function.
231
    * :math:`Out`: The output Tensor.
232 233 234

    .. code-block:: text

235 236 237 238 239 240 241 242 243 244 245 246 247 248
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
249 250 251 252 253 254 255 256 257 258 259 260 261
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
262
    Args:
263 264 265
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
266
        size(int): The number of output units in this layer, which also means the feature size of output
267 268
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
269
            two dimensions. If this happens, the multidimensional tensor will first be flattened
270 271
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
272
            dimensions will be flatten to form the first dimension of the final matrix (height of
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
288 289

    Raises:
290
        ValueError: If dimensions of the input Tensor is less than 2.
291 292 293 294

    Examples:
        .. code-block:: python

295
          import paddle.fluid as fluid
296 297
          import paddle
          paddle.enable_static()
298
          # when input is single tensor
299
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
300
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
301 302

          # when input are multiple tensors
303 304
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
305
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
306
    """
C
caoying03 已提交
307
    helper = LayerHelper("fc", **locals())
308
    check_type(input, 'input', (list, tuple, Variable), 'fc')
309 310
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
311
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
312
    dtype = helper.input_dtype()
313 314 315
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
316
    mul_results = []
317 318
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
319 320
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
321 322 323
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
324

325 326 327
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
328
        tmp = helper.create_variable_for_type_inference(dtype)
329 330 331 332 333 334
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
335 336 337 338
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
339
    else:
X
Xin Pan 已提交
340
        pre_bias = helper.create_variable_for_type_inference(dtype)
341 342 343 344 345 346
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
347 348 349 350
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
351 352


T
tangwei12 已提交
353
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
354 355 356 357 358 359 360 361 362
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
363
    r"""
364
    :api_attr: Static Graph
365

366 367 368 369 370 371 372 373 374 375 376 377
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

378
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
396

397 398 399 400
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
401

402
        Case 2:
403

404 405 406 407 408 409 410 411 412 413 414 415 416 417
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
418 419

    Args:
420 421 422 423 424 425
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
426
            affects the performance of the backwards gradient update. It is recommended to set
427
            True because sparse update is faster. But some optimizer does not support sparse update,
428
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
429 430 431 432 433
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
434
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
435 436 437 438 439 440
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
441
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
442
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
443
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
444 445 446
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
447

448
    Returns:
449
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
450

451 452
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
453

B
bdzhuxiaoning 已提交
454
          import paddle.fluid as fluid
455
          import numpy as np
456 457
          import paddle
          paddle.enable_static()
458

459 460
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
461
          # example 1
462 463 464 465 466 467 468 469 470
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
471
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
472 473 474
    """

    helper = LayerHelper('embedding', **locals())
475 476 477 478 479 480 481 482 483
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
484 485 486 487 488 489 490 491 492

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

493 494 495
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
496
    tmp = helper.create_variable_for_type_inference(dtype)
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
515 516 517
    return tmp


518 519 520 521 522 523 524 525 526 527 528
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
529
    r"""
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
575
        'is_distributed': True,
576 577
    }
    # this is only for compatible with embedding op
578 579 580 581 582 583 584 585 586
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
587 588 589 590 591
    if len(outs) == 1:
        return outs[0]
    return outs


592 593 594 595 596 597 598 599 600 601 602
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
603
    r"""
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
649
        'is_distributed': True,
650 651
    }
    # this is only for compatible with embedding op
652 653 654 655 656 657 658 659 660
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
661
    if len(outs) == 1:
Y
yaoxuefeng 已提交
662 663 664 665
        return outs[0]
    return outs


666 667 668
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
702 703 704
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
705 706 707 708 709 710
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
711 712 713 714 715 716 717 718 719 720 721 722 723
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
724
    if len(outs) == 1:
725 726 727 728
        return outs[0]
    return outs


729 730 731
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
732
    r"""
H
hutuxian 已提交
733 734 735 736 737 738 739
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
740
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
741
            contains the IDs information.
742
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
743
            each embedding vector respectively.
744
        dtype(str): The dtype refers to the data type of output tensor. Only supports
H
hutuxian 已提交
745 746 747 748 749 750 751 752 753 754 755
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
756
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
757 758 759 760
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
761 762 763
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
764 765 766 767 768 769
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
770 771 772 773 774 775 776 777 778 779 780 781 782
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
783 784 785 786 787
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
788
@templatedoc()
789
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
790
    """
791 792
    :api_attr: Static Graph

Y
yuyang18 已提交
793 794 795 796 797
    Linear Chain CRF.

    ${comment}

    Args:
798
        input(${emission_type}): ${emission_comment}
Y
yuyang18 已提交
799
        label(${label_type}): ${label_comment}
800
        Length(${length_type}): ${length_comment}
801
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
802 803

    Returns:
D
dzhwinter 已提交
804 805
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
806
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
807

J
JesseyXujin 已提交
808 809 810
    Examples:
        .. code-block:: python

811 812
            import paddle.fluid as fluid
            import numpy as np
813 814
            import paddle
            paddle.enable_static()
815 816 817 818 819

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
820 821
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
822 823 824 825 826 827
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
828
                    learning_rate=0.01))
829 830 831
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
832
            exe.run(startup_program)
833 834 835 836 837
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
838
            print(loss)
839 840 841 842 843

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
844 845 846
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
847 848 849 850 851 852
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
853
                     name='crfw',
854 855 856 857 858 859
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
860

861 862 863
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
864
            ll=np.array([[3],[3],[4],[2]])
865 866
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
867
            print(loss2)
868 869 870 871 872
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

873 874 875
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
876

Y
yuyang18 已提交
877
    """
878 879 880
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'linear_chain_crf'
    )
881
    check_variable_and_dtype(label, 'label', ['int64'], 'linear_chain_crf')
Y
Yu Yang 已提交
882
    helper = LayerHelper('linear_chain_crf', **locals())
883
    size = input.shape[2] if length else input.shape[1]
884 885 886 887 888
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype(),
    )
X
Xin Pan 已提交
889
    alpha = helper.create_variable_for_type_inference(
890 891
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
892
    emission_exps = helper.create_variable_for_type_inference(
893 894
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
895
    transition_exps = helper.create_variable_for_type_inference(
896 897
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
898
    log_likelihood = helper.create_variable_for_type_inference(
899 900
        dtype=helper.input_dtype()
    )
901 902 903
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
904
        "Label": [label],
905 906
    }
    if length:
907
        this_inputs['Length'] = [length]
908 909 910 911 912 913 914 915 916 917
    helper.append_op(
        type='linear_chain_crf',
        inputs=this_inputs,
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood,
        },
    )
Y
Yu Yang 已提交
918 919 920 921

    return log_likelihood


W
wopeizl 已提交
922
@templatedoc()
923
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
924
    """
925
    :api_attr: Static Graph
926

W
wopeizl 已提交
927
    ${comment}
Y
yi.wu 已提交
928

W
wopeizl 已提交
929
    Args:
930
        input(Tensor): ${emission_comment}
Y
yi.wu 已提交
931

932 933
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
934
            used. See usage for details in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
Y
yuyang18 已提交
935

Y
Yibing Liu 已提交
936
        label(${label_type}, optional): ${label_comment}
937

Y
Yibing Liu 已提交
938
        length(${length_type}, optional): ${length_comment}
939

W
wopeizl 已提交
940
    Returns:
941
        Tensor: ${viterbi_path_comment}
Y
yi.wu 已提交
942

W
wopeizl 已提交
943 944
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
945

946 947
           import paddle
           paddle.enable_static()
948 949 950

           # LoDTensor-based example
           num_labels = 10
951 952 953
           feature = paddle.static.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
           emission = paddle.static.nn.fc(feature, size=num_labels)
954

955 956 957 958
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label,
                     param_attr=paddle.ParamAttr(name="crfw"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission,
                     param_attr=paddle.ParamAttr(name="crfw"))
959 960 961

           # Common tensor example
           num_labels, max_len = 10, 20
962 963 964 965
           feature = paddle.static.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = paddle.static.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = paddle.static.data(name='length', shape=[-1, 1], dtype='int64')
           emission = paddle.static.nn.fc(feature, size=num_labels,
966
                                      num_flatten_dims=2)
967

968 969 970 971
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
972
    """
973 974 975
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'crf_decoding'
    )
W
wopeizl 已提交
976 977 978
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
979 980
        dtype=core.VarDesc.VarType.INT64
    )
981 982 983
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
984 985 986 987 988
    helper.append_op(
        type='crf_decoding',
        inputs=inputs,
        outputs={"ViterbiPath": [viterbi_path]},
    )
Y
Yu Yang 已提交
989

W
wopeizl 已提交
990
    return viterbi_path
Y
Yu Yang 已提交
991 992


993
@deprecated(since="2.0.0", update_to="paddle.nn.functional.dropout")
994 995 996 997 998 999 1000 1001
def dropout(
    x,
    dropout_prob,
    is_test=None,
    seed=None,
    name=None,
    dropout_implementation="downgrade_in_infer",
):
1002
    """
1003

1004 1005 1006 1007
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1008
    training. The dropout operator randomly sets (according to the given dropout
1009 1010 1011
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1012 1013
    dropout op can be removed from the program to make the program more efficient.

1014
    Args:
L
lvmengsi 已提交
1015
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
1016
        dropout_prob (float): Probability of setting units to zero.
1017
        is_test (bool): A flag indicating whether it is in test phrase or not.
1018
                        Default None, in dynamic graph, it use global tracer mode; in static graph, it means False.
1019 1020 1021
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
1022
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
1023 1024
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1025 1026
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1027
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1028 1029

                                           - train: out = input * mask
C
ceci3 已提交
1030
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1031 1032 1033

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1034
                                        2. upscale_in_train, upscale the outcome at training time
1035

H
haowang101779990 已提交
1036 1037
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1038

H
haowang101779990 已提交
1039 1040
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1041

M
minqiyang 已提交
1042

1043
    Returns:
L
lvmengsi 已提交
1044
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
1045 1046

    Examples:
1047

1048 1049
        .. code-block:: python

1050
            import paddle
1051
            import paddle.fluid as fluid
1052

1053
            paddle.enable_static()
L
lvmengsi 已提交
1054
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
1055
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
1056
    """
1057 1058
    if not isinstance(dropout_prob, (float, int, Variable)):
        raise TypeError(
1059 1060
            "dropout_prob argument should be a number(int|float) or Variable"
        )
1061
    # fast return for p == 0
1062
    if isinstance(dropout_prob, (int, float)) and dropout_prob == 0:
1063
        return x
1064

J
Jiabin Yang 已提交
1065
    if _non_static_mode():
1066 1067 1068
        if (
            seed is None or seed == 0
        ) and default_main_program().random_seed != 0:
1069
            seed = default_main_program().random_seed
1070 1071
        if is_test is None:
            is_test = not _dygraph_tracer()._train_mode
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        out, mask = _legacy_C_ops.dropout(
            x,
            'dropout_prob',
            dropout_prob,
            'is_test',
            is_test,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
            'dropout_implementation',
            dropout_implementation,
        )
1085
        return out
1086

W
wanghuancoder 已提交
1087 1088 1089
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
1090 1091
        if isinstance(dropout_prob, Variable) and not dropout_prob.shape != [1]:
            raise TypeError(
1092 1093 1094 1095
                "Required dropout_prob.shape == [1] if type(dropout_prob) is Variable, but received dropout_prob.shape = {}".format(
                    dropout_prob.shape
                )
            )
W
wanghuancoder 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

F
fengjiayi 已提交
1105
    helper = LayerHelper('dropout', **locals())
1106 1107 1108
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'dropout'
    )
1109

X
Xin Pan 已提交
1110 1111
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
1112 1113
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
C
chengduo 已提交
1114

1115
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1116

1117 1118 1119 1120 1121 1122
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out], 'Mask': [mask]},
        attrs=attrs,
    )
1123 1124 1125
    return out


1126
@deprecated(since="2.0.0", update_to="paddle.nn.functional.softmax")
1127
def softmax(input, use_cudnn=True, name=None, axis=-1):
1128
    r"""
1129
    This operator implements the softmax layer. The calculation process is as follows:
1130

1131
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1132

1133 1134 1135 1136 1137 1138 1139
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1140

1141
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
1142
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1143

1144 1145 1146 1147 1148
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1149

1150
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1151

1152
    .. math::
1153

N
Noel 已提交
1154
        Out[i, j] = \\frac{\\exp(X[i, j])}{\\sum_j(exp(X[i, j])}
1155

1156
    Example:
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
1201
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]
1202

Q
qiaolongfei 已提交
1203
    Args:
N
Noel 已提交
1204
        input (Tensor): The input tensor. A multi-dimension ``Tensor`` with type float32 or float64.
1205
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
G
GaoWei8 已提交
1206
            library is installed. To improve performance, set use_cudnn to True by default.
1207
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1208
            will be named automatically. Default: None.
1209
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1210
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
N
Noel 已提交
1211
            input tensor. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1212 1213

    Returns:
N
Noel 已提交
1214
        Tensor: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1215 1216 1217 1218 1219

    Examples:

        .. code-block:: python

N
Noel 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
                                [3.0, 4.0, 5.0, 6.0],
                                [7.0, 8.0, 8.0, 9.0]],
                                [[1.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 7.0, 8.0],
                                [6.0, 7.0, 8.0, 9.0]]], dtype='float32')
            y = F.softmax(x, axis=1)
            print(y)
            # [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
            #   [0.01786798, 0.01786798, 0.04661262, 0.04661262],
            #   [0.97555870, 0.97555870, 0.93623954, 0.93623954]],
            #  [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
            #   [0.26762316, 0.26762316, 0.26762316, 0.26762316],
            #   [0.72747517, 0.72747517, 0.72747517, 0.72747517]]]
Q
qiaolongfei 已提交
1237 1238

    """
1239

H
hong 已提交
1240
    if in_dygraph_mode():
1241
        return _C_ops.softmax(input, axis)
H
hong 已提交
1242

J
Jiabin Yang 已提交
1243
    if _non_static_mode():
1244 1245 1246
        return _legacy_C_ops.softmax(
            input, 'axis', axis, 'use_cudnn', use_cudnn
        )
1247 1248 1249

    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
1250

1251
    helper = LayerHelper('softmax', **locals())
1252 1253 1254
    check_variable_and_dtype(
        input, 'input/x', ['float16', 'float32', 'float64'], 'softmax'
    )
1255

1256
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1257
    softmax_out = helper.create_variable_for_type_inference(dtype)
1258 1259 1260 1261 1262 1263
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs=attrs,
    )
1264 1265 1266
    return softmax_out


1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
1282
    r"""
1283 1284
    :api_attr: Static Graph

C
chengduoZH 已提交
1285
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1286
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1287
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1288
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1289 1290 1291 1292 1293 1294
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1295
    for more details.
1296 1297 1298
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1299

