pybind.cc 70.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
32 33 34
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
37
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
42
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
44
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
47
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/cpu_info.h"
49
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
50
#include "paddle/fluid/platform/enforce.h"
51
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
52 53
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
54
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
56
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
58
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
59
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
61
#include "paddle/fluid/pybind/ir.h"
62

W
wopeizl 已提交
63
#ifndef _WIN32
D
dongdaxiang 已提交
64
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
65
#endif
66
#include "paddle/fluid/framework/data_type.h"
67 68
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
69
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
70
#include "paddle/fluid/pybind/tensor_py.h"
71
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
72
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
73
#ifndef _WIN32
Y
Yi Wang 已提交
74
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
75
#endif
Y
Yi Wang 已提交
76 77
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
78 79
#endif

80 81 82 83
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
84 85
#include "pybind11/stl.h"

86 87 88
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
89
DECLARE_bool(use_mkldnn);
90 91 92
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
93

Q
Qiao Longfei 已提交
94 95 96
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

97
namespace paddle {
98
namespace pybind {
99
bool IsCompiledWithCUDA() {
100
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
101 102 103 104 105 106
  return false;
#else
  return true;
#endif
}

107 108 109 110 111 112 113 114
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

115 116 117 118 119 120 121 122
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

123
bool IsCompiledWithBrpc() {
124
#ifndef PADDLE_WITH_DISTRIBUTE
125 126
  return false;
#endif
127 128 129 130 131 132

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
133 134
}

Y
update  
Yancey1989 已提交
135
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
136
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
137 138 139 140 141 142
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
143 144 145 146 147 148 149 150 151 152
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

153 154 155 156 157 158
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
159 160 161
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
162
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
163

164
  m.doc() = "C++ core of PaddlePaddle";
165

166 167 168 169
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

170
  BindException(&m);
Y
Yu Yang 已提交
171

172 173
  m.def("set_num_threads", &platform::SetNumThreads);

S
sneaxiy 已提交
174
  m.def(
S
sneaxiy 已提交
175
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
176 177 178 179
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
180 181 182
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
183 184 185
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
186
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
187

188
  m.def("_set_fuse_parameter_group_size",
189
        &paddle::framework::ir::SetFuseParameterGroupsSize);
190
  m.def("_set_fuse_parameter_memory_size",
191
        &paddle::framework::ir::SetFuseParameterMemorySize);
192

S
sneaxiy 已提交
193 194 195
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

196 197
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

198
  BindImperative(&m);
199

200
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
201
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
202 203
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
204
      .def("_get_dims",
205
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
206
      .def("_set_dims",
Q
qijun 已提交
207
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
208
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
209
           })
Y
yuyang18 已提交
210
      .def("_set_layout",
D
dzhwinter 已提交
211 212 213
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
214
      .def("_alloc_float",
D
dzhwinter 已提交
215
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
216
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
217
           })
Y
yuyang18 已提交
218
      .def("_alloc_float",
Y
Yu Yang 已提交
219
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
220
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
221
           })
222 223 224 225
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
226
      .def("_alloc_int",
Y
Yu Yang 已提交
227
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
228
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
229
           })
Y
yuyang18 已提交
230
      .def("_alloc_int",
D
dzhwinter 已提交
231
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
232
             self.mutable_data<int>(place);
Q
qijun 已提交
233
           })
Y
yuyang18 已提交
234
      .def("_alloc_int",
C
chengduoZH 已提交
235 236 237
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
238
      .def("_alloc_float",
C
chengduoZH 已提交
239 240 241
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Z
Zeng Jinle 已提交
242
      .def("_clear", &Tensor::clear)
Y
Yu Yang 已提交
243 244
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
245
      .def("set", PyCPUTensorSetFromArray<double>)
246
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
247
      .def("set", PyCPUTensorSetFromArray<bool>)
248
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
249
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
250
      .def("set", PyCPUTensorSetFromArray<int8_t>)
251
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
252 253
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
254
      .def("set", PyCUDATensorSetFromArray<double>)
255
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
256
      .def("set", PyCUDATensorSetFromArray<bool>)
257
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
258
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
259
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
260 261 262 263 264 265
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
266
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
267
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
268
#endif
269
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
270 271 272 273
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
274
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
275
      .def("_dtype", [](Tensor &self) { return self.type(); })
276 277 278 279 280 281
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
282

X
Xin Pan 已提交
283 284 285 286 287 288 289 290 291
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

292 293
    For example, a LoDTensor X can look like the example below. It contains
    2 sequences. The first has length 2 and the second has length 3, as
Z
Zeng Jinle 已提交
294
    described by x.lod.
X
Xin Pan 已提交
295

Z
Zeng Jinle 已提交
296 297 298
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
299

Z
Zeng Jinle 已提交
300
    x.lod  = [[2, 3]]
301

Z
Zeng Jinle 已提交
302
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
303

Z
Zeng Jinle 已提交
304
    x.shape = [5, 2]
X
Xin Pan 已提交
305

Z
Zeng Jinle 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
323 324 325 326 327 328 329 330 331 332 333 334

