pybind.cc 136.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46 47
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
48
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/op_info.h"
50
#include "paddle/fluid/framework/op_registry.h"
51
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
52
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/selected_rows.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/fluid/pybind/io.h"
79
#include "paddle/utils/none.h"
80 81 82
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
83
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
84
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
85
#include "paddle/fluid/pybind/box_helper_py.h"
86
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
87
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
88
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
89
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
90
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
91
#include "paddle/fluid/pybind/generator_py.h"
92
#include "paddle/fluid/pybind/global_value_getter_setter.h"
93
#include "paddle/fluid/pybind/gloo_context_py.h"
94
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
95
#include "paddle/fluid/pybind/heter_wrapper_py.h"
96
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
97
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
98
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
99
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
100
#include "paddle/fluid/pybind/pybind_boost_headers.h"
101

102
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
103
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
104
#endif
105
#include "paddle/fluid/framework/data_type.h"
106 107
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
108
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
109
#include "paddle/fluid/pybind/tensor_py.h"
110
#include "paddle/fluid/string/to_string.h"
111 112
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
113
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
114
#endif
115
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
116
#include "paddle/fluid/platform/cuda_profiler.h"
117
#endif
Y
Yi Wang 已提交
118
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
119 120
#endif

121 122
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
123
#include "paddle/fluid/platform/npu_profiler.h"
124 125
#endif

126
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
127
#include "paddle/fluid/platform/xpu/xpu_info.h"
128 129
#endif

130 131
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"

Y
Yanghello 已提交
132 133 134 135
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
136
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
137 138 139
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
140 141
#include "pybind11/stl.h"

142
DECLARE_bool(use_mkldnn);
143

Q
Qiao Longfei 已提交
144 145
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
146 147 148
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
149

150
namespace paddle {
151
namespace pybind {
152
bool IsCompiledWithCUDA() {
153 154 155 156 157 158 159 160 161
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
162 163 164 165 166 167
  return false;
#else
  return true;
#endif
}

168 169 170 171 172 173 174 175
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

176 177 178 179 180 181 182 183
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

184 185 186 187 188 189 190 191
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

192 193 194 195 196 197 198 199
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

200 201 202 203 204 205 206 207
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

208 209 210 211 212 213 214 215 216 217 218
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

219 220 221 222 223 224 225 226 227 228 229
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
265 266 267
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
268
      {"NPU", &platform::is_npu_place},
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

308
bool IsCompiledWithBrpc() {
309
#ifndef PADDLE_WITH_DISTRIBUTE
310 311
  return false;
#endif
312
  return true;
313 314
}

Y
update  
Yancey1989 已提交
315
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
316
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
317 318 319 320 321 322
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
323 324 325 326 327 328 329 330 331 332
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
355 356 357
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
371 372
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
373 374
    }
    vec_res.emplace_back(
375
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
376 377 378 379 380 381 382 383 384 385 386 387
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
388 389
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
390 391 392 393 394 395 396 397 398 399 400 401
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
402 403 404
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
405 406 407 408
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
409 410
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
411 412 413 414
  }
  return vec_res;
}

415 416 417 418 419 420 421 422
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
423 424
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
425 426 427 428 429 430 431 432 433 434 435 436 437
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
438 439 440
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
441 442 443 444 445
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
446 447 448 449 450
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
451 452
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
453 454 455
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
456 457 458 459 460 461 462 463 464
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
465 466
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
467 468 469 470 471
  }

  return;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
509 510 511 512 513 514 515 516 517 518 519
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

520 521 522 523 524 525
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

526 527
  BindCudaStream(&m);

Y
Yu Yang 已提交
528 529 530
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
531
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
532

533 534
  AssertStaticGraphAndDygraphGradMakerNoDiff();

535
  m.doc() = "C++ core of PaddlePaddle";
536

537 538 539 540
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

541
  BindException(&m);
Y
Yu Yang 已提交
542

543 544
  m.def("set_num_threads", &platform::SetNumThreads);

545 546
  m.def("disable_signal_handler", &DisableSignalHandler);