1300
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1301

C
chengduoZH 已提交
1302 1303
    .. math::

C
refine  
chengduoZH 已提交
1304
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1305

T
tensor-tang 已提交
1306
    Where:
C
chengduoZH 已提交
1307

L
liym27 已提交
1308
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1309 1310 1311 1312
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1313
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1314 1315 1316

    Example:

1317 1318
        - Input:

W
weixing02 已提交
1319
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1320

W
weixing02 已提交
1321
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1322

1323
        - Output:
T
tensor-tang 已提交
1324

W
weixing02 已提交
1325
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1326

C
chengduoZH 已提交
1327
        Where
1328 1329

        .. math::
C
chengduoZH 已提交
1330

W
weixing02 已提交
1331 1332
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1333 1334

    Args:
1335
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
L
lvmengsi 已提交
1336
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1337
        num_filters(int): The number of filter. It is as same as the output
1338
            image channel.
1339 1340
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
L
lvmengsi 已提交
1341 1342
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
1343 1344
        stride (int|tuple): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
L
lvmengsi 已提交
1345 1346
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1347
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1348 1349
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
1350 1351
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
L
lvmengsi 已提交
1352
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1353 1354 1355
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1356
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
1357 1358
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
L
lvmengsi 已提交
1359
            Default: dilation = 1.
1360 1361 1362 1363
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1364 1365 1366 1367 1368
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1369
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1370 1371 1372 1373 1374
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1375 1376
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1377 1378
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1379 1380
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
L
lvmengsi 已提交
1381
           None by default.
1382
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1383
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1384 1385
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1386 1387

    Returns:
1388 1389 1390
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
L
lvmengsi 已提交
1391
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1392

1393 1394 1395 1396 1397
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1398
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
1399 1400 1401 1402 1403 1404 1405
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1406 1407 1408
    Examples:
        .. code-block:: python

1409 1410
          import paddle
          paddle.enable_static()
1411

1412 1413 1414
          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
Y
Yu Yang 已提交
1415 1416
    """

1417 1418 1419
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
1420
    if len(input.shape) != 4:
1421 1422 1423 1424
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
1425
    num_channels = input.shape[1]
L
liym27 已提交
1426
    if not isinstance(use_cudnn, bool):
1427 1428 1429 1430
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
L
liym27 已提交
1431 1432 1433 1434

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1435 1436
            "Attr(data_format): %s." % str(data_format)
        )
L
liym27 已提交
1437

1438
    channel_last = data_format == "NHWC"
L
liym27 已提交
1439 1440 1441 1442
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
1443 1444
            "Received: %s." % (str(input.shape), str(num_channels))
        )
C
chengduo 已提交
1445
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1446

1447 1448 1449
    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
1450 1451
        raise ValueError(
            "the groups of input must be greater than 0, "
1452 1453
            "but received the groups of input is {}".format(groups)
        )
1454 1455 1456 1457 1458
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
1459 1460
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
1461 1462
        num_filter_channels = num_channels // groups

1463
    l_type = 'conv2d'
1464 1465 1466 1467 1468
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
1469
        l_type = 'depthwise_conv2d'
1470

1471 1472 1473 1474 1475
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
1476 1477
        l_type = 'depthwise_conv2d'

1478 1479
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
1480
        if num_channels == groups and num_channels == num_filters:
1481 1482 1483 1484
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

1485 1486 1487
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

C
chengduoZH 已提交
1488 1489
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1490
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1491

L
liym27 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1504 1505
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1506 1507 1508 1509 1510 1511
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1512 1513
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1514 1515 1516
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1517 1518 1519
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
1530 1531 1532
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
L
liym27 已提交
1533 1534
        if padding == "VALID":
            padding_algorithm = "VALID"
1535
            padding = [0, 0]
L
liym27 已提交
1536 1537
        elif padding == "SAME":
            padding_algorithm = "SAME"
1538
            padding = [0, 0]
L
liym27 已提交
1539 1540

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1541

M
minqiyang 已提交
1542
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1543 1544

    def _get_default_param_initializer():
C
chengduo 已提交
1545
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
1546 1547 1548 1549
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
1550 1551 1552
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
Y
Yu Yang 已提交
1553 1554 1555 1556 1557 1558
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
1559 1560
        default_initializer=_get_default_param_initializer(),
    )
Y
Yu Yang 已提交
1561

X
Xin Pan 已提交
1562
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1563

1564 1565 1566 1567 1568 1569
    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
1570 1571
        use_cudnn = False

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
1591

1592 1593 1594 1595
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1596 1597 1598 1599

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1600
@templatedoc()
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
def pool2d(
    input,
    pool_size=-1,
    pool_type="max",
    pool_stride=1,
    pool_padding=0,
    global_pooling=False,
    use_cudnn=True,
    ceil_mode=False,
    name=None,
    exclusive=True,
    data_format="NCHW",
):
Y
Yu Yang 已提交
1614
    """
1615

F
fengjiayi 已提交
1616
    ${comment}
1617 1618

    Args:
K
Kaipeng Deng 已提交
1619 1620 1621 1622 1623
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1624
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1625 1626
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1627
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1628 1629 1630
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1631 1632 1633 1634 1635 1636 1637
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1638
            Otherwise, the pool padding size will be a square of an int.
1639 1640 1641
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1642 1643 1644
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1645
        exclusive (bool): Whether to exclude padding points in average pooling
1646
                          mode, default is `true`.
1647
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
1648 1649
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1650

1651
    Returns:
K
Kaipeng Deng 已提交
1652
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1653 1654

    Raises:
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1667 1668 1669 1670 1671

    Examples:

        .. code-block:: python

1672
          import paddle.fluid as fluid
1673 1674 1675
          import paddle

          paddle.enable_static()
1676

K
Kaipeng Deng 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1720 1721 1722
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1723
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
1724 1725
            str(pool_type),
        )
C
chengduoZH 已提交
1726

C
chengduoZH 已提交
1727 1728
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1729
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
1730 1731
            "and be a valid value. Received pool_size: %s." % str(pool_size)
        )
1732 1733

    if not isinstance(use_cudnn, bool):
1734 1735 1736 1737
        raise TypeError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s." % str(use_cudnn)
        )
1738 1739 1740 1741

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1742 1743
            "Attr(data_format): %s." % str(data_format)
        )
C
chengduoZH 已提交
1744

C
chengduoZH 已提交
1745 1746 1747
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1759 1760
                        "is not supported." % str(padding)
                    )
1761 1762 1763 1764 1765 1766
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1767 1768
                        "is not supported." % str(padding)
                    )
1769 1770 1771
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1772

1773 1774
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
1786 1787
                % str(pool_padding)
            )
1788 1789
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1790
            pool_padding = [0, 0]
1791 1792 1793
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
1794 1795
                    "Received ceil_mode: True."
                )
1796 1797
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1798
            pool_padding = [0, 0]
1799 1800

    pool_padding = update_padding(pool_padding, data_format)
1801
    if in_dygraph_mode():
1802
        input = input._use_gpudnn(use_cudnn)
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
        return _C_ops.pool2d(
            input,
            pool_size,
            pool_stride,
            pool_padding,
            ceil_mode,
            exclusive,
            data_format,
            pool_type,
            global_pooling,
            False,
            padding_algorithm,
        )
1816 1817
    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1818
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1819
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
    helper.append_op(
        type=op_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
1839 1840 1841 1842

    return pool_out


1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
def batch_norm(
    input,
    act=None,
    is_test=False,
    momentum=0.9,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    use_global_stats=False,
):
1859
    r"""
1860 1861
    :api_attr: Static Graph

Q
qiaolongfei 已提交
1862 1863
    **Batch Normalization Layer**

L
lvmengsi 已提交
1864
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
1865
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
1866

Q
qiaolongfei 已提交
1867
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
1868

Q
qiaolongfei 已提交
1869 1870
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
1871 1872 1873
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
1886

L
lvmengsi 已提交
1887
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
1888
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum)
L
lvmengsi 已提交
1889

1890

L
lvmengsi 已提交
1891
    moving_mean is global mean and moving_var is global variance.
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
1905
    Note:
1906
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use
L
lvmengsi 已提交
1907
        sync_batch_norm automatically.
1908
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
1909

1910
    Args:
1911
        input(Tensor): The rank of input Tensor can be 2, 3, 4, 5. The data type
L
lvmengsi 已提交
1912
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
1913
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
1914 1915
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
1916 1917
        momentum(float|Tensor, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Tensor with
1918
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
1919 1920 1921 1922 1923
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
1924 1925
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
1926
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
1927
	     If the Initializer of the param_attr is not set, the parameter is initialized
1928
	     with Xavier. Default: None.
C
chengduo 已提交
1929 1930
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
1931 1932
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
1933
	     Default: None.
1934
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
K
Kaipeng Deng 已提交
1935 1936 1937
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
1938
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
1939 1940 1941 1942
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
1943
            will save global mean with the string.
L
lvmengsi 已提交
1944
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
1945
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
1946
            will save global variance with the string.
1947 1948
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
1949 1950 1951 1952 1953
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
1954
    Returns:
1955
        A Tensor which is the result after applying batch normalization on the input,
1956
        has same shape and data type with input.
Q
qiaolongfei 已提交
1957 1958 1959 1960 1961

    Examples:

        .. code-block:: python

1962
            import paddle
1963

1964
            paddle.enable_static()
1965 1966 1967 1968 1969 1970 1971
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x=x, size=200)
            print(hidden1.shape)
            # [3, 200]
            hidden2 = paddle.static.nn.batch_norm(input=hidden1)
            print(hidden2.shape)
            # [3, 200]
Y
Yu Yang 已提交
1972
    """
1973 1974 1975
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
1976 1977
    helper = LayerHelper('batch_norm', **locals())

1978 1979 1980
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'batch_norm'
    )
1981
    dtype = helper.input_dtype()
1982

W
Wu Yi 已提交
1983 1984 1985 1986
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0),
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
    )

    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
2019 2020
    mean.stop_gradient = True

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
2031
    variance.stop_gradient = True
Y
Yu Yang 已提交
2032 2033 2034 2035

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
2036
    # variance and variance_out share the same memory
Y
Yu Yang 已提交
2037
    variance_out = variance
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

    if in_dygraph_mode():
        inputs_has_MomemtumTensor = False
        attrs_has_momentum = False
        tmp_tensor_type = core.eager.Tensor
        if isinstance(momentum, tmp_tensor_type):
            inputs_has_MomemtumTensor = True
        else:
            attrs_has_momentum = True

        attrs_ = ()
        if attrs_has_momentum:
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
            attrs_ = (
                'momentum',
                momentum,
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
2066
        else:
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
            attrs_ = (
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
2081
        if inputs_has_MomemtumTensor:
2082
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
                input,
                scale,
                bias,
                mean,
                variance,
                momentum,
                mean_out,
                variance_out,
                *attrs_,
            )
2093
        else:
2094
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
                input,
                scale,
                bias,
                mean,
                variance,
                None,
                mean_out,
                variance_out,
                *attrs_,
            )
2105

2106 2107 2108
        return dygraph_utils._append_activation_in_dygraph(
            batch_norm_out, act=act, use_mkldnn=False
        )
2109

2110 2111 2112
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2113
    saved_variance = helper.create_variable_for_type_inference(
2114 2115
        dtype=dtype, stop_gradient=True
    )
2116
    reserve_space = None
2117
    if not is_test:
2118
        reserve_space = helper.create_variable_for_type_inference(
2119 2120
            dtype=helper.input_dtype(), stop_gradient=True
        )
2121

2122 2123 2124
    batch_norm_out = (
        input if in_place else helper.create_variable_for_type_inference(dtype)
    )
Y
Yu Yang 已提交
2125

2126 2127 2128 2129 2130
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
2131 2132
        "Variance": variance,
        "MeanOut": mean_out,
2133
        "VarianceOut": variance_out,
2134 2135 2136 2137 2138 2139 2140
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
2141
        "use_global_stats": use_global_stats,
2142 2143 2144 2145 2146
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2147 2148 2149 2150 2151 2152

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
2153
        "SavedVariance": saved_variance,
2154 2155 2156 2157
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

2158 2159 2160
    helper.append_op(
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
    )
Y
Yu Yang 已提交
2161 2162 2163 2164

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2165
@templatedoc()
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
2177
    r"""
2178 2179
    :api_attr: Static Graph

2180 2181 2182 2183
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2184 2185 2186

    The formula is as follows:

Y
yuyang18 已提交
2187
    ..  math::
G
guosheng 已提交
2188

2189
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2190

2191
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2192

2193
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2194

2195 2196 2197 2198 2199
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2200

G
guosheng 已提交
2201
    Args:
2202
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
2203 2204 2205 2206 2207
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2208
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2209 2210 2211 2212
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2213 2214
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2215
            a default :code:`ParamAttr` would be added as scale. The
2216 2217
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2218 2219
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2220
            a default :code:`ParamAttr` would be added as bias. The
2221
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
2222
        act(str, optional): Activation to be applied to the output of layer normalization.
2223 2224
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2225 2226

    Returns:
2227
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2228 2229 2230

    Examples:

2231 2232
        .. code-block:: python

2233 2234
            import paddle
            paddle.enable_static()
2235 2236 2237
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
2238
    """
2239 2240 2241
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
2242
    helper = LayerHelper('layer_norm', **locals())
2243 2244 2245
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
2246 2247 2248 2249 2250 2251 2252
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
2253 2254 2255 2256 2257 2258 2259 2260 2261
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
2262
        inputs['Scale'] = scale
2263 2264
    else:
        if param_attr:
T
tianshuo78520a 已提交
2265
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
2266
    if shift:
2267 2268 2269 2270 2271 2272
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
2273
        inputs['Bias'] = bias
2274 2275
    else:
        if bias_attr:
T
tianshuo78520a 已提交
2276
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
2277 2278

    # create output
2279 2280 2281 2282 2283 2284
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2285
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
2297 2298 2299 2300

    return helper.append_activation(layer_norm_out)


D
dengkaipeng 已提交
2301
@templatedoc()
2302
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
2303
    r"""
2304 2305
    :api_attr: Static Graph

D
dengkaipeng 已提交
2306 2307
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
2308
    This operation calculates the spectral normalization value of weight parameters of
2309
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
2310 2311
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
2312

D
dengkaipeng 已提交
2313 2314 2315
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
2316
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
2317 2318

    Step 2:
T
tianshuo78520a 已提交
2319
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
2320 2321
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
2322

2323
    .. math::
D
dengkaipeng 已提交
2324 2325 2326 2327 2328 2329

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
2330
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
2331 2332 2333 2334

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
2335

D
dengkaipeng 已提交
2336
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
2337

2338

D
dengkaipeng 已提交
2339 2340 2341
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
2342
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
2343 2344 2345
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
2346 2347 2348
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
2349 2350

    Returns:
C
Chen Long 已提交
2351
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
2352
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
2353 2354

    Examples:
K
Kaipeng Deng 已提交
2355
       .. code-block:: python
D
dengkaipeng 已提交
2356

2357
            import paddle
K
Kaipeng Deng 已提交
2358

2359
            paddle.enable_static()
C
Chen Long 已提交
2360
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
2361
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
2362
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
2363 2364
    """
    helper = LayerHelper('spectral_norm', **locals())
2365 2366 2367
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
2368 2369 2370
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
2371
    dtype = weight.dtype
D
dengkaipeng 已提交
2372 2373

    # create intput and parameters
2374
    input_shape = weight.shape
2375
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
2376 2377 2378 2379 2380
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
2381 2382 2383
    h = input_shape[dim]
    w = np.prod(input_shape) // h

2384 2385 2386 2387 2388 2389
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
2390
    u.stop_gradient = True
2391 2392 2393 2394 2395 2396
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
2397
    v.stop_gradient = True
D
dengkaipeng 已提交
2398

2399 2400 2401 2402 2403 2404 2405
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
2406
    # create output
2407
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
2408

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
2421

2422
    return out
D
Dun 已提交
2423 2424


C
caoying03 已提交
2425
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2426
    """
2427

Y
yangyaming 已提交
2428
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2429 2430

    Args:
2431 2432 2433
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2434 2435
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2436 2437
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2438
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2439
            output Tensor. The result tensor will have one fewer dimension
2440 2441 2442 2443
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
2444 2445

    Returns:
2446 2447
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
2448

2449 2450
    Raises:
        TypeError, if out data type is different with the input data type.
2451

G
guosheng 已提交
2452 2453 2454
    Examples:
        .. code-block:: python

2455
            import paddle.fluid as fluid
2456 2457
            import paddle
            paddle.enable_static()
G
guosheng 已提交
2458 2459 2460
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2461
            # Each example is followed by the corresponding output tensor.
2462
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
2463 2464 2465 2466
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2467

2468
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
2469 2470
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2471
            # Each example is followed by the corresponding output tensor.
2472
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
2473 2474
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
2475

G
guosheng 已提交
2476
    """
2477 2478
    reduce_all, dim = _get_reduce_dim(dim, input)

2479
    if in_dygraph_mode():
2480
        return _C_ops.sum(input, dim, None, keep_dim)
2481
    elif _in_legacy_dygraph():
2482 2483 2484
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
2485
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
2486
    check_variable_and_dtype(
2487 2488 2489 2490 2491
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
2492
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
2493
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
2494 2495 2496 2497 2498 2499
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
2500
    return out
G
guosheng 已提交
2501 2502


C
caoying03 已提交
2503
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2504
    """
2505
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
2506 2507

    Args:
2508
        input (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
2509
        num_or_sections (int|list|tuple): If ``num_or_sections`` is int, then the ``num_or_sections``
2510
            indicates the number of equal sized sub-Tensors that the ``input``
2511
            will be divided into. If ``num_or_sections`` is a list or tuple, the length of it
2512 2513 2514 2515 2516
            indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            dimension orderly. The length of the list mustn't be larger than the ``input`` 's size of specified dim.
        dim (int|Tensor, optional): The dimension along which to split, it can be a scalar with type ``int`` or
            a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math:`dim < 0`,
            the dimension to split along is :math:`rank(input) + dim`. Default is -1.
2517
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
2518
            For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2519 2520

    Returns:
2521
        list(Tensor): The list of segmented Tensors.
G
guosheng 已提交
2522

2523
    Example:
G
guosheng 已提交
2524 2525
        .. code-block:: python

2526 2527
            import paddle.fluid as fluid

2528
            # input is a Tensor which shape is [3, 9, 5]
2529
            input = fluid.data(
2530 2531
                 name="input", shape=[3, 9, 5], dtype="float32")

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
2546

2547 2548 2549 2550 2551 2552
            # dim is negative, the real dim is (rank(input) + axis) which real
            # value is 1.
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
2553

G
guosheng 已提交
2554
    """
J
Jiabin Yang 已提交
2555
    if _non_static_mode():
2556 2557 2558
        num = None
        attrs = ()

S
songyouwei 已提交
2559 2560
        if isinstance(dim, Variable):
            dim = dim.numpy()
2561
            dim = dim.item(0)
W
wangzhen38 已提交
2562
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
S
songyouwei 已提交
2563
        dim = (len(input.shape) + dim) if dim < 0 else dim
2564
        attrs += ('axis', dim)
2565 2566 2567

        if isinstance(num_or_sections, int):
            num = num_or_sections
2568
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
2569
        elif isinstance(num_or_sections, (list, tuple)):
2570
            num = len(num_or_sections)
L
Leo Chen 已提交
2571
            if utils._contain_var(num_or_sections):
2572 2573
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
2574 2575 2576
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
2577
                attrs += ('sections', list(num_or_sections))
L
Leo Chen 已提交
2578
            else:
2579
                attrs += ('sections', list(num_or_sections))
2580 2581
        else:
            raise TypeError(
2582
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
2583 2584
                "received %s." % (type(num_or_sections))
            )
2585
        if in_dygraph_mode():
C
Charles-hit 已提交
2586 2587 2588 2589
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
2590 2591
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
2592
            _legacy_C_ops.split(input, out, *attrs)
2593
            return out
L
Leo Chen 已提交
2594

2595
    check_variable_and_dtype(
2596 2597 2598 2599 2600
        input,
        'input',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'split',
    )
2601 2602 2603 2604
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
2605

G
guosheng 已提交
2606
    helper = LayerHelper('split', **locals())
2607

G
guosheng 已提交
2608
    input_shape = input.shape
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
2620
                assert isinstance(dim_size, int)
2621 2622 2623
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
2624 2625 2626
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2627 2628
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
2629 2630 2631
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2632 2633 2634 2635 2636 2637 2638
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
W
wangzhen38 已提交
2639
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
2640 2641 2642
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
2643 2644
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
2645
        if isinstance(dim, int) and input_shape[dim] > 0:
2646 2647 2648 2649 2650 2651
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
G
guosheng 已提交
2652 2653
        num = num_or_sections
    else:
2654
        if isinstance(dim, int) and input_shape[dim] > 0:
2655 2656 2657
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
2658
        num = len(num_or_sections)
2659
        attrs['sections'] = list(
2660 2661 2662 2663 2664
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
L
Leo Chen 已提交
2665
        if utils._contain_var(num_or_sections):
2666
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
2667 2668
                num_or_sections
            )
2669

G
guosheng 已提交
2670
    outs = [
X
Xin Pan 已提交
2671
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
2672 2673
        for i in range(num)
    ]
2674 2675 2676
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
G
guosheng 已提交
2677
    return outs
C
caoying03 已提交
2678 2679 2680


def l2_normalize(x, axis, epsilon=1e-12, name=None):
2681
    r"""
2682

R
ruri 已提交
2683
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
2684 2685
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2686
    .. math::
2687 2688

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2689 2690 2691 2692 2693

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2694
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float16, float32 or float64.
2695
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
2696 2697
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
2698
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
2699
            the default value is 1e-12.
2700
    name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
2701

C
caoying03 已提交
2702
    Returns:
R
ruri 已提交
2703
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
2704 2705

    Examples:
2706

2707 2708
    .. code-block:: python
        :name: code-example1
2709

2710
        import paddle
2711

2712 2713
        X = paddle.randn(shape=[3, 5], dtype='float64')
        out = paddle.fluid.layers.l2_normalize(X, axis=-1)
G
Guoxia Wang 已提交
2714
        print(out)
R
ruri 已提交
2715

2716 2717 2718
        # [[ 0.21558504  0.56360189  0.47466096  0.46269539 -0.44326736]
        #  [-0.70602414 -0.52745777  0.37771788 -0.2804768  -0.04449922]
        #  [-0.33972208 -0.43014923  0.31772556  0.76617881 -0.10761525]]
2719

C
caoying03 已提交
2720
    """
F
fengjiayi 已提交
2721 2722
    if len(x.shape) == 1:
        axis = 0
J
Jiabin Yang 已提交
2723
    if _non_static_mode():
2724 2725 2726
        if in_dygraph_mode():
            out, _ = _C_ops.norm(x, 1 if axis is None else axis, epsilon, False)
        elif _in_legacy_dygraph():
2727 2728 2729
            _, out = _legacy_C_ops.norm(
                x, 'axis', 1 if axis is None else axis, 'epsilon', epsilon
            )
2730 2731 2732
        return out

    check_variable_and_dtype(x, "X", ("float16", "float32", "float64"), "norm")
C
caoying03 已提交
2733

2734
    helper = LayerHelper("l2_normalize", **locals())
X
Xin Pan 已提交
2735 2736
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
2737 2738 2739 2740 2741 2742 2743 2744 2745
    helper.append_op(
        type="norm",
        inputs={"X": x},
        outputs={"Out": out, "Norm": norm},
        attrs={
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
        },
    )
C
caoying03 已提交
2746
    return out
2747 2748


S
ShenLiang 已提交
2749
@deprecated(since="2.0.0", update_to="paddle.matmul")
S
sneaxiy 已提交
2750
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
2751
    """
Y
ying 已提交
2752 2753 2754 2755
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2756

C
chengduoZH 已提交
2757
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2758
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2759

2760 2761 2762 2763 2764
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2765
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2766

C
chengduoZH 已提交
2767
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2768
      performs in the following way.
G
guosheng 已提交
2769

2770
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2771
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2772
        last two dimensions and a batched matrix multiply supporting broadcast
2773
        applies on the two tensors.
G
guosheng 已提交
2774

Y
ying 已提交
2775 2776
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2777
    removed after matrix multiplication.
G
guosheng 已提交
2778 2779 2780

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2781 2782 2783
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
2784
        alpha (float): The scale of output. Default 1.0.
2785
        name(str|None): A name for this layer(optional). If set None, the layer
2786
            will be named automatically.
G
guosheng 已提交
2787 2788

    Returns:
石晓伟 已提交
2789
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
2790

G
guosheng 已提交
2791 2792 2793
    Examples:
        .. code-block:: python

2794
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2795
            # x: [B, ..., M, K], y: [B, ..., K, N]
2796
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2797

2798
            # x: [B, M, K], y: [B, K, N]
2799
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2800

2801
            # x: [B, M, K], y: [K, N]
2802
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2803

2804
            # x: [M, K], y: [K, N]
2805
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2806 2807

            # x: [B, M, K], y: [K]
2808
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
2809

2810
            # x: [K], y: [K]
2811
            # fluid.layers.matmul(x, y)  # out: [1]
2812

Y
ying 已提交
2813
            # x: [M], y: [N]
2814 2815
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

2816
            import paddle
2817
            import paddle.fluid as fluid
2818 2819
            paddle.enable_static()

2820 2821 2822
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
2823
    """
J
Jiabin Yang 已提交
2824
    if _non_static_mode():
S
ShenLiang 已提交
2825
        out = _varbase_creator(dtype=x.dtype)
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
        _legacy_C_ops.matmul(
            x,
            y,
            out,
            'transpose_X',
            transpose_x,
            'transpose_Y',
            transpose_y,
            'alpha',
            float(alpha),
        )
S
ShenLiang 已提交
2837 2838 2839 2840 2841
        return out

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
2842 2843 2844
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul'
            )
S
ShenLiang 已提交
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
2858 2859 2860 2861 2862 2863
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1), (
                "After performing an optional transpose, Input X's width should be "
                "equal to Y's width for multiplication "
                "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                % (x_shape, y_shape)
            )
S
ShenLiang 已提交
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
2875 2876
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                    )
S
ShenLiang 已提交
2877

W
wanghuancoder 已提交
2878 2879 2880 2881 2882 2883
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

S
ShenLiang 已提交
2884 2885 2886 2887
    __check_input(x, y)

    helper = LayerHelper('matmul', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2888 2889 2890 2891 2892 2893
    helper.append_op(
        type='matmul',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
S
ShenLiang 已提交
2894
    return out
2895 2896


2897
def topk(input, k, name=None):
Q
qingqing01 已提交
2898
    """
2899
    :alias_main: paddle.topk
2900 2901
        :alias: paddle.topk,paddle.tensor.topk,paddle.tensor.search.topk
        :old_api: paddle.fluid.layers.topk
2902

2903
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
2904 2905
    for the last dimension.

2906 2907
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
2908 2909 2910 2911

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
2912 2913
    .. code-block:: text

2914 2915 2916 2917 2918
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
2919 2920 2921 2922
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

2923
          Output:
F
fengjiayi 已提交
2924
            The first output:
2925 2926
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
2927 2928 2929 2930
                      [10, 25],
                      [6, 10]]

            The second output:
2931 2932
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
2933 2934 2935
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
2936
    Args:
2937 2938 2939 2940
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
2941 2942

    Returns:
2943 2944
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
2945

F
fengjiayi 已提交
2946
    Raises:
2947
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
2948 2949 2950 2951

    Examples:
        .. code-block:: python

2952
            import paddle.fluid as fluid
2953
            import paddle.fluid.layers as layers
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
2967
    """
J
Jiabin Yang 已提交
2968
    if _non_static_mode():
2969
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
2970
        out, indices = _legacy_C_ops.top_k(input, 'k', _k)
2971 2972 2973
        out.stop_gradient = True
        indices.stop_gradient = True
        return out, indices
2974

2975 2976
    inputs = {"X": [input]}
    attrs = {}
S
songyouwei 已提交
2977 2978 2979 2980 2981
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}

2982 2983 2984 2985
    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

2986 2987 2988 2989 2990 2991
    helper.append_op(
        type="top_k",
        inputs=inputs,
        outputs={"Out": [values], "Indices": [indices]},
        attrs=attrs,
    )
Q
qingqing01 已提交
2992 2993 2994 2995 2996
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


2997 2998 2999
def ctc_greedy_decoder(
    input, blank, input_length=None, padding_value=0, name=None
):
3000
    r"""
S
SunGaofeng 已提交
3001
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
3002

S
SunGaofeng 已提交
3003
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
3004 3005 3006
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3007

S
SunGaofeng 已提交
3008
    This op is implemented in two modes: lod and padding, either of them can be used.
3009
    The input can be either LoDTensor or Tensor, corresponding to lod and padding
S
SunGaofeng 已提交
3010 3011
    mode respectively.