547
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
548 549 550
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
551 552 553 554
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

555 556 557 558 559 560 561 562 563 564 565 566 567
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
      .def("reset", &platform::CUDAGraph::Reset);
#endif

Z
Zeng Jinle 已提交
568 569 570 571
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
572 573 574
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
575 576 577 578 579 580

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
581 582
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
583
    framework::Tensor tensor;
6
633WHU 已提交
584

S
Siming Dai 已提交
585
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
586 587
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
588
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
589
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
590 591 592 593 594
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
595

596 597 598 599 600 601
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

602 603 604 605 606 607
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
608 609
  });

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
635 636 637 638 639 640
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
641
  m.def(
S
sneaxiy 已提交
642
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
643 644 645 646
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
647 648 649
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
666 667 668
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
669
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
670

671
  m.def("_set_fuse_parameter_group_size",
672
        &paddle::framework::ir::SetFuseParameterGroupsSize);
673
  m.def("_set_fuse_parameter_memory_size",
674
        &paddle::framework::ir::SetFuseParameterMemorySize);
675

S
sneaxiy 已提交
676 677 678
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

679 680
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

681 682 683
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

684
  BindImperative(&m);
685

686 687 688
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
689
      .def("_is_initialized",
690
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
691
      .def("_get_dims",
692
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
693
      .def("_set_dims",
694
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
695
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
696
           })
Y
yuyang18 已提交
697
      .def("_set_layout",
698
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
699 700
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
701
      .def("_alloc_float",
702
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
703
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
704
           })
705
      .def("_alloc_float",
706
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
707 708
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
709
      .def("_alloc_float",
710
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
711
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
712
           })
713 714 715 716
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
717
      .def("_alloc_double",
718
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
719 720
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
721
      .def("_alloc_int",
722
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
723
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
724
           })
725
      .def("_alloc_int",
726
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
727 728
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
729
      .def("_alloc_int",
730
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
731
             self.mutable_data<int>(place);
Q
qijun 已提交
732
           })
Y
yuyang18 已提交
733
      .def("_alloc_int",
734 735
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
736 737
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
738
      .def("_alloc_float",
739 740
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
741 742
             self.mutable_data<float>(place);
           })
743
      .def("_mutable_data",
744
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
745 746 747
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
748
      .def("_mutable_data",
749
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
750 751 752
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
753
      .def("_mutable_data",
754
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
755 756 757 758
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
759
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
760 761 762
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
763
      .def("_clear", &framework::Tensor::clear)
764 765 766 767 768
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
769 770 771 772 773 774 775 776 777 778 779
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
780
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
781
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
782
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
783 784
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
785
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
786
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
787 788
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
789
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
790 791
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
792 793 794 795
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
796
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
797
          LoDTensor is to be set.
798 799
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
813

814 815 816
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
833
      .def("_to_dlpack",
834
           [](framework::Tensor &self) {
6
633WHU 已提交
835
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
836
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
854 855 856 857
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
858 859
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
860
      .def("_layout",
861 862 863 864
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
865
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
866
      .def("__str__", [](const framework::Tensor &self) {
867 868 869 870
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
871

L
Leo Chen 已提交
872
  // TODO(cql): add reference: en_user_guide_lod_tensor
873
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
948 949 950 951 952 953 954

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
955 956

        )DOC")
957 958
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
959 960 961 962 963 964 965 966 967
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
968 969
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
970 971 972 973
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
974 975
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
976
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
977
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
978 979
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
980 981 982
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
983
      .def("set_lod",
984
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
985
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
986
             LoD new_lod;
987 988
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
989 990
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
991 992
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
993
             self.set_lod(new_lod);
S
sneaxiy 已提交
994 995 996 997 998
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
999 1000 1001 1002
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1013
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1014
           )DOC")
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1026 1027
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1028 1029 1030 1031 1032
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1033
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1034 1035
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
1036
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
1037

L
Leo Chen 已提交
1038
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1039
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1040
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1041 1042