3012 3013 3014 3015 3016
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
3017
        (1) for lod mode:
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3029
        input.lod = [[4, 4]]
M
minqiyang 已提交
3030

W
whs 已提交
3031
        Computation:
3032

W
whs 已提交
3033 3034 3035 3036 3037 3038
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
3039 3040 3041 3042 3043

        output.data = [[2],
                       [1],
                       [3]]

3044
        output.lod = [[2, 1]]
3045

S
SunGaofeng 已提交
3046
        (2) for padding mode:
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
3063
        step2: Change the argmax result to use padding mode, then argmax result is
3064 3065 3066 3067 3068 3069 3070 3071 3072
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
3073
    Parameters:
3074

3075 3076
        input(Variable): the probabilities of variable-length sequences. When in lod mode,
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1]
Y
ying 已提交
3077
                         where Lp is the sum of all input sequences' length and
3078 3079
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
3080
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
3081
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
3082
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
3083
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
3084 3085
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
3086
        padding_value(int): padding value.
3087 3088 3089
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
3090 3091

    Returns:
S
SunGaofeng 已提交
3092 3093 3094 3095 3096
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

3097
        For padding mode, returns a tuple of (output, output_length), which was described as below:
S
SunGaofeng 已提交
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

3109 3110 3111 3112

    Examples:
        .. code-block:: python

3113
            # for lod mode
S
SunGaofeng 已提交
3114
            import paddle.fluid as fluid
S
SunGaofeng 已提交
3115
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
3116
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
3117 3118

            # for padding mode
S
SunGaofeng 已提交
3119 3120
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
3121 3122 3123
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
3124
    """
3125 3126 3127
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'ctc_greedy_decoder'
    )
3128

3129
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3130
    _, topk_indices = topk(input, k=1)
3131 3132

    # ctc align op
X
Xin Pan 已提交
3133
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
3134 3135

    if input_length is None:
3136 3137 3138 3139 3140 3141
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True, "blank": blank},
        )
3142 3143 3144
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
3145
        ctc_input = paddle.squeeze(topk_indices, [2])
3146

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input], "InputLength": [input_length]},
            outputs={"Output": [ctc_out], "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value,
            },
        )
3157
        return ctc_out, ctc_out_len
3158 3159


3160 3161 3162 3163 3164 3165 3166 3167 3168
def im2sequence(
    input,
    filter_size=1,
    stride=1,
    padding=0,
    input_image_size=None,
    out_stride=1,
    name=None,
):
3169
    r"""
3170 3171
    :api_attr: Static Graph

3172
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
3173 3174 3175
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
3176 3177
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3178 3179 3180

    .. math::

L
Liufang Sang 已提交
3181 3182 3183 3184
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
3185

L
Liufang Sang 已提交
3186
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
3187

L
Liufang Sang 已提交
3188 3189
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
3190

L
Liufang Sang 已提交
3191 3192 3193
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
3194

L
Liufang Sang 已提交
3195 3196
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
3197

L
Liufang Sang 已提交
3198 3199 3200 3201 3202
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
3203
            padding_up = padding_down = padding_left = padding_right = padding.
L
Liufang Sang 已提交
3204
            Default is 0.
3205

L
Liufang Sang 已提交
3206 3207 3208 3209
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
3210
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
3211 3212 3213 3214 3215
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3216 3217 3218

    Returns:
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \
L
Liufang Sang 已提交
3219 3220 3221
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3249 3250 3251
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

3264
            output.dims = {8, 8}
3265

3266
            output.lod = [[4, 4]]
3267

T
Tink_Y 已提交
3268
    Examples:
3269 3270 3271

        .. code-block:: python

B
Bai Yifan 已提交
3272
            import paddle.fluid as fluid
3273 3274
            import paddle
            paddle.enable_static()
L
Liufang Sang 已提交
3275
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
3276
                                     dtype='float32')
3277
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
3278 3279
                input=data, stride=[1, 1], filter_size=[2, 2])

3280 3281

    """
3282 3283 3284
    assert (
        not _non_static_mode()
    ), "sequence layer is not supported in dygraph mode yet."
W
wanghaoshuang 已提交
3285

3286 3287
    check_variable_and_dtype(input, 'input', ['float32'], 'im2sequence')

W
wanghaoshuang 已提交
3288 3289 3290 3291 3292 3293 3294 3295 3296
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
3297
    inputs = {"X": input}
3298
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
3299 3300 3301 3302 3303
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
3304
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
3305
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3306 3307 3308
    helper.append_op(
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3309
    return out
3310 3311


Y
yuyang18 已提交
3312
@templatedoc()
3313
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
3314
    """
3315 3316
    :api_attr: Static Graph

Y
yuyang18 已提交
3317
    ${comment}
3318 3319

    Args:
Y
yuyang18 已提交
3320
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
3321 3322
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3323 3324 3325 3326 3327
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
3328
        ${out_comment}.
3329 3330

    Examples:
B
Bai Yifan 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
3343 3344
    """
    helper = LayerHelper('row_conv', **locals())
3345
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
3346
    dtype = helper.input_dtype()
3347
    filter_shape = [future_context_size + 1, input.shape[-1]]
3348 3349 3350
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
3351
    out = helper.create_variable_for_type_inference(dtype)
3352 3353 3354 3355 3356
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
3357
    return helper.append_activation(out)
3358 3359


Y
yuyang18 已提交
3360
@templatedoc()
3361
def multiplex(inputs, index, name=None):
3362
    """
Y
yuyang18 已提交
3363

3364
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
3365

3366
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
3367

3368
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
3369

3370
    For Example:
L
lujun 已提交
3371

3372
            .. code-block:: text
L
lujun 已提交
3373

3374
                Given:
L
lujun 已提交
3375

3376 3377 3378 3379
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
3380

3381
                index = [[3],[0],[1],[2]]
L
lujun 已提交
3382

3383 3384 3385 3386
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
3387 3388


3389
    Args:
3390 3391 3392 3393 3394
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
3395
    Returns:
3396
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
3397 3398

    Examples:
3399

X
xuezhong 已提交
3400 3401
        .. code-block:: python

3402
            import paddle
3403 3404 3405
            import numpy as np
            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
3406 3407 3408
            inputs = [paddle.to_tensor(img1), paddle.to_tensor(img2)]
            index = paddle.to_tensor(np.array([[1], [0]]).astype(np.int32))
            res = paddle.multiplex(inputs, index)
3409
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
3410

3411
    """
3412 3413

    if _in_legacy_dygraph():
3414
        return _legacy_C_ops.multiplex(index, inputs)
3415
    if in_dygraph_mode():
3416
        return _C_ops.multiplex(inputs, index)
3417 3418
    helper = LayerHelper('multiplex', **locals())

3419 3420 3421
    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
3422 3423
            "inputs should be a list object with at least 2 elements."
        )
3424
    for id, x in enumerate(inputs):
3425 3426 3427 3428 3429 3430
        check_variable_and_dtype(
            x,
            'input[' + str(id) + ']',
            ['float32', 'float64', 'int32', 'int64'],
            'multiplex',
        )
3431
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')
3432 3433

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
3434 3435 3436 3437 3438
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs, 'Ids': index},
        outputs={'Out': [out]},
    )
3439
    return out
X
xuezhong 已提交
3440 3441


3442 3443
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
3444

Y
Yibing Liu 已提交
3445 3446
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
3447
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
3448
    and then sums all the losses. So the shape of output Variable is
3449
    [batch_size, 1].
3450

3451 3452
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3453
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3454
            A LoDTensor or Tensor with type float32.
3455
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
3456
            L1 loss op with same shape as :attr:`x`.
3457
            A LoDTensor or Tensor with type float32.
3458
        inside_weight (Variable|None):  A tensor with rank at least 2. This
3459 3460
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
3461
            by this tensor element by element.
3462
            A Tensor with type float32.
3463
        outside_weight (Variable|None): A tensor with rank at least 2. This
3464 3465
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
3466
            element by element.
3467
            A Tensor with type float32.
3468
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
3469 3470
           scalar with default value 1.0.

3471
    Returns:
3472
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
3473 3474 3475 3476

    Examples:
        .. code-block:: python

3477
            import paddle.fluid as fluid
3478
            import numpy as np
3479 3480
            import paddle
            paddle.enable_static()
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
3492

3493 3494 3495 3496
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

3497
    """
3498 3499
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'smooth_l1_loss')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'smooth_l1_loss')
3500

3501
    helper = LayerHelper('smooth_l1_loss', **locals())
3502

X
Xin Pan 已提交
3503 3504
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight,
        },
        outputs={'Diff': diff, 'Out': loss},
        attrs={'sigma': sigma if sigma is not None else 1.0},
    )
3516
    return loss
3517 3518


3519
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
3520
def one_hot(input, depth, allow_out_of_range=False):
3521
    """
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
3560
                        [0., 1., 0., 0.],
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
3573
            The second dimension in X is 5, which is greater than depth.
3574 3575
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
3576 3577

    Args:
3578 3579 3580
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
3581
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
3582
            is word id, depth is generally the dictionary size.
3583
        allow_out_of_range(bool): A bool value indicating whether the input
3584 3585 3586 3587
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
3588 3589

    Returns:
3590
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
3591 3592

    Examples:
C
caoying03 已提交
3593
        .. code-block:: python
3594

3595
            import paddle
3596
            import paddle.fluid as fluid
3597 3598
            paddle.enable_static()

3599 3600 3601
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
3602
    """
J
Jiabin Yang 已提交
3603
    if _non_static_mode():
S
songyouwei 已提交
3604 3605 3606
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
3607 3608
                1,
            ), "depth of type Variable should have shape [1]"
3609
            depth = depth.item(0)
3610 3611 3612
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
3613 3614
        out.stop_gradient = True
        return out
3615

3616
    helper = LayerHelper("one_hot", **locals())
3617
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
3618
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
3619
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
3620

3621 3622
    if not isinstance(depth, Variable):
        # user attribute
3623
        inputs = {'X': input}
Y
Yi Liu 已提交
3624
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
3625
    else:
3626 3627 3628
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
3629 3630 3631
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
3632
    one_hot_out.stop_gradient = True
3633
    return one_hot_out
Y
Yu Yang 已提交
3634 3635


Y
Yu Yang 已提交
3636
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3637
    """
3638 3639
    :api_attr: Static Graph

3640 3641
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
3642
    and the step size is 1.
Y
Yu Yang 已提交
3643 3644

    Args:
Y
Yibing Liu 已提交
3645 3646 3647
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
3648

3649
    Returns:
Y
Yibing Liu 已提交
3650
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
3651 3652 3653 3654

    Examples:
        .. code-block:: python

3655
           import paddle.fluid as fluid
3656 3657
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
3658
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
3659
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
3660 3661
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3662 3663
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3664
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
3665 3666 3667 3668
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
3669 3670
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
3671
    if is_new_var:
3672 3673 3674
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
3675
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
3676 3677
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3678
            outputs={'Out': [counter]},
3679 3680
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
3681 3682 3683
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3684 3685


3686
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
3687
    """
3688
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
3689 3690
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
3691

M
minqiyang 已提交
3692
    For example:
H
haowang101779990 已提交
3693 3694 3695

    .. code-block:: text

M
minqiyang 已提交
3696
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
3697
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
3698

Y
Yibing Liu 已提交
3699
    Args:
3700
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
3701
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
3702
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
3703 3704

    Returns:
3705
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
3706 3707 3708 3709

    Examples:
        .. code-block:: python

3710 3711 3712
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
3713

Y
Yibing Liu 已提交
3714
    """
J
Jiabin Yang 已提交
3715
    if _non_static_mode():
L
Leo Chen 已提交
3716 3717 3718
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
3719
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
3720 3721 3722 3723 3724
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
3725
        if _in_legacy_dygraph():
3726
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
3727
            return out
3728
        return _C_ops.unsqueeze(input, axes)
3729 3730

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
3758
        if utils._contain_var(axes):
3759
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
3760 3761 3762
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
3763 3764
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
3765 3766 3767 3768 3769 3770
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
3771

3772 3773
    return out

3774

Y
yangyaming 已提交
3775
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3776
    """
Y
Yibing Liu 已提交
3777
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
3778 3779 3780 3781
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
3782
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
3783 3784 3785 3786 3787 3788

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
3789
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
3790 3791 3792
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

3793
            target_lod: [4, 2]
Y
yangyaming 已提交
3794 3795

            then we get a 1-level LoDTensor:
3796
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
3797 3798 3799 3800 3801 3802
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
3803
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
3804 3805 3806 3807
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
3808
                y.data = [[2, 4]]
Y
yangyaming 已提交
3809 3810 3811
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
3812
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
3813 3814 3815 3816 3817 3818
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
3819
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
3820 3821 3822 3823
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
3824
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
3825 3826 3827 3828
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
3829
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
3830 3831 3832 3833
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
3834
        x (Variable): Input variable which could be a Tensor or LoDTensor.
3835
                      The data type should be int32, int64, float32 or float64.
3836 3837
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
3838 3839
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
3840
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
3841 3842

    Returns:
Y
Yibing Liu 已提交
3843
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
3844 3845

    Raises:
Y
Yibing Liu 已提交
3846
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
3847 3848 3849 3850

    Examples:
        .. code-block:: python

3851
            import paddle.fluid as fluid
3852 3853 3854
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
3855
    """
3856 3857 3858
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
3859
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
3860
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
3861
    if y is not None:
3862
        check_type(y, 'y', (Variable), 'lod_reset')
3863 3864 3865 3866
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
3867
    elif target_lod is not None:
3868 3869 3870 3871 3872 3873
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
3874
    else:
3875 3876 3877 3878
        raise ValueError("y and target_lod should not be both none.")
    return out


3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
def image_resize(
    input,
    out_shape=None,
    scale=None,
    name=None,
    resample='BILINEAR',
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
3890
    """
3891

R
ruri 已提交
3892
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
3893

3894 3895
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or a 4-D Tensor of the shape (num_batches, channels, in_h, in_w)
3896 3897
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
T
tianshuo78520a 已提交
3898
    and the resizing only applies on the three dimensions(depth, height and width).
3899

3900
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
3901 3902
    future and only use :attr:`out_shape` instead.

3903
    Supporting resample methods:
3904
        'LINEAR' : Linear interpolation
Q
update  
qiaolongfei 已提交
3905

3906
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
3907

K
Kaipeng Deng 已提交
3908 3909
        'TRILINEAR' : Trilinear interpolation

3910
        'NEAREST' : Nearest neighbor interpolation
3911

3912
        'BICUBIC' : Bicubic interpolation
3913 3914

    Linear interpolation is the method of using a line connecting two known quantities
3915
    to determine the value of an unknown quantity between the two known quantities.
3916

3917
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
3918
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
3919
    direction) on input tensor.
3920 3921 3922 3923 3924

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
3925 3926
    again in the other direction.