           Args:
L
Leo Chen 已提交
1043 1044 1045 1046
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1057 1058
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1059
           )DOC")
1060 1061 1062 1063 1064 1065 1066 1067
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1068 1069 1070 1071 1072
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1073 1074
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1085
           )DOC")
G
gongweibao 已提交
1086
      // Set above comments of set_lod.
1087 1088 1089 1090 1091 1092 1093 1094
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1095 1096
           },
           R"DOC(
L
Leo Chen 已提交
1097 1098
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1099 1100

           Returns:
L
Leo Chen 已提交
1101
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1113 1114 1115 1116 1117 1118 1119 1120
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1121
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1122 1123

           Returns:
L
Leo Chen 已提交
1124
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1136 1137 1138 1139 1140 1141 1142
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1143
           )DOC")
1144 1145 1146 1147 1148 1149
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
L
Leo Chen 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158
      .def("_as_type",
           [](const LoDTensor &self,
              paddle::framework::proto::VarType::Type type) {
             LoDTensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1171
#ifdef _WIN32
1172
      });
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1223

Q
qijun 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1235 1236
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1237 1238
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1239 1240
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1241
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1242 1243 1244 1245 1246 1247
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1248
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1249
      .def("rows", [](SelectedRows &self) {
1250 1251 1252 1253 1254
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1255
      });
Q
qijun 已提交
1256

1257
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1258 1259 1260

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1261
      .def(py::init<>())
1262
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1263
      .def("set_int",
1264 1265
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1266 1267 1268 1269 1270 1271 1272
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1273
      .def("get_tensor",
1274 1275
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1276 1277
           },
           py::return_value_policy::reference)
1278 1279 1280 1281
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1294 1295 1296
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1297 1298 1299 1300 1301
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1302 1303 1304
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1305 1306 1307
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1308
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1309 1310 1311 1312 1313
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1314
#endif
Y
Refine  
Yu Yang 已提交
1315 1316
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1317 1318 1319 1320
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1321 1322
             return self.GetMutable<framework::ReaderHolder>();
           },
1323
           py::return_value_policy::reference)
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1335 1336 1337 1338
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1339

S
sneaxiy 已提交
1340
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1341

S
sneaxiy 已提交
1342
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1356
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1357 1358 1359 1360 1361 1362
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1363 1364
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1365
      .def("var",
1366
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1367
             return self.Var(name);
Y
Yu Yang 已提交
1368
           },
S
sneaxiy 已提交
1369 1370
           py::arg("name"),
           R"DOC(
1371
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1372

1373
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1374
           current scope, the variable would be created. Otherwise,
1375
           return the existing variable.
S
sneaxiy 已提交
1376 1377

           Args:
1378 1379
               name (str): the variable name.

S
sneaxiy 已提交
1380
           Returns:
1381
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1382 1383 1384 1385
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1386
           Find variable named :code:`name` in the current scope or
1387
           its parent scope. Return None if not found. 
1388

S
sneaxiy 已提交
1389 1390
           Args:
               name (str): the variable name.
1391

S
sneaxiy 已提交
1392
           Returns:
1393
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1394
           )DOC",
1395
           py::return_value_policy::reference)
1396
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1397 1398 1399 1400 1401 1402
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1403
           py::return_value_policy::reference)
S
sneaxiy 已提交
1404 1405 1406
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1407 1408
           )DOC")
      .def("_kids", &Scope::kids);
1409

S
sneaxiy 已提交
1410 1411 1412 1413 1414 1415
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1416 1417
        R"DOC(
        Create a new scope.
1418

S
sneaxiy 已提交
1419 1420 1421
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1422 1423
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1424 1425
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1426 1427
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1428 1429 1430 1431
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1432 1433
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1434 1435
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1436 1437 1438
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1439 1440
    return ret_values;
  });
1441 1442 1443 1444 1445 1446 1447 1448
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1449
              res = op_checker->GetDefaultAttrsMap();
1450 1451 1452 1453
            }
          }
          return res;
        });
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1470 1471 1472
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1473 1474 1475 1476 1477
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1478 1479 1480
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1495
  m.def("prune", [](const ProgramDesc &origin,
1496
                    const std::set<std::string> &feeded_var_names,
1497
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1498
    ProgramDesc prog_with_targets(origin);
1499