3927 3928 3929
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
3930
    The linear interpolation is performed on three directions.
3931

3932 3933 3934 3935
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
K
Kaipeng Deng 已提交
3936

3937
    Align_corners and align_mode are optional parameters,the calculation method
3938 3939 3940 3941
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
3942
    .. code-block:: text
3943

T
Tink_Y 已提交
3944
        For scale:
3945

T
Tink_Y 已提交
3946
            if align_corners = True && out_size > 1 :
3947

T
Tink_Y 已提交
3948
              scale_factor = (in_size-1.0)/(out_size-1.0)
3949

T
Tink_Y 已提交
3950
            else:
3951

T
Tink_Y 已提交
3952
              scale_factor = float(in_size/out_size)
3953 3954


T
Tink_Y 已提交
3955
        Nearest neighbor interpolation:
3956

T
Tink_Y 已提交
3957 3958
          if:
              align_corners = False
3959

T
Tink_Y 已提交
3960 3961
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3962

T
Tink_Y 已提交
3963 3964
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
3965

T
Tink_Y 已提交
3966 3967
          else:
              align_corners = True
3968

T
Tink_Y 已提交
3969 3970
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3971

T
Tink_Y 已提交
3972 3973
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
3974

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
        linear interpolation:

          if:
              align_corners = False , align_mode = 0

              input : (N,C,W_in)
              output: (N,C,W_out) where:

              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,W_in)
              output: (N,C,H_out,W_out) where:

              W_out = W_{in} * scale_{factor}

T
Tink_Y 已提交
3992 3993 3994 3995
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
3996

T
Tink_Y 已提交
3997 3998
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3999

T
Tink_Y 已提交
4000 4001
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
4002

T
Tink_Y 已提交
4003
          else:
4004

T
Tink_Y 已提交
4005 4006
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4007

T
Tink_Y 已提交
4008 4009
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
4010

K
Kaipeng Deng 已提交
4011 4012 4013 4014
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
4015

K
Kaipeng Deng 已提交
4016 4017
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
4018

K
Kaipeng Deng 已提交
4019 4020 4021 4022 4023 4024
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
4025

K
Kaipeng Deng 已提交
4026 4027 4028 4029
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
4030

4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
K
Kaipeng Deng 已提交
4043 4044
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
4045

4046

4047 4048
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
4049

4050
    For details of nearest neighbor interpolation, please refer to Wikipedia:
4051
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
4052

4053
    For details of bilinear interpolation, please refer to Wikipedia:
4054
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
4055

4056
    For details of trilinear interpolation, please refer to Wikipedia:
K
Kaipeng Deng 已提交
4057
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
4058

4059 4060
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
4061

R
ruri 已提交
4062
    Parameters:
4063
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
4064
                          its data format is specified by :attr:`data_format`.
4065
        out_shape (list|tuple|Variable|None): Output shape of image resize
4066 4067
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
4068
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
4069
             If a Tensor Variable, its dimensions size should be a 1.
4070 4071 4072
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
4073
             Default: None.
4074 4075
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4076
        resample(str): The resample method. It supports 'LINEAR', 'BICUBIC', 'BILINEAR', 'TRILINEAR'
K
Kaipeng Deng 已提交
4077
                       and 'NEAREST' currently. Default: 'BILINEAR'
4078 4079 4080
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
4081
                                :attr:`out_shape` and :attr:`scale` specifying
4082 4083
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4084 4085 4086 4087 4088
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4089
                                errors would be occurred in graph constructing stage.
4090
                                Default: None
4091 4092
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
4093 4094
                               corner pixels.
                               Default: True
4095 4096
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the fomula in the
                            the example code above, it can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 ,
4097
                            can be \'1\' for src_idx = scale*dst_index.
4098
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4099
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
4100
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
4101
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
4102
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
4103 4104

    Returns:
4105
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
4106 4107
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
4108

4109 4110 4111
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
4112 4113
        ValueError: The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR',
                    'TRILINEAR', 'BICUBIC' or 'NEAREST' currently.
4114
        ValueError: 'LINEAR' only support 3-D tensor.
4115
        ValueError: 'BICUBIC', 'BILINEAR' and 'NEAREST' only support 4-D tensor.
K
Kaipeng Deng 已提交
4116
        ValueError: 'TRILINEAR' only support 5-D tensor.
4117
        ValueError: One of out_shape and scale must not be None.
4118
        ValueError: out_shape length should be 1 for input 3-D tensor.
K
Kaipeng Deng 已提交
4119 4120
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
4121
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
4122
        TypeError: align_corners should be a bool value
4123
        ValueError: align_mode can only be '0' or '1'
4124
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
4125

4126 4127
    Examples:
        .. code-block:: python
4128

4129 4130 4131 4132 4133 4134
            #declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
4135

4136 4137
            #1
            output = fluid.layers.image_resize(input=input,out_shape=[12,12])
R
ruri 已提交
4138

4139 4140 4141 4142 4143
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])
R
ruri 已提交
4144

4145 4146 4147 4148 4149
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)
R
ruri 已提交
4150

4151 4152 4153 4154 4155
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.image_resize(input=input,scale=scale_tensor)
R
ruri 已提交
4156

4157 4158 4159
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4160

4161
            input_data = np.random.rand(2,3,6,10).astype("float32")
4162

4163
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4164 4165 4166
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4167

4168
            print(output_data[0].shape)
4169

4170 4171 4172 4173 4174 4175 4176 4177
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
4178

4179 4180
            #imperative mode
            import paddle.fluid.dygraph as dg
4181

4182 4183 4184 4185
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.image_resize(input=input, out_shape=[12,12])
                print(output.shape)
4186

4187
                # [2L, 3L, 12L, 12L]
4188

4189
    """
4190
    resample_methods = {
4191
        'LINEAR': 'linear',
4192
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
4193
        'TRILINEAR': 'trilinear',
4194
        'NEAREST': 'nearest',
4195
        'LINEAR': 'linear',
4196
    }
4197
    resample = resample.upper()
4198 4199
    if resample not in resample_methods:
        raise ValueError(
4200
            "The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR', 'TRILINEAR' "
4201 4202
            "or 'NEAREST' currently."
        )
4203
    resample_type = resample_methods[resample]
4204

4205 4206 4207
    if resample == 'LINEAR' and len(input.shape) != 3:
        raise ValueError("'LINER only support 3-D tensor.")
    elif resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
K
Kaipeng Deng 已提交
4208
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
4209
    elif resample == 'TRILINEAR' and len(input.shape) != 5:
K
Kaipeng Deng 已提交
4210 4211
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

4212 4213 4214 4215 4216
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

4217
    if out_shape is None and scale is None:
4218
        raise ValueError("One of out_shape and scale must not be None.")
4219
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
4220
    dtype = helper.input_dtype()
4221

4222
    if len(input.shape) == 3 and data_format not in ['NCW', 'NWC']:
4223
        raise ValueError(
4224 4225 4226 4227
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
4228
    elif len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
4229
        raise ValueError(
4230 4231 4232 4233
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
4234 4235
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
4236 4237 4238 4239
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
4240

4241
    def _is_list_or_turple_(data):
4242
        return isinstance(data, list) or isinstance(data, tuple)
4243

4244
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
4245
        data_layout = 'NCHW'
4246
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
4247 4248
        data_layout = 'NHWC'

4249
    inputs = {"X": input}
D
dengkaipeng 已提交
4250
    attrs = {
4251 4252 4253
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
4254 4255
        "interp_method": resample_type,
        "align_corners": align_corners,
4256
        "align_mode": align_mode,
4257
        "data_layout": data_layout,
D
dengkaipeng 已提交
4258 4259
    }

4260
    if out_shape is not None:
4261
        if isinstance(out_shape, Variable) and not _non_static_mode():
4262
            out_shape.stop_gradient = True
4263
            inputs['OutSize'] = out_shape
4264
        else:
4265 4266 4267 4268 4269 4270 4271 4272
            if _non_static_mode():
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
                else:
                    out_shape = list(out_shape)
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
4273
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
4274
                raise TypeError(
4275 4276
                    "out_shape should be a list or tuple or Variable."
                )
4277 4278 4279 4280 4281 4282
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
4283 4284 4285
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
4296
                        assert isinstance(dim, int)
4297
                        temp_out = helper.create_variable_for_type_inference(
4298 4299 4300 4301 4302
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
4303 4304 4305 4306
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

4307 4308
            if len(input.shape) == 3:
                if len(out_shape) != 1:
4309 4310 4311
                    raise ValueError(
                        "out_shape length should be 1 for " "input 3-D tensor."
                    )
4312 4313 4314 4315 4316 4317
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
            elif len(input.shape) == 4:
K
Kaipeng Deng 已提交
4318
                if len(out_shape) != 2:
4319 4320 4321
                    raise ValueError(
                        "out_shape length should be 2 for " "input 4-D tensor."
                    )
4322 4323 4324 4325 4326 4327 4328
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
4329 4330
            if len(input.shape) == 5:
                if len(out_shape) != 3:
4331 4332 4333
                    raise ValueError(
                        "out_shape length should be 3 for " "input 5-D tensor."
                    )
4334 4335 4336 4337 4338 4339 4340 4341 4342
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
4343

4344
    else:
4345 4346 4347
        if _non_static_mode() and isinstance(scale, Variable):
            scale = scale.numpy()
        elif isinstance(scale, Variable):
4348 4349
            scale.stop_gradient = True
            inputs["Scale"] = scale
4350
        elif isinstance(scale, float) or isinstance(scale, int):
4351
            if scale <= 0:
4352
                raise ValueError("Attr(scale) should be greater than zero.")
4353
            attrs['scale'] = float(scale)
4354 4355
        else:
            raise TypeError(
4356 4357
                "Attr(scale)'s type should be float, int or Variable."
            )
4358

4359
    if isinstance(actual_shape, Variable):
4360 4361 4362 4363 4364
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
4365 4366 4367
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")
4368 4369 4370 4371 4372 4373 4374 4375 4376

    if _non_static_mode():
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
4377
            out = _legacy_C_ops.linear_interp(input, actual_shape, *dy_attr)
4378
        elif resample_type == "bilinear":
4379
            out = _legacy_C_ops.bilinear_interp(input, actual_shape, *dy_attr)
4380
        elif resample_type == "trilinear":
4381
            out = _legacy_C_ops.trilinear_interp(input, actual_shape, *dy_attr)
4382
        elif resample_type == "nearest":
4383
            out = _legacy_C_ops.nearest_interp(input, actual_shape, *dy_attr)
4384
        elif resample_type == "bicubic":
4385
            out = _legacy_C_ops.bicubic_interp(input, actual_shape, *dy_attr)
4386 4387
        return out

X
Xin Pan 已提交
4388
    out = helper.create_variable_for_type_inference(dtype)
4389 4390 4391 4392 4393 4394
    helper.append_op(
        type='{}_interp'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
4395
    return out
F
stash  
fengjiayi 已提交
4396 4397


4398
@templatedoc(op_type="bilinear_interp")
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
def resize_bilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
4409
    """
4410

R
ruri 已提交
4411
    This op resizes the input by performing bilinear interpolation based on given
4412
    output shape which specified by actual_shape, out_shape and scale
4413 4414
    in priority order.

4415
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in
4416 4417
    the future and only use :attr:`out_shape` instead.

4418 4419 4420 4421
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
4422 4423
    again in the other direction.

4424
    For details of bilinear interpolation, please refer to Wikipedia:
4425
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
4426

4427
    Align_corners and align_mode are optional parameters,the calculation
4428 4429 4430 4431
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
4432
    .. code-block:: text
4433

T
Tink_Y 已提交
4434
        For scale:
4435

T
Tink_Y 已提交
4436
            if align_corners = True && out_size > 1 :
4437

T
Tink_Y 已提交
4438
              scale_factor = (in_size-1.0)/(out_size-1.0)
4439

T
Tink_Y 已提交
4440
            else:
4441

4442
              scale_factor = float(in_size/out_size)
4443

T
Tink_Y 已提交
4444 4445 4446 4447
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
4448

T
Tink_Y 已提交
4449 4450
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4451

T
Tink_Y 已提交
4452 4453
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
4454

T
Tink_Y 已提交
4455
          else:
T
tink2123 已提交
4456

T
Tink_Y 已提交
4457 4458 4459 4460
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
4461

R
ruri 已提交
4462 4463
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
4464
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
4465
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
4466 4467
            layer, the shape is (out_h, out_w).Default: None. If a list, each
            element can be an integer or a Tensor Variable with shape: [1]. If a
4468
            Tensor Variable, its dimension size should be 1.
4469
        scale(float|Variable|None): The multiplier for the input height or width. At
4470 4471
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
4472
             Default: None.
4473 4474 4475
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
4476
                                :attr:`out_shape` and :attr:`scale` specifying
4477 4478
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4479 4480 4481 4482 4483
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4484
                                errors would be occurred in graph constructing stage.
4485
                                Default: None
4486 4487
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
4488
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4489 4490 4491
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
4492
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
4493 4494

    Returns:
4495
        Variable: 4-D tensor(NCHW or NHWC).
4496

4497 4498
    Examples:
        .. code-block:: python
4499

4500 4501 4502 4503 4504 4505
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
4506

4507 4508
            #1
            output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])
R
ruri 已提交
4509

4510 4511 4512 4513 4514
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])
R
ruri 已提交
4515

4516 4517 4518 4519 4520
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
4521

4522 4523 4524 4525 4526
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)
R
ruri 已提交
4527

4528 4529 4530
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4531

4532
            input_data = np.random.rand(2,3,6,10).astype("float32")
4533

4534
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4535 4536 4537
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4538

4539
            print(output_data[0].shape)
4540

4541 4542 4543 4544 4545 4546 4547 4548
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
4549

4550 4551
            #imperative mode
            import paddle.fluid.dygraph as dg
4552

4553 4554 4555 4556
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
                print(output.shape)
4557

4558
                # [2L, 3L, 12L, 12L]
4559

4560 4561
    """

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'BILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
4573 4574


K
Kaipeng Deng 已提交
4575
@templatedoc(op_type="trilinear_interp")
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
def resize_trilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCDHW',
):
K
Kaipeng Deng 已提交
4586
    """
4587

R
ruri 已提交
4588
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
4589 4590 4591
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

4592
    **Warning:** the parameter :attr:`actual_shape` will be deprecated
4593 4594
    in the future and only use :attr:`out_shape` instead.

4595 4596 4597
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
4598 4599 4600 4601 4602
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

4603
    Align_corners and align_mode are optional parameters,the calculation
K
Kaipeng Deng 已提交
4604 4605 4606 4607 4608 4609 4610
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
4611

K
Kaipeng Deng 已提交
4612 4613 4614
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
4615

K
Kaipeng Deng 已提交
4616
            else:
4617 4618

              scale_factor = float(in_size/out_size)
K
Kaipeng Deng 已提交
4619 4620 4621 4622

        Bilinear interpolation:

          if:
4623

K
Kaipeng Deng 已提交
4624
              align_corners = False , align_mode = 0
4625

K
Kaipeng Deng 已提交
4626 4627
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
4628

K
Kaipeng Deng 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
4642
    Parameters:
4643 4644
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
4645
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
4646
        scale(float|Variable|None): The multiplier for the input depth, height or width.
4647 4648
             At least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
K
Kaipeng Deng 已提交
4649
             Default: None.
R
ruri 已提交
4650
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
4651 4652 4653 4654 4655 4656
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4657 4658 4659 4660 4661
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4662
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
4663 4664 4665
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
4666
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4667 4668 4669
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
4670 4671

    Returns:
4672
        Variable: A 5-D Tensor(NCDHW or NDHWC)
K
Kaipeng Deng 已提交
4673 4674 4675

    Examples:
        .. code-block:: python
4676

4677 4678 4679 4680 4681 4682
            #declarative mode
            import paddle.fluid as fluid
            import paddle
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,8,10])
R
ruri 已提交
4683

4684 4685
            #1
            output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])
R
ruri 已提交
4686

4687 4688 4689 4690 4691
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])
R
ruri 已提交
4692

4693 4694 4695 4696 4697
            #3
            #x = np.array([3,12,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
4698

4699 4700 4701 4702 4703
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)
R
ruri 已提交
4704

4705 4706 4707
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4708

4709
            input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
4710

4711
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4712 4713 4714
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4715

4716
            print(output_data[0].shape)
R
ruri 已提交
4717

4718 4719 4720 4721 4722 4723 4724 4725
            #1
            # (2, 3, 12, 12, 12)
            #2
            # (2, 3, 12, 2, 4)
            #3
            # (2, 3, 3, 12, 12)
            #4
            # (2, 3, 3, 4, 5)
R
ruri 已提交
4726

4727 4728
            #imperative mode
            import paddle.fluid.dygraph as dg
4729

4730 4731 4732 4733
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
                print(output.shape)
4734

4735
                # [2L, 3L, 12L, 12L, 12L]
4736 4737 4738



K
Kaipeng Deng 已提交
4739 4740
    """

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'TRILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
K
Kaipeng Deng 已提交
4752 4753


4754
@templatedoc(op_type="nearest_interp")
4755 4756 4757 4758 4759 4760 4761 4762 4763
def resize_nearest(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    data_format='NCHW',
):
4764
    """
4765

R
ruri 已提交
4766
    This op resizes the input by performing nearest neighbor interpolation in both the
4767
    height direction and the width direction based on given output shape
4768
    which is specified by actual_shape, out_shape and scale in priority order.
4769

4770
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
4771 4772
    future and only use :attr:`out_shape` instead.

4773 4774
    Example:

T
Tink_Y 已提交
4775 4776 4777
    .. code-block:: text

        For scale:
4778

T
Tink_Y 已提交
4779 4780
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
4781

T
Tink_Y 已提交
4782
            else:
4783

T
Tink_Y 已提交
4784
              scale_factor = float(in_size/out_size)
4785

T
Tink_Y 已提交
4786
        Nearest neighbor interpolation:
4787

T
Tink_Y 已提交
4788 4789
          if:
              align_corners = False
4790

T
Tink_Y 已提交
4791 4792
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4793

T
Tink_Y 已提交
4794 4795
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
4796

T
Tink_Y 已提交
4797 4798
          else:
              align_corners = True
4799

T
Tink_Y 已提交
4800 4801
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4802

T
Tink_Y 已提交
4803 4804
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
4805 4806


4807
    For details of nearest neighbor interpolation, please refer to Wikipedia:
4808
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
4809

R
ruri 已提交
4810
    Parameters:
4811 4812
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
4813
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
4814
        scale(float|Variable|None): The multiplier for the input height or width. At
4815 4816 4817
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
             Default: None.
R
ruri 已提交
4818
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4819
        actual_shape(Variable): An optional input to specify output shape
4820 4821
                                dynamically. If provided, image resize
                                according to this given shape rather than
4822
                                :attr:`out_shape` and :attr:`scale` specifying
4823 4824
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4825 4826 4827 4828 4829
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4830
                                errors would be occurred in graph constructing stage.
4831
                                Default: None
4832
        align_corners(bool): ${align_corners_comment}
4833
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4834 4835 4836
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
4837 4838

    Returns:
4839
        Variable: 4-D tensor(NCHW or NHWC).
4840 4841 4842

    Examples:
        .. code-block:: python
4843

4844 4845 4846 4847 4848
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
4849

4850
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
4851

4852 4853
            #1
            output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])
R
ruri 已提交
4854

4855 4856 4857 4858 4859
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])
R
ruri 已提交
4860

4861 4862 4863 4864 4865
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)
R
ruri 已提交
4866

4867 4868 4869 4870 4871
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)
R
ruri 已提交
4872

4873 4874 4875
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4876

4877
            input_data = np.random.rand(2,3,6,10).astype("float32")
4878

4879
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4880 4881 4882
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4883

4884
            print(output_data[0].shape)
R
ruri 已提交
4885

4886 4887 4888 4889 4890 4891 4892 4893
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
4894

4895 4896
            #imperative mode
            import paddle.fluid.dygraph as dg
4897

4898 4899 4900 4901
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
                print(output.shape)
R
ruri 已提交
4902

4903
                # [2L, 3L, 12L, 12L]
4904 4905 4906



4907 4908
    """

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format,
    )
4920 4921


4922
@deprecated(since="2.0.0", update_to="paddle.nn.functional.relu")
4923
def relu(x, name=None):
W
wanghaoshuang 已提交
4924
    """
Z
zhupengyang 已提交
4925
    ${comment}
W
wanghaoshuang 已提交
4926 4927

    Args:
Z
zhupengyang 已提交
4928 4929 4930 4931
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
4932 4933

    Returns:
Z
zhupengyang 已提交
4934
        Variable: ${out_comment}
W
wanghaoshuang 已提交
4935 4936 4937 4938 4939

    Examples:

        .. code-block:: python

4940
            import paddle.fluid as fluid
Z
zhupengyang 已提交
4941 4942 4943 4944 4945 4946 4947
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
4948
                #  [1.  2.6]]"""
4949 4950

    if in_dygraph_mode():
W
wanghuancoder 已提交
4951
        return _C_ops.relu(x)
4952 4953
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
4954

4955 4956
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

4957
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
4958
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
4959
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
4960
    out = helper.create_variable_for_type_inference(dtype)
4961 4962 4963
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out}
    )
W
wanghaoshuang 已提交
4964
    return out
4965 4966


G
fix  
gongweibao 已提交
4967 4968 4969
from paddle.fluid.framework import convert_np_dtype_to_dtype_


4970
@deprecated(since="2.0.0", update_to="paddle.normal")
G
gongweibao 已提交
4971
@templatedoc()
4972 4973 4974
def gaussian_random(
    shape, mean=0.0, std=1.0, seed=0, dtype='float32', name=None
):
G
fix  
gongweibao 已提交
4975
    """
4976 4977
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
4978 4979

    Args:
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        mean(float|int, optional): Mean of the output tensor, default is 0.0.
        std(float|int, optional): Standard deviation of the output tensor, default
            is 1.0.
        seed(int, optional): ${seed_comment}
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
G
fix  
gongweibao 已提交
4995 4996

    Returns:
4997 4998
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
4999

5000
    Examples:
5001
       .. code-block:: python
5002

5003
            import paddle
5004
            import paddle.fluid as fluid
5005
            paddle.enable_static()
5006 5007

            # example 1:
5008
            # attr shape is a list which doesn't contain Tensor.
5009
            result_1 = fluid.layers.gaussian_random(shape=[3, 4])
5010 5011 5012
            # [[-0.31261674,  1.8736548,  -0.6274357,   0.96988016],
            #  [-0.12294637,  0.9554768,   1.5690808,  -1.2894802 ],
            #  [-0.60082096, -0.61138713,  1.5345167,  -0.21834975]]
5013 5014

            # example 2:
5015 5016 5017
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
5018
            result_2 = fluid.layers.gaussian_random(shape=[dim_1, dim_2])
5019 5020
            # [[ 0.51398206, -0.3389769,   0.23597084],
            #  [ 1.0388143,  -1.2015356,  -1.0499583 ]]
5021 5022

            # example 3:
5023
            # attr shape is a Tensor, the data type must be int64 or int32.
5024 5025
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
            result_3 = fluid.layers.gaussian_random(var_shape)
5026 5027 5028 5029
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.12310527,  0.8187662,   1.923219  ]
            #  [ 0.70721835,  0.5210541,  -0.03214082]]
5030

5031
       .. code-block:: python
5032

5033 5034
           # declarative mode
           # required: skiptest
5035 5036
           import numpy as np
           from paddle import fluid
5037

5038
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
5039

5040 5041 5042 5043
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
5044

5045 5046
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
5047

5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
5058

5059 5060 5061
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
5062
               x_np = x.numpy()
5063 5064 5065
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
5066
    """
5067 5068
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
5069

5070 5071 5072
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
5073
        return _C_ops.gaussian(
5074 5075
            shape, float(mean), float(std), seed, dtype, place
        )
5076 5077

    if _in_legacy_dygraph():
5078
        shape = utils.convert_shape_to_list(shape)
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
        return _legacy_C_ops.gaussian_random(
            'shape',
            shape,
            'mean',
            float(mean),
            'std',
            float(std),
            'seed',
            seed,
            'dtype',
            dtype,
        )
5091 5092 5093

    check_type(shape, 'shape', (list, tuple, Variable), 'gaussian_random/randn')
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'gaussian_random/randn')
5094 5095

    inputs = {}
5096 5097 5098 5099
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
5100
        'dtype': dtype,
5101
        'use_mkldnn': False,
5102
    }
5103 5104 5105
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='gaussian_random/randn'
    )
5106

5107 5108
    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_variable_for_type_inference(dtype)
5109 5110 5111
    helper.append_op(
        type='gaussian_random', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
G
fix  
gongweibao 已提交
5112 5113 5114 5115

    return out


G
gongweibao 已提交
5116
@templatedoc()
G
fix  
gongweibao 已提交
5117
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
5118
    """
R
ruri 已提交
5119
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
5120

R
ruri 已提交
5121 5122 5123 5124
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
5125
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time.
G
fix  
gongweibao 已提交
5126
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
5127 5128

    Returns:
R
ruri 已提交
5129
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
5130

5131 5132 5133
    Examples:
        .. code-block:: python

5134
            import paddle.fluid as fluid
R
ruri 已提交
5135
            x = fluid.data(
5136 5137
                name="X",
                shape=[13, 11],
R
ruri 已提交
5138
                dtype='float32')
5139

Y
Yibing Liu 已提交
5140
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
5141 5142 5143
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
5144
    out = helper.create_variable_for_type_inference(dtype)
5145 5146 5147 5148 5149 5150
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min, 'max': max, 'seed': seed},
    )
G
fix  
gongweibao 已提交
5151 5152 5153 5154 5155 5156

    return out


def shape(input):
    """
5157
    :alias_main: paddle.shape
5158 5159
        :alias: paddle.shape,paddle.tensor.shape,paddle.tensor.attribute.shape
        :old_api: paddle.fluid.layers.shape
5160

C
chengduozh 已提交
5161 5162
    **Shape Layer**

C
fix doc  
chengduozh 已提交
5163
    Get the shape of the input.
G
fix  
gongweibao 已提交
5164

5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
    .. code-block:: text

        Case1:
            Given N-D Tensor:
                input = [ [1, 2, 3, 4], [5, 6, 7, 8] ]

            Then:
                input.shape = [2, 4]

        Case2:
            Given SelectedRows:
                input.rows = [0, 4, 19]
                input.height = 20
                input.value = [ [1, 2], [3, 4], [5, 6] ]  # inner tensor
            Then:
                input.shape = [3, 2]

G
fix  
gongweibao 已提交
5182
    Args:
5183
        input (Variable): The input can be N-D Tensor or SelectedRows with data type bool, float16, float32, float64, int32, int64.
5184
                          If input variable is type of SelectedRows, returns the shape of it's inner tensor.
G
fix  
gongweibao 已提交
5185 5186

    Returns:
5187
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
5188

5189 5190 5191
    Examples:
        .. code-block:: python

5192
            import paddle.fluid as fluid
5193
            import numpy as np
W
Wilber 已提交
5194 5195
            import paddle
            paddle.enable_static()
5196

5197
            inputs = fluid.data(name="x", shape=[3, 100, 100], dtype="float32")
5198 5199 5200 5201 5202 5203 5204 5205 5206
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
5207
    """
5208
    if in_dygraph_mode():
5209
        out = _C_ops.shape(input)
5210 5211 5212
        out.stop_gradient = True
        return out
    if _in_legacy_dygraph():
5213
        out = _legacy_C_ops.shape(input)
W
Wilber 已提交
5214 5215 5216
        out.stop_gradient = True
        return out

5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'shape',
    )
G
fix  
gongweibao 已提交
5232
    helper = LayerHelper('shape', **locals())
5233
    out = helper.create_variable_for_type_inference(dtype='int32')
5234 5235 5236 5237 5238 5239
    helper.append_op(
        type='shape',
        inputs={'Input': input},
        outputs={'Out': out},
        stop_gradient=True,
    )
G
fix  
gongweibao 已提交
5240 5241

    return out
G
merge  
gongweibao 已提交
5242 5243


S
sneaxiy 已提交
5244 5245 5246 5247
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
5248

S
sneaxiy 已提交
5249 5250
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
5251
    check_variable_and_dtype(
5252 5253 5254 5255 5256
        x,
        'x',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
5257
    check_variable_and_dtype(
5258 5259 5260 5261 5262
        y,
        'y',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
5263

S
sneaxiy 已提交
5264 5265
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
5266
    name = helper.kwargs.get('name', None)
5267
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
5268

5269 5270 5271 5272 5273 5274
    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
S
sneaxiy 已提交
5275 5276 5277
    return helper.append_activation(out)


X
Xin Pan 已提交
5278
def elementwise_add(x, y, axis=-1, act=None, name=None):
5279
    """
5280

5281
    Examples:
5282

5283
        .. code-block:: python
5284

5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_add(x, y)
            # z = x + y
5298

5299 5300 5301 5302
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5303

5304
            print(z_value) # [3., 8., 6.]
5305 5306


5307
        .. code-block:: python
5308

5309 5310 5311
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5312

5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=1)
            # z = x + y
5323

5324 5325
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5326

5327 5328
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5329

5330
            print(z_value) # z.shape=[2,3,4,5]
5331 5332


5333
        ..  code-block:: python
5334

5335 5336 5337
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5338

5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=3)
            # z = x + y
5349

5350 5351
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5352

5353 5354 5355
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5356 5357

    """
J
Jiabin Yang 已提交
5358
    if _non_static_mode():
5359
        return _elementwise_op_in_dygraph(
5360 5361 5362 5363 5364
            x,
            y,
            axis=axis,
            act=act,
            op_name='elementwise_add',
5365 5366
            use_mkldnn=_global_flags()["FLAGS_use_mkldnn"],
        )
5367

S
sneaxiy 已提交
5368 5369 5370
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


5371
@deprecated(since="2.0.0", update_to="paddle.divide")
X
Xin Pan 已提交
5372
def elementwise_div(x, y, axis=-1, act=None, name=None):
5373
    """
5374