1500
    for (const auto &t : targets) {
1501
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1502
    }
1503
    proto::ProgramDesc pruned_desc;
1504 1505 1506 1507
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1508
  });
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1526 1527 1528 1529
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1530 1531 1532
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1533 1534
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1535

Q
qijun 已提交
1536
  // clang-format off
Y
Yu Yang 已提交
1537
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1538 1539
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1540
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1541 1542
                    return new paddle::platform::CPUDeviceContext();
                  })
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1567
      .def_static("create",
D
dzhwinter 已提交
1568
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1569
                      -> paddle::platform::DeviceContext* {
1570
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1571 1572 1573 1574
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1575
#else
Q
qijun 已提交
1576
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1577
#endif
C
chengduoZH 已提交
1578 1579 1580 1581
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1582
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1583 1584 1585 1586
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1587 1588 1589 1590
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1591
// clang-format on
1592
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1593 1594
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1595
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1596 1597 1598 1599 1600

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1601
    The memory of CUDAPlace with different dev_id is not accessible.
1602 1603 1604 1605 1606 1607 1608 1609
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1610 1611 1612 1613

    Examples:
        .. code-block:: python

1614 1615 1616
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1617

1618
        )DOC")
S
sneaxiy 已提交
1619 1620
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1621
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1646 1647
             new (&self) platform::CUDAPlace(dev_id);
#else
1648 1649 1650 1651 1652 1653 1654 1655 1656
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1657 1658
#endif
           })
1659
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1660 1661
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1662 1663 1664 1665
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1666
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1667
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1668 1669
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1670 1671 1672
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1673
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1674
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1721
#ifdef PADDLE_WITH_XPU
1722 1723 1724 1725 1726 1727 1728
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1729 1730 1731
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1732
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1733
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1734
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1735 1736 1737 1738
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1739
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1740 1741
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
T
taixiurong 已提交
1742 1743 1744 1745 1746 1747 1748 1749
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
1750
#endif
1751

1752
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1753
    CPUPlace is a descriptor of a device.
1754
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1755 1756 1757 1758

    Examples:
        .. code-block:: python

1759 1760
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1761

1762
        )DOC")
1763
      .def(py::init<>())
S
sneaxiy 已提交
1764 1765
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1766
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1767
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1768 1769 1770 1771
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1772
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1773
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1774

1775
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1776 1777 1778 1779 1780 1781
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1782 1783 1784 1785

    Examples:
        .. code-block:: python

1786 1787
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1788

1789
        )DOC")
S
sneaxiy 已提交
1790
      .def("__init__",
S
sneaxiy 已提交
1791
           [](platform::CUDAPinnedPlace &self) {
1792
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1793 1794 1795
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1796
#endif
S
sneaxiy 已提交
1797
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1798
           })
S
sneaxiy 已提交
1799 1800 1801 1802
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1803 1804
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1805 1806
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1807 1808 1809 1810
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1811
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1812 1813
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1856
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1871 1872
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1873 1874
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1875 1876
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1877 1878 1879 1880
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1881
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1882
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1883
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1884 1885
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1886 1887
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1888 1889
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1890 1891
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1892 1893 1894 1895
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1896 1897
      .def("gpu_device_id",
           [](platform::Place &self) {
1898
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1899
           })
1900 1901 1902 1903
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1904 1905 1906 1907
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1908 1909
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1910 1911 1912 1913
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1914 1915 1916 1917
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1918
      .def("set_place",
D
dzhwinter 已提交
1919
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1920
             self = gpu_place;
C
chengduoZH 已提交
1921
           })
1922 1923 1924 1925 1926
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1927 1928 1929 1930
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1931 1932
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1933

Y
Yu Yang 已提交
1934
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
1949
      .def("run",
1950
           [](OperatorBase &self, const Scope &scope,
1951 1952 1953 1954
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1955 1956
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1957 1958 1959 1960
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1961 1962
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1963 1964 1965 1966
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1967 1968
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1969 1970 1971 1972
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1973 1974 1975
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
1976
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1977 1978
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1979 1980 1981 1982 1983 1984 1985
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1986 1987
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1988
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1989
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1990 1991 1992 1993
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1994