5375
    Examples:
5376

5377
        .. code-block:: python
5378

5379 5380 5381
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5382

5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_div(x, y)
            # z = x / y
5393

5394 5395 5396 5397
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5398

5399
            print(z_value) # [2., 0.6, 2.]
5400 5401


5402
        .. code-block:: python
5403

5404 5405 5406
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5407

5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=1)
            # z = x / y
5418

5419 5420
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5421

5422 5423
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5424

5425
            print(z_value) # z.shape=[2,3,4,5]
5426 5427


5428
        ..  code-block:: python
5429

5430 5431 5432
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5433

5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=3)
            # z = x / y
5444

5445 5446
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5447

5448 5449 5450
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5451 5452

    """
J
Jiabin Yang 已提交
5453
    if _non_static_mode():
5454 5455 5456
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div'
        )
5457

S
sneaxiy 已提交
5458 5459 5460
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
5461
def elementwise_sub(x, y, axis=-1, act=None, name=None):
5462
    """
5463

5464
    Examples:
5465

5466
        .. code-block:: python
5467

5468 5469 5470
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5471

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y)
            # z = x - y
5482

5483 5484 5485 5486
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5487

5488
            print(z_value) # [1., -2., 2.]
5489 5490


5491
        .. code-block:: python
5492

5493 5494 5495
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5496

5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=1)
            # z = x - y
5507

5508 5509
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5510

5511 5512
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5513

5514
            print(z_value) # z.shape=[2,3,4,5]
5515 5516


5517
        ..  code-block:: python
5518

5519 5520 5521
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5522

5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=3)
            # z = x - y
5533

5534 5535
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5536

5537 5538 5539
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5540 5541

    """
J
Jiabin Yang 已提交
5542
    if _non_static_mode():
5543 5544 5545
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub'
        )
5546

S
sneaxiy 已提交
5547 5548 5549
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


5550
@deprecated(since="2.0.0", update_to="paddle.multiply")
X
Xin Pan 已提交
5551
def elementwise_mul(x, y, axis=-1, act=None, name=None):
5552
    """
5553

5554
    Examples:
5555

5556
        .. code-block:: python
5557

5558 5559 5560
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5561

5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y)
            # z = x * y
5572

5573 5574 5575 5576
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5577

5578
            print(z_value) # [2., 15., 8.]
5579 5580


5581
        .. code-block:: python
5582

5583 5584 5585
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5586

5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=1)
            # z = x * y
5597

5598 5599
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5600

5601 5602
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5603

5604
            print(z_value) # z.shape=[2,3,4,5]
5605 5606


5607
        ..  code-block:: python
5608

5609 5610 5611
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5612

5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=3)
            # z = x * y
5623

5624 5625
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5626

5627 5628 5629
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5630

5631
    """
J
Jiabin Yang 已提交
5632
    if _non_static_mode():
5633 5634 5635
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul'
        )
5636

S
sneaxiy 已提交
5637 5638 5639 5640
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


for func in [
5641 5642 5643 5644
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    elementwise_mul,
5645 5646
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
5647 5648

    # insert the c++ doc string on top of python doc string
5649 5650 5651 5652 5653
    func.__doc__ = (
        _generate_doc_string_(
            op_proto,
            additional_args_lines=[
                "axis (int32, optional): If X.dimension != Y.dimension, \
5654 5655
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
5656
                "act (string, optional): Activation applied to the output. \
5657
            Default is None. Details: :ref:`api_guide_activations_en` ",
5658
                "name (string, optional): Name of the output. \
5659
            Default is None. It's used to print debug info for developers. Details: \
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
            :ref:`api_guide_Name` ",
            ],
            skip_attrs_set={
                "x_data_format",
                "y_data_format",
                "axis",
                "use_quantizer",
                "mkldnn_data_type",
                "Scale_x",
                "Scale_y",
                "Scale_out",
            },
        )
        + """\n"""
        + str(func.__doc__)
    )
5676

5677 5678 5679
    doc_list = func.__doc__.splitlines()

    for idx, val in enumerate(doc_list):
5680 5681 5682 5683 5684
        if (
            val.startswith("Warning: ")
            and val.endswith(" instead.")
            and "and will be removed in future versions." in val
        ):
5685 5686 5687 5688
            doc_list.insert(0, doc_list.pop(idx))
            func.__doc__ = "\n" + "\n".join(i for i in doc_list)
            break

5689
for func in []:
S
sneaxiy 已提交
5690 5691 5692 5693
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
5694
            "act (basestring|None): Activation applied to the output.",
5695 5696 5697 5698 5699 5700
            "name (basestring|None): Name of the output.",
        ],
    )
    func.__doc__ = (
        func.__doc__
        + """
5701 5702 5703

Examples:
  .. code-block:: python
5704

5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
    """
        % (
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
        )
    )
M
minqiyang 已提交
5745 5746


5747
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
5748
    if _non_static_mode():
5749
        op = getattr(_legacy_C_ops, op_name)
5750 5751 5752 5753
        if binary_op:
            return op(x, y)
        else:
            return op(x)
5754
    check_variable_and_dtype(
5755 5756
        x,
        "x",
5757
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
5758 5759
        op_name,
    )
5760
    if y is not None:
5761
        check_variable_and_dtype(
5762 5763
            y,
            "y",
5764
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
5765 5766
            op_name,
        )
5767
    if out is not None:
5768
        check_type(out, "out", Variable, op_name)
5769

M
minqiyang 已提交
5770 5771
    helper = LayerHelper(op_name, **locals())

5772 5773 5774
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
5775 5776
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
5777 5778

    if out is None:
5779
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
5780 5781

    if binary_op:
5782 5783 5784
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
5785 5786 5787 5788 5789 5790
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


5791 5792 5793
@templatedoc()
def clip(x, min, max, name=None):
    """
5794
        :old_api: paddle.fluid.layers.clip
5795

5796 5797 5798 5799
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
5800 5801
        min(float): ${min_comment}
        max(float): ${max_comment}
5802 5803
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
5804
                             For more information, please refer to :ref:`api_guide_Name`
5805 5806

    Returns:
S
SunGaofeng 已提交
5807 5808 5809 5810
        ${out_comment}

    Return Type:
        ${out_type}
5811 5812 5813 5814

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5815
            import paddle.fluid as fluid
S
SunGaofeng 已提交
5816
            input = fluid.data(
5817 5818
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
5819 5820 5821
    """

    helper = LayerHelper("clip", **locals())
5822
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
5823 5824

    if name is None:
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
5851 5852 5853
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
5854 5855

    Returns:
5856
        Tensor:
W
wangguanzhong 已提交
5857

5858
        out(${out_type}): ${out_comment}
5859

W
wangguanzhong 已提交
5860

5861 5862 5863
    Examples:
        .. code-block:: python

5864
            import paddle
5865
            import paddle.fluid as fluid
5866

5867 5868 5869
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
5870 5871
    """

L
lyq 已提交
5872
    if in_dygraph_mode():
5873
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
5874
    if _non_static_mode():
5875
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
5876

5877
    helper = LayerHelper("clip_by_norm", **locals())
5878
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
5879
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
5880 5881

    if name is None:
5882 5883 5884
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
5885

5886 5887 5888
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
5889

5890 5891 5892 5893 5894 5895
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
5896 5897

    return out
X
Xin Pan 已提交
5898 5899


5900
@deprecated(since="2.0.0", update_to="paddle.mean")
X
Xin Pan 已提交
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
5912 5913 5914 5915

    Examples:
        .. code-block:: python

5916
            import paddle
5917
            import paddle.fluid as fluid
5918 5919
            paddle.enable_static()

5920 5921
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
5922
            mean = paddle.mean(input)
X
Xin Pan 已提交
5923
    """
5924

5925
    if _in_legacy_dygraph():
5926
        return _legacy_C_ops.mean(x)
5927
    if in_dygraph_mode():
5928
        return _C_ops.mean_all(x)
X
Xin Pan 已提交
5929 5930

    helper = LayerHelper("mean", **locals())
5931
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
5932
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
5933

5934 5935 5936
    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}
    )
X
Xin Pan 已提交
5937 5938 5939 5940

    return out


C
chengduo 已提交
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
5952 5953 5954 5955

    Examples:
        .. code-block:: python

5956
            import paddle.fluid as fluid
5957 5958 5959 5960 5961
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
5962
    """
5963 5964 5965
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

5966
    if _non_static_mode():
5967
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
5968 5969 5970

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5971 5972 5973 5974 5975 5976
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
5977 5978 5979
    return out


X
Xin Pan 已提交
5980 5981
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
5982 5983 5984 5985 5986 5987 5988 5989
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
5990 5991

    Args:
L
liu zhengxi 已提交
5992 5993
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
5994 5995 5996
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
5997 5998

    Returns:
L
liu zhengxi 已提交
5999
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
6000 6001

    Examples:
L
liu zhengxi 已提交
6002
        ..  code-block:: python
6003

6004
            import paddle.fluid as fluid
6005 6006
            import paddle
            paddle.enable_static()
6007 6008 6009 6010 6011
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
6012

6013

X
Xin Pan 已提交
6014
    """
J
Jiabin Yang 已提交
6015
    if _non_static_mode():
6016 6017 6018 6019 6020 6021 6022 6023
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
6024

6025 6026
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
6027
    helper = LayerHelper("mul", **locals())
6028 6029
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
6030
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
6031

6032 6033 6034
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
6035 6036 6037
    return out


M
minqiyang 已提交
6038 6039
def hash(input, hash_size, num_hash=1, name=None):
    """
6040

Z
zhupengyang 已提交
6041
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
6042 6043
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
6044 6045

    Args:
Z
zhupengyang 已提交
6046 6047 6048 6049 6050 6051
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
6052 6053

    Returns:
Z
zhupengyang 已提交
6054
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
6055 6056

    Examples:
Z
zhupengyang 已提交
6057
        .. code-block:: python
H
haowang101779990 已提交
6058

6059
            import paddle.fluid as fluid
Z
zhupengyang 已提交
6060
            import numpy as np
6061 6062
            import paddle
            paddle.enable_static()
6063

Z
zhupengyang 已提交
6064
            place = fluid.core.CPUPlace()
6065

6066 6067
            x = fluid.data(name="x", shape=[2,2], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res", input=x, hash_size=1000, num_hash=4)
6068

Z
zhupengyang 已提交
6069 6070 6071 6072
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
6073
            x_i = fluid.create_lod_tensor(in1, [[0, 2]], place)
Z
zhupengyang 已提交
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
6084
    """
6085
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'hash')
6086 6087
    check_type(hash_size, 'hash_size', int, 'hash')
    check_type(num_hash, 'num_hash', int, 'hash')
M
minqiyang 已提交
6088
    helper = LayerHelper('hash', **locals())
6089 6090 6091 6092 6093 6094 6095 6096 6097
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True
    )
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash, 'mod_by': hash_size},
    )
M
minqiyang 已提交
6098
    return out
G
gmcather 已提交
6099 6100


D
dengkaipeng 已提交
6101
@templatedoc()
6102 6103
def grid_sampler(x, grid, name=None):
    """
6104

6105
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
6106
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
6107 6108
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
6109 6110
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
6111
    interpolation value of 4 nearest corner points. The output tensor
K
Kaipeng Deng 已提交
6112
    shape will be [N, C, H, W].
6113

H
haowang101779990 已提交
6114
    .. code-block:: text
6115

H
haowang101779990 已提交
6116 6117
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
6118

K
Kaipeng Deng 已提交
6119 6120 6121 6122
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
6123

H
haowang101779990 已提交
6124 6125 6126
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
6127

H
haowang101779990 已提交
6128 6129 6130 6131 6132 6133 6134 6135 6136
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
6137

H
haowang101779990 已提交
6138 6139 6140 6141
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
6142

H
haowang101779990 已提交
6143 6144 6145 6146
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
6147

H
haowang101779990 已提交
6148 6149 6150 6151
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
6152

H
haowang101779990 已提交
6153 6154
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
6155 6156

    Args:
K
Kaipeng Deng 已提交
6157 6158 6159 6160 6161 6162 6163 6164 6165
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
6166 6167

    Returns:
H
haowang101779990 已提交
6168
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
6169 6170
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
6171

H
haowang101779990 已提交
6172 6173 6174 6175
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
6176
            import paddle.fluid as fluid
6177 6178
            import paddle.fluid as fluid
            import paddle
K
Kaipeng Deng 已提交
6179

6180
            paddle.enable_static()
K
Kaipeng Deng 已提交
6181 6182
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
6183 6184
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
6185
            out = fluid.layers.grid_sampler(x=x, grid=grid)
6186

D
dengkaipeng 已提交
6187 6188 6189
    """
    helper = LayerHelper("grid_sampler", **locals())

6190
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler')
6191 6192 6193
    check_variable_and_dtype(
        grid, 'grid', ['float32', 'float64'], 'grid_sampler'
    )
D
dengkaipeng 已提交
6194 6195 6196 6197 6198 6199
    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

6200
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
6201 6202
    ipts = {'X': x, 'Grid': grid}

6203 6204
    attrs = {'use_cudnn': False} if core.is_compiled_with_rocm() else {}

6205 6206 6207
    helper.append_op(
        type='grid_sampler', inputs=ipts, outputs={'Output': out}, attrs=attrs
    )
6208 6209 6210
    return out


G
gmcather 已提交
6211
def log_loss(input, label, epsilon=1e-4, name=None):
6212
    r"""
6213

G
gmcather 已提交
6214 6215 6216 6217 6218 6219 6220
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

6221 6222
        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}
G
gmcather 已提交
6223 6224

    Args:
6225
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
6226
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
6227
                                by the previous operator. Data type float32.
6228
        label (Tensor|list):  The ground truth which is a 2-D tensor with
6229
                                shape [N x 1], where N is the batch size.
Y
Yibing Liu 已提交
6230 6231
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
6232
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
6233
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
6234 6235

    Returns:
6236
        Tensor, which shape is [N x 1], data type is float32.
G
gmcather 已提交
6237 6238 6239 6240

    Examples:
        .. code-block:: python

6241 6242 6243 6244 6245 6246
          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
G
gmcather 已提交
6247
    """
6248
    return paddle.nn.functional.log_loss(input, label, epsilon, name)
G
gmcather 已提交
6249 6250


6251 6252 6253
def bilinear_tensor_product(
    x, y, size, act=None, name=None, param_attr=None, bias_attr=None
):
6254
    r"""
6255 6256
    :api_attr: Static Graph

Y
Yibing Liu 已提交
6257
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
6258

Q
Qiao Longfei 已提交
6259
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
6260 6261 6262
    For example:

    .. math::
H
haowang101779990 已提交
6263
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
6264