1995 1996 1997
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1998 1999 2000 2001 2002 2003 2004 2005 2006
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

2007 2008
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2009
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2010
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2011
      .def("close", &Executor::Close)
2012 2013
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2014 2015
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2016 2017 2018 2019
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2020
             pybind11::gil_scoped_release release;
2021 2022 2023 2024 2025 2026 2027
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2028 2029 2030
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2031
              std::map<std::string, FetchType *> *fetch_targets,
2032 2033 2034 2035 2036 2037 2038 2039
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2040
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2041 2042 2043 2044 2045 2046 2047
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2058
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2059 2060
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2061
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2062 2063
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2064
      });
S
sneaxiy 已提交
2065

2066 2067 2068 2069
  py::class_<framework::CostInfo>(m, "CostInfo")
      .def(py::init<>())
      .def("total_time", [](CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes",
2070
           [](CostInfo &self) { return self.device_memory_bytes; });
2071

2072
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2073 2074 2075
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2076
           [](StandaloneExecutor &self,
H
hong 已提交
2077
              const std::unordered_map<std::string, py::array> &input_dict,
2078
              std::vector<std::string> fetch_names) {
2079
             std::vector<framework::LoDTensor> feed_tensors;
2080
             std::vector<std::string> feed_names;
H
hong 已提交
2081 2082 2083 2084 2085

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2086 2087
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2088 2089
             }

2090 2091 2092 2093 2094 2095 2096 2097 2098
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2099
              const std::unordered_map<std::string, framework::LoDTensor>
2100 2101
                  &input_dict,
              std::vector<std::string> fetch_names) {
2102
             std::vector<framework::LoDTensor> feed_tensors;
2103 2104 2105 2106 2107 2108 2109
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2110 2111 2112 2113
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2114
             }
W
wanghuancoder 已提交
2115
             return py::cast(std::move(ret));
2116 2117 2118 2119
           })
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2120
             std::vector<framework::LoDTensor> feed_tensors;
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

             CostInfo cost_info;
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2137 2138
           });

D
dzhwinter 已提交
2139
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2140
  m.def("init_glog", framework::InitGLOG);
2141 2142
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2143
  m.def("init_devices", []() { framework::InitDevices(); });
2144

2145
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2146
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2147
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2148
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2149
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2150
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2151
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2152
  m.def("supports_bfloat16", SupportsBfloat16);
2153
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2154 2155
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2156
  m.def("op_supported_infos", OpSupportedInfos);
2157
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2158
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2159 2160 2161
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2181 2182 2183 2184 2185 2186 2187
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2197
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2198 2199 2200 2201 2202
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2203

S
Steffy-zxf 已提交
2204 2205 2206 2207 2208 2209
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2210 2211 2212 2213 2214
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2215
            return py::cast(BOOST_GET(LoDTensor, var));
2216
          } else {
2217
            return py::cast(BOOST_GET(LoDTensorArray, var));
2218 2219
          }
        });
2220
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2221

X
Xin Pan 已提交
2222 2223
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2224 2225 2226 2227
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2228
  BindCostModel(&m);
2229
  BindConstValue(&m);
2230
  BindGlobalValueGetterSetter(&m);
2231
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2232
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2233

Y
Yu Yang 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2243
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2244
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2245 2246 2247

    Examples:
        .. code-block:: python
2248

Z
Zeng Jinle 已提交
2249 2250 2251 2252
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2253 2254
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2255 2256 2257 2258 2259 2260
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2261 2262 2263 2264
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2265 2266 2267
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2268 2269 2270 2271 2272 2273
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2274 2275
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2276 2277 2278 2279 2280 2281
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2304

2305 2306 2307 2308 2309 2310 2311 2312
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2313
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2314 2315
                 res[i] = py::cast(std::move(data));
               } else {
2316
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2332
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2333 2334 2335 2336 2337 2338 2339 2340
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2341
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2342 2343 2344 2345 2346 2347 2348 2349 2350
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2351 2352
        )DOC")
      .def("_move_to_list",
2353
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2354 2355 2356 2357
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2358
                 if (data_is_lod_tensor(self[i][j])) {
2359
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2360 2361
                   tmp[j] = py::cast(std::move(var));
                 } else {
2362
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2363 2364 2365 2366 2367 2368
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2378
  m.def("op_support_gpu", OpSupportGPU);
2379
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2380
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
2381 2382 2383 2384 2385 2386 2387 2388
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2389 2390 2391 2392 2393 2394 2395
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2421
      });
D
dangqingqing 已提交
2422

2423
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2424 2425 2426
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2427 2428 2429 2430
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2431
#endif
P
peizhilin 已提交
2432
#endif
Y
Yu Yang 已提交
2433

2434 2435
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2436 2437 2438 2439
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2440
      platform::NPUDeviceGuard guard(devices[i]);
2441 2442 2443 2444
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2465 2466 2467 2468 2469 2470
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2471 2472 2473 2474
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2475
      .value("kAll", platform::ProfilerState::kAll)
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2487
  m.def("set_tracer_option", platform::SetTracerOption);
2488 2489
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2490
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2491
  m.def("reset_profiler", platform::ResetProfiler);
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
  m.def("register_pass", [](const std::string &pass_type,
                            const py::object &callable) {
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2507
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2508 2509 2510
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2511

2512 2513
  m.def("size_of_dtype", framework::SizeOfType);

2514
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2515 2516
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2517 2518
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2519
#endif  // PADDLE_WITH_CUDA
2520 2521
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2522

2523 2524 2525
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2526 2527
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2528
      .def("has", &ir::Pass::Has)
2529 2530 2531
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2532
           })
2533
      .def(
2534
          "set",
2535 2536 2537
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2538 2539
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2540 2541
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2556 2557
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2558
        self.Apply(graph.get());
F
flame 已提交
2559
      });
2560

X
fix  
Xin Pan 已提交
2561 2562
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2577
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2578
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2579 2580 2581 2582
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2583 2584 2585
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2586 2587 2588
    Examples:
        .. code-block:: python

2589 2590 2591 2592 2593 2594 2595 2596 2597
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2598

2599 2600
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2601

2602
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2603 2604
          sgd_optimizer.minimize(avg_loss)

2605
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2606 2607
          exec_strategy.num_threads = 4

2608 2609 2610
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2611 2612
        )DOC");

2613 2614 2615 2616
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2617

Y
yuyang18 已提交
2618
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2619 2620 2621 2622 2623
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2624
          },
2625 2626
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2627 2628 2629 2630 2631 2632 2633
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2647
      .def_property(
2648 2649
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2650
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2651 2652 2653
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2654 2655 2656 2657 2658
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2659 2660 2661
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2662 2663
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2664 2665 2666 2667 2668 2669 2670
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2671 2672 2673 2674
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2675
                because the temp variable's shape maybe the same between two iterations.
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2686

2687 2688 2689 2690 2691 2692 2693
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2694
              )DOC")
Q
Qiao Longfei 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2716
              )DOC")
2717 2718 2719 2720 2721 2722 2723 2724
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2725 2726 2727 2728 2729
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2730

Y
yuyang18 已提交
2731
  exec_strategy.def_property(
Y
yuyang18 已提交
2732 2733 2734 2735 2736 2737 2738
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2739 2740
      });

C
chengduo 已提交
2741 2742 2743 2744
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2745 2746 2747
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2748 2749 2750
    Examples:
        .. code-block:: python

2751
            import os
2752 2753 2754 2755
            import paddle
            import paddle.static as static

            paddle.enable_static()
2756

2757 2758
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2759

2760 2761 2762 2763
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2764

2765
            build_strategy = static.BuildStrategy()
2766 2767
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2768 2769
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2770
            program = program.with_data_parallel(loss_name=loss.name,
2771 2772
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2773
)DOC");
Y
yuyang18 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2786
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2787 2788 2789 2790
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2791 2792 2793 2794
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2795
            self.reduce_ = strategy;
C
chengduo 已提交
2796
          },
2797
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2798 2799
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2800
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2801 2802
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2803
                Default is 'AllReduce'.
F
flame 已提交
2804 2805 2806 2807