Q
Qiao Longfei 已提交
6265
    In this formula:
6266 6267
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
6268
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
6269
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
6270 6271 6272
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
6273
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type
Y
Yibing Liu 已提交
6274
            is float32 or float64.
6275
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type
Y
Yibing Liu 已提交
6276
            should be same as **x**.
Q
Qiao Longfei 已提交
6277
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
6278
        act (str|None): Activation to be applied to the output of this layer. Default None.
6279
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
6280
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
6281 6282
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
Y
Yibing Liu 已提交
6283
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
6284 6285
        bias_attr (ParamAttr|None): To specify the bias parameter attribute.
            Default: None, which means the default bias parameter property is
Y
Yibing Liu 已提交
6286
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
6287
    Returns:
Y
Yibing Liu 已提交
6288
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
6289 6290 6291 6292

    Examples:
        .. code-block:: python

6293 6294 6295 6296 6297
            import paddle
            paddle.enable_static()
            layer1 = paddle.static.data("t1", shape=[-1, 5], dtype="float32")
            layer2 = paddle.static.data("t2", shape=[-1, 4], dtype="float32")
            tensor = paddle.static.nn.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
6298 6299
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
6300
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
6301 6302 6303

    param_shape = [size, x.shape[1], y.shape[1]]

6304 6305 6306
    w = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False
    )
6307
    out = helper.create_variable_for_type_inference(dtype=dtype)
Q
Qiao Longfei 已提交
6308 6309 6310 6311

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
6312 6313 6314
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
Q
Qiao Longfei 已提交
6315
        inputs["Bias"] = bias
6316 6317 6318
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
    )
Q
Qiao Longfei 已提交
6319 6320 6321

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
6322 6323 6324 6325 6326


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
6327 6328 6329 6330 6331 6332 6333 6334 6335
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

6336
        Output is LoDTensor:
6337 6338 6339 6340 6341 6342
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
6343 6344

    Args:
6345 6346 6347
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
6348 6349

    Returns:
6350
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
6351 6352 6353

    Examples:
        .. code-block:: python
6354

B
bdzhuxiaoning 已提交
6355 6356 6357 6358
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
6359 6360
    """

6361 6362 6363 6364 6365
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
6366 6367
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6368 6369 6370 6371 6372 6373
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
6374
    return out
6375 6376


H
heqiaozhi 已提交
6377
def continuous_value_model(input, cvm, use_cvm=True):
6378
    r"""
H
fix doc  
heqiaozhi 已提交
6379

H
heqiaozhi 已提交
6380
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
6381

Z
zhoushiyu 已提交
6382
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
6383

Z
zhoushiyu 已提交
6384 6385
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
6386
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
6387 6388
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
6389

Z
zhoushiyu 已提交
6390 6391 6392 6393 6394 6395 6396
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
6397

H
heqiaozhi 已提交
6398
    Returns:
H
fix doc  
heqiaozhi 已提交
6399

Z
zhoushiyu 已提交
6400 6401
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
6402

H
heqiaozhi 已提交
6403
    Examples:
H
fix doc  
heqiaozhi 已提交
6404

H
heqiaozhi 已提交
6405
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
6406

6407
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
6408 6409
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
6410 6411 6412 6413 6414 6415 6416 6417
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
6418

H
heqiaozhi 已提交
6419 6420 6421
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
6422 6423 6424 6425 6426 6427 6428 6429 6430
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'cvm'
    )
    helper.append_op(
        type='cvm',
        inputs={'X': [input], 'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm},
    )
H
heqiaozhi 已提交
6431
    return out
Z
zhoukunsheng 已提交
6432 6433


6434
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
6435
    r"""
6436

S
SunGaofeng 已提交
6437
    This op returns a col buffer of sliding local blocks of input x, also known
6438
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
6439
    all element will be rearranged as a column. While the convolution filter sliding over
6440 6441
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
6442
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
6443 6444 6445 6446
    can be calculated as following.

    .. math::

6447
        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1
6448

6449
        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1
6450

6451
        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1
6452

6453
        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1
6454

6455
        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]
6456

6457
        Lout &= hout \times wout
6458 6459


S
SunGaofeng 已提交
6460
    Parameters:
6461
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
S
SunGaofeng 已提交
6462
                                  data type can be float32 or float64
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
6475
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
6476
                                  [dilation_h, dilation_w], or an integer dilation treated as
6477
                                  [dilation, dilation]. For default, it will be [1, 1].
6478 6479
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
6480
                             For more information, please refer to :ref:`api_guide_Name`
6481

6482

6483
    Returns:
6484
        The tensor corresponding to the sliding local blocks.
6485 6486 6487
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
S
SunGaofeng 已提交
6488 6489 6490
        The data type of output is the same as the input :math:`x`

    Return Type:
6491
        Tensor
6492 6493 6494 6495 6496

    Examples:

        .. code-block:: python

6497 6498 6499 6500 6501
            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
6502 6503
    """

6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
    return paddle.nn.functional.unfold(
        x, kernel_sizes, strides, paddings, dilations, name
    )


def deformable_roi_pooling(
    input,
    rois,
    trans,
    no_trans=False,
    spatial_scale=1.0,
    group_size=[1, 1],
    pooled_height=1,
    pooled_width=1,
    part_size=None,
    sample_per_part=1,
    trans_std=0.1,
    position_sensitive=False,
    name=None,
):
6524
    r"""
6525

6526
    Deformable ROI Pooling Layer
6527

6528
    Performs deformable region-of-interest pooling on inputs. As described
6529
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after
6530
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
6531

6532
    The operation has three steps:
6533

6534
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
6535

6536 6537
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
6538

6539
    3. Sample several points in each bin to get average values as output.
6540 6541


6542 6543 6544 6545 6546 6547 6548 6549 6550
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
6551 6552 6553
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where
                          N is number of ROIs, C is number of channels, which indicate the offset distance
                          in the x and y directions, H is pooled height, and W is pooled width.
6554 6555 6556 6557
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
6558
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels
6559
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
6560
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
6561 6562 6563 6564 6565 6566 6567
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
6568
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
6569 6570 6571 6572
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
6573 6574 6575 6576

    Examples:
      .. code-block:: python

6577 6578
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
6579
        input = fluid.data(name="input",
6580 6581
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
6582 6583
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
6584
                          dtype='float32',
C
chengjuntao 已提交
6585 6586
                          lod_level=1)
        trans = fluid.data(name="trans",
6587 6588 6589 6590 6591
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
6592
                                                no_trans=False,
6593
                                                spatial_scale=1.0,
C
chengjuntao 已提交
6594 6595 6596 6597
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
6598
                                                sample_per_part=4,
C
chengjuntao 已提交
6599 6600
                                                trans_std=0.1,
                                                position_sensitive=True)
6601

6602
        # position_sensitive=False
6603
        import paddle.fluid as fluid
C
chengjuntao 已提交
6604
        input = fluid.data(name="input",
6605 6606
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
6607 6608
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
6609
                          dtype='float32',
C
chengjuntao 已提交
6610 6611
                          lod_level=1)
        trans = fluid.data(name="trans",
6612 6613 6614 6615 6616
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
6617
                                                no_trans=False,
6618
                                                spatial_scale=1.0,
C
chengjuntao 已提交
6619 6620 6621 6622
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
6623
                                                sample_per_part=4,
C
chengjuntao 已提交
6624 6625
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
6626 6627
    """

6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        rois, 'rois', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        trans, 'trans', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_type(
        group_size, 'group_size', (list, tuple), 'deformable_roi_pooling'
    )
6640
    if part_size is not None:
6641 6642 6643
        check_type(
            part_size, 'part_size', (list, tuple), 'deformable_roi_pooling'
        )
6644

C
cjt222 已提交
6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input, "ROIs": rois, "Trans": trans},
        outputs={"Output": output, "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std,
        },
    )
C
cjt222 已提交
6677
    return output
6678 6679


6680
@deprecated(since="2.0.0", update_to="paddle.shard_index")
6681 6682
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
L
lilong12 已提交
6683 6684 6685 6686 6687 6688 6689 6690 6691
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
6692 6693
    ::

6694
        shard_size = (index_num + nshards - 1) // nshards
6695

L
lilong12 已提交
6696 6697 6698
    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
6699

L
lilong12 已提交
6700 6701 6702 6703
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.
6704 6705

    Args:
L
lilong12 已提交
6706 6707
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
6708 6709 6710
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.
6711 6712

    Returns:
L
lilong12 已提交
6713
        Tensor.
6714 6715 6716 6717

    Examples:
        .. code-block:: python

6718 6719 6720 6721 6722 6723 6724 6725
            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
6726
    """
H
hong 已提交
6727
    if in_dygraph_mode():
6728 6729 6730
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
H
hong 已提交
6731

B
Baibaifan 已提交
6732
    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
6733 6734 6735
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
6736 6737 6738
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
6739 6740

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
6753
    return out
H
huangjun12 已提交
6754 6755 6756 6757


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
6758
    r"""
6759 6760 6761
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
6762

6763
    The formula is as follows:
H
huangjun12 已提交
6764

6765
    .. math::
H
huangjun12 已提交
6766

6767
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
6768

6769 6770 6771 6772 6773 6774 6775 6776 6777
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
6778 6779
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

6780 6781
    Returns:
        Variable: The output tensor with the same shape and data type as input.
6782 6783


6784
    Examples:
6785

6786
    .. code-block:: python
6787

6788
        import paddle.fluid as fluid
6789
        import paddle
6790
        import numpy as np
6791
        paddle.enable_static()
6792

6793
        DATATYPE='float32'
6794

6795
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
6796

6797 6798
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
6799

6800 6801 6802 6803 6804
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
6805
    """
J
Jiabin Yang 已提交
6806
    if _non_static_mode():
6807 6808 6809
        return _legacy_C_ops.hard_swish(
            x, 'threshold', threshold, 'scale', scale, 'offset', offset
        )
6810

6811 6812 6813
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hard_swish'
    )
6814

H
huangjun12 已提交
6815 6816
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6817 6818 6819 6820 6821 6822
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold, 'scale': scale, 'offset': offset},
    )
H
huangjun12 已提交
6823
    return out
R
ruri 已提交
6824 6825


K
Kaipeng Deng 已提交
6826 6827
@templatedoc()
def mish(x, threshold=20, name=None):
6828
    r"""
K
Kaipeng Deng 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
    This operator implements the mish activation function.
    Refer to `Mish: A Self Regularized Non-Monotonic Neural
    Activation Function <https://arxiv.org/abs/1908.08681>`_


    The formula is as follows if :attr:`threshold` is :code:`None` or negative:

    .. math::

        out = x * \\tanh(\\ln(1 + e^{x}))

    The formula is as follows if :attr:`threshold` is set as positive value:

    .. math::

	out = \\begin{cases}
		x \\ast \\tanh(x), \\text{if } x > \\text{threshold} \\\\
		x \\ast \\tanh(e^{x}), \\text{if } x < -\\text{threshold} \\\\
		x \\ast \\tanh(\\ln(1 + e^{x})),  \\text{otherwise}
	      \\end{cases}

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type
                      should be float16, float32 or float64.
        threshold (float|None): threshold for softplus in Mish operator.
                Approximate value of softplus will be used if absolute value
                of input is greater than :attr:threshold and :attr:threshold
                is set as positive value. For none or negative threshold,
                approximate value is not used. Default 20.
        name (str, optional): The default value is None. Normally there is no
                need for user to set this property. For more information, please
                refer to :ref:`api_guide_Name`

    Returns:
        Variable: The output tensor with the same shape and data type as input.


    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        DATATYPE='float32'

        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)

        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.mish(x)

        place = fluid.CPUPlace()
        # place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667, 3., 4.]]
    """
6886
    if in_dygraph_mode():
6887
        return _C_ops.mish(x, threshold)
6888
    if _in_legacy_dygraph():
6889
        return _legacy_C_ops.mish(x, 'threshold', threshold)
6890

K
Kaipeng Deng 已提交
6891 6892
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'mish')
    check_type(threshold, 'threshold', (float, int), 'mish')
6893 6894 6895 6896 6897
    assert (
        threshold > 0
    ), "threshold of mish should be greater than 0, " "but got {}".format(
        threshold
    )
K
Kaipeng Deng 已提交
6898 6899 6900

    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6901 6902 6903 6904 6905 6906
    helper.append_op(
        type='mish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
K
Kaipeng Deng 已提交
6907 6908 6909
    return out


6910
@deprecated(since="2.0.0", update_to="paddle.uniform")
6911
@templatedoc()
6912 6913 6914
def uniform_random(
    shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None
):
6915
    """
6916 6917
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
6918 6919 6920

    Examples:
    ::
6921

6922 6923
        Input:
          shape = [1, 2]
6924

6925 6926 6927 6928
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
6942 6943
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
6944
            time. Default is 0.
6945 6946 6947
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
6948

6949
    Returns:
6950 6951
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
6952

6953
    Raises:
6954 6955
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.
6956

6957 6958 6959
    Examples:
        .. code-block:: python

6960
            import paddle
6961
            import paddle.fluid as fluid
6962
            paddle.enable_static()
6963 6964

            # example 1:
6965
            # attr shape is a list which doesn't contain Tensor.
6966
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
6967 6968 6969
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]
6970 6971

            # example 2:
6972 6973 6974
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
6975
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
6976 6977
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]
6978 6979

            # example 3:
6980
            # attr shape is a Tensor, the data type must be int64 or int32.
6981
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
6982
            result_3 = fluid.layers.uniform_random(var_shape)
6983 6984 6985 6986
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]
6987

6988 6989 6990
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
6991

6992 6993
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
6994
        return _C_ops.uniform(
6995 6996 6997 6998 6999 7000 7001
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
7002
    elif _in_legacy_dygraph():
7003
        shape = utils.convert_shape_to_list(shape)
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
        return _legacy_C_ops.uniform_random(
            'shape',
            shape,
            'min',
            float(min),
            'max',
            float(max),
            'seed',
            seed,
            'dtype',
            dtype,
        )
7016

7017
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
7018 7019 7020
    check_dtype(
        dtype, 'dtype', ('float32', 'float64', 'uint16'), 'uniform_random/rand'
    )
7021 7022
    check_type(min, 'min', (float, int, Variable), 'uniform_random/rand')
    check_type(max, 'max', (float, int, Variable), 'uniform_random/rand')
7023 7024

    inputs = dict()
7025
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
7026 7027 7028
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand'
    )
7029

7030
    helper = LayerHelper("uniform_random", **locals())
7031
    out = helper.create_variable_for_type_inference(dtype)
7032 7033 7034
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out}
    )
7035
    utils.try_set_static_shape_tensor(out, shape)
7036
    return out
myq406450149's avatar
myq406450149 已提交
7037 7038 7039 7040 7041 7042 7043


def unbind(input, axis=0):
    """
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
7044

myq406450149's avatar
myq406450149 已提交
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
7070 7071 7072
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
7073
    if not isinstance(axis, (int)):
7074 7075 7076
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

7087 7088 7089 7090 7091 7092
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
7093
    return outs