                Examples:
                    .. code-block:: python

2808 2809 2810 2811 2812 2813 2814
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2815
                  )DOC")
Y
yuyang18 已提交
2816 2817 2818 2819 2820
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2821 2822 2823 2824
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2825
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2826
          },
2827
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2828
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2829 2830
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2831
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2832 2833 2834 2835

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2836 2837
                        import numpy
                        import os
2838 2839 2840 2841
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2842 2843

                        use_cuda = True
2844 2845
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2846 2847

                        # NOTE: If you use CPU to run the program, you need
2848
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2849 2850 2851 2852 2853 2854
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2855
                            places = static.cpu_places()
C
chengduo 已提交
2856
                        else:
2857
                            places = static.cuda_places()
C
chengduo 已提交
2858

2859 2860 2861 2862
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2863

2864
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2865

2866
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2867
                        build_strategy.gradient_scale_strategy = \
2868 2869 2870
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2871
                                          loss_name=loss.name, build_strategy=build_strategy,
2872
                                          places=places)
C
chengduo 已提交
2873 2874 2875 2876 2877 2878

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2879 2880
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2881
                   )DOC")
Y
yuyang18 已提交
2882 2883 2884 2885
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2886 2887 2888 2889
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2890
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2891
          },
2892
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2893
                writing the SSA Graph to file in the form of graphviz.
2894
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2895 2896 2897 2898

                Examples:
                    .. code-block:: python

2899 2900 2901 2902
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2903

2904 2905
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2906
                    )DOC")
S
sneaxiy 已提交
2907 2908 2909 2910 2911 2912
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2913 2914 2915 2916
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2917 2918
            self.enable_sequential_execution_ = b;
          },
2919 2920
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2921 2922 2923 2924

                Examples:
                    .. code-block:: python

2925 2926 2927 2928 2929 2930
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2931 2932
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2933 2934 2935 2936 2937 2938
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2939 2940 2941 2942
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2943 2944
            self.remove_unnecessary_lock_ = b;
          },
2945 2946
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2947 2948 2949 2950

                Examples:
                    .. code-block:: python

2951 2952 2953 2954 2955 2956
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2957 2958
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2959 2960 2961 2962
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2963
#ifdef WIN32
2964
            PADDLE_THROW(platform::errors::Unavailable(
2965
                "Distribution mode is not supported on Windows platform."));
2966
#endif
2967 2968
            self.num_trainers_ = num_trainers;
          })
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2981 2982 2983 2984 2985 2986
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2987 2988 2989 2990 2991 2992
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2993
      .def_property("use_hierarchical_allreduce",
2994 2995 2996 2997 2998 2999
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3000
      .def_property("hierarchical_allreduce_inter_nranks",
3001 3002 3003 3004 3005 3006 3007
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3008 3009 3010 3011 3012 3013
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3014 3015 3016 3017
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3018 3019
            self.fuse_elewise_add_act_ops_ = b;
          },
3020
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3021
                to fuse elementwise_add_op and activation_op,
3022
                it may make the execution faster. Default is False.
F
flame 已提交
3023 3024 3025 3026

                Examples:
                    .. code-block:: python

3027 3028 3029 3030 3031 3032
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3033 3034
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3035 3036 3037 3038
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3039
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3040
                              platform::errors::PreconditionNotMet(
3041 3042
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3052 3053 3054 3055 3056 3057
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3058 3059
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3085 3086 3087 3088
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3089
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3090
                              platform::errors::PreconditionNotMet(
3091 3092
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3103 3104 3105 3106 3107 3108
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3109 3110
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3111 3112 3113 3114 3115 3116
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3117 3118 3119 3120
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3121 3122
            self.fuse_relu_depthwise_conv_ = b;
          },
3123
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3124 3125 3126
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3127
                Default is False.
F
flame 已提交
3128 3129 3130 3131

                Examples:
                    .. code-block:: python

3132 3133 3134 3135 3136 3137
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3138 3139
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3140 3141 3142
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3143
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3144 3145
                    },
                    [](BuildStrategy &self, bool b) {
3146 3147 3148 3149
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3150 3151
                      self.fuse_broadcast_ops_ = b;
                    },
3152
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3153 3154 3155 3156
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3157 3158 3159 3160 3161
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3162 3163 3164 3165 3166 3167
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3168 3169
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3170 3171
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3172
                      return self.fuse_all_optimizer_ops_ == true ||
3173
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3174 3175
                    },
                    [](BuildStrategy &self, bool b) {
3176 3177 3178 3179
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3180 3181
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3182 3183 3184 3185
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3186 3187 3188 3189
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3190 3191
            self.sync_batch_norm_ = b;
          },
3192
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3193 3194 3195
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3196 3197
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3198 3199 3200 3201

                Examples:
                    .. code-block:: python

3202 3203 3204 3205 3206 3207
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3208 3209
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3210 3211
      .def_property(
          "memory_optimize",
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3222
              self.memory_optimize_ = paddle::none;
3223 3224 3225
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3226
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3227 3228
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3229 3230
            }
          },
3231
          R"DOC((bool, optional): memory opitimize aims to save total memory
3232
                consumption, set to True to enable it.
3233

3234 3235 3236
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3251 3252 3253
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3254 3255 3256
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3257
              PADDLE_THROW(platform::errors::Unavailable(
3258
                  "Distribution mode is not supported on Windows platform."));
3259 3260 3261 3262 3263
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3264 3265 3266
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3267
      .def_property(
D
dzhwinter 已提交
3268 3269 3270
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3271 3272 3273 3274
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3275 3276
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3277 3278
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3279
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3280
          },
C
chengduo 已提交
3281
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3282 3283 3284 3285 3286 3287 3288
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3289 3290 3291 3292
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3293 3294 3295 3296 3297 3298 3299 3300 3301
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3302 3303 3304 3305 3306 3307
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3308 3309 3310 3311 3312 3313 3314
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3315 3316 3317 3318 3319 3320
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3321
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3322
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3323 3324 3325 3326 3327
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3328

3329 3330 3331 3332 3333 3334
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3335
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3336
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3337
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3338
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3339 3340 3341 3342
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3343 3344 3345 3346 3347
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3348 3349 3350
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3351 3352 3353 3354
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3355 3356
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3357 3358 3359 3360 3361 3362 3363 3364
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3365
               return py::cast(
3366
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3367 3368
             } else {
               return py::cast(std::move(
3369
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3370
             }
3371 3372
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3373

D
dongdaxiang 已提交
3374
  BindFleetWrapper(&m);
3375
  BindIO(&m);
T
Thunderbrook 已提交
3376

T
Thunderbrook 已提交
3377 3378
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3379
#endif
T
Thunderbrook 已提交
3380
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3381
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3382
#endif
3383
  BindGlooWrapper(&m);
H
hutuxian 已提交
3384
  BindBoxHelper(&m);
H
hutuxian 已提交
3385 3386 3387
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3388
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3389
  BindNCCLWrapper(&m);
3390 3391 3392
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3393
#endif
F
flame 已提交
3394 3395
  BindGraph(&m);
  BindNode(&m);
3396
  BindPass(&m);
F
flame 已提交
3397
  BindInferenceApi(&m);
3398
  BindCompatible(&m);
3399
  BindDataset(&m);
Y
yaoxuefeng 已提交
3400
  BindGenerator(&m);
3401 3402 3403
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3404
  BindAscendDevice(&m);
3405
#endif
Y
Yanghello 已提交
3406 3407 3408
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3409

T
tangwei12 已提交
3410
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3411 3412
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3413
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3414 3415
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3416 3417 3418 3419 3420
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3421 3422 3423 3424
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3425
  BindSparseShardingTools(&m);
3426
#endif
L
Luo Tao 已提交
3427
}
3428
}  // namespace pybind
3429
}  // namespace paddle