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
335
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
336 337 338 339 340 341 342 343 344
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
345 346
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
347 348 349
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
350
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
351 352 353 354 355
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
356
      .def("set_lod",
357
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
358
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
359
             LoD new_lod;
360 361
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
362 363 364
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
365
             self.set_lod(new_lod);
S
sneaxiy 已提交
366 367 368 369 370 371
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
372 373 374 375 376 377 378 379 380 381

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
382
           )DOC")
383 384 385 386 387 388 389 390 391 392 393
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
394 395
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
396 397
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
398 399 400 401
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
402
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
403 404
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
405 406

           Args:
407
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
408 409 410 411 412 413 414 415 416 417

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
418
           )DOC")
419 420 421 422 423 424 425 426
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
427 428 429 430 431 432
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
433 434 435 436 437 438 439 440 441 442 443

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
444
           )DOC")
G
gongweibao 已提交
445
      // Set above comments of set_lod.
446 447 448 449 450 451 452 453
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
454 455 456 457 458
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
459
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
460 461 462 463 464 465 466 467 468 469 470

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
471 472 473 474 475 476 477 478 479 480 481 482
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
483 484 485 486 487 488 489 490 491 492 493

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
494 495 496 497 498 499 500
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
501
           )DOC")
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
520
      });
D
dangqingqing 已提交
521

Q
qijun 已提交
522 523 524 525 526 527 528 529 530 531 532
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
533 534
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
535 536
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
537 538 539 540 541 542 543 544 545
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
546
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
547
      .def("rows", [](SelectedRows &self) {
548 549 550 551 552
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
553
      });
Q
qijun 已提交
554

555
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
556 557 558

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
559
      .def(py::init<>())
560
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
561
      .def("set_int",
562 563
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
564 565 566 567 568 569 570
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
571
      .def("get_tensor",
572 573
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
574 575
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
576 577 578
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
579 580 581 582 583
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
584 585 586
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
587
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
588 589 590 591 592
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
593
#endif
Y
Refine  
Yu Yang 已提交
594 595
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
596
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
597 598
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
599
           py::return_value_policy::reference);
600

S
sneaxiy 已提交
601
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
602

S
sneaxiy 已提交
603 604 605 606
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
607

S
sneaxiy 已提交
608 609
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
610
      .def("push",
S
sneaxiy 已提交
611
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
612
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
613
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
614
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
615
           })
S
sneaxiy 已提交
616 617 618 619
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
620

S
sneaxiy 已提交
621
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
622 623
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
624
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
625 626 627 628
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
629
        py::return_value_policy::copy);
S
sneaxiy 已提交
630

S
sneaxiy 已提交
631
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

645
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
646 647 648 649 650 651
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
652 653
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
654
      .def("var",
655
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
656
             return self.Var(name);
Y
Yu Yang 已提交
657
           },
S
sneaxiy 已提交
658 659
           py::arg("name"),
           R"DOC(
660
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
661

662
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
663
           current scope, the variable would be created. Otherwise,
664
           return the existing variable.
S
sneaxiy 已提交
665 666

           Args:
667 668
               name (str): the variable name.

S
sneaxiy 已提交
669
           Returns:
670
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
671 672 673 674
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
675
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
676
           its parent scope. Return None if not found.
677

S
sneaxiy 已提交
678 679
           Args:
               name (str): the variable name.
680

S
sneaxiy 已提交
681
           Returns:
682
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
683
           )DOC",
684
           py::return_value_policy::reference)
685
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
686 687 688 689 690 691
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
692
           py::return_value_policy::reference)
S
sneaxiy 已提交
693 694 695
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
696 697
           )DOC")
      .def("_kids", &Scope::kids);
698

S
sneaxiy 已提交
699 700 701 702 703 704
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
705 706
        R"DOC(
        Create a new scope.
707

S
sneaxiy 已提交
708 709 710
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
711 712
        py::return_value_policy::reference);

Y
Yu Yang 已提交
713 714
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
715 716
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
717 718 719 720
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
721 722
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
723 724 725 726
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
727 728
    return ret_values;
  });
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
745 746 747 748 749 750 751
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
  m.def("get_flags_use_mkldnn", []() { return FLAGS_use_mkldnn; });
752 753 754
#ifdef PADDLE_WITH_NGRAPH
  m.def("get_flags_use_ngraph", []() { return FLAGS_use_ngraph; });
#endif
755

Y
Yu Yang 已提交
756
  m.def("prune", [](const ProgramDesc &origin,
757
                    const std::set<std::string> &feeded_var_names,
758
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
759
    ProgramDesc prog_with_targets(origin);
760

761
    for (const auto &t : targets) {
762
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
763
    }
764
    proto::ProgramDesc pruned_desc;
765
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
766
    return new ProgramDesc(pruned_desc);
767
  });
768 769 770
  m.def("prune_backward", [](const framework::ProgramDesc &program) {
    return PruneBackward(program);
  });
771 772 773 774
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
775 776 777
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
778 779
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
780
  // clang-format off
Y
Yu Yang 已提交
781
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
782 783
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
784
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
785 786 787
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
788
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
789
                      -> paddle::platform::DeviceContext* {
790
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
791
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
792
#else
Q
qijun 已提交
793
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
794
#endif
C
chengduoZH 已提交
795 796 797 798 799 800 801 802 803 804 805
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
806
// clang-format on
P
peizhilin 已提交
807
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
808 809
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
810 811 812 813
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
814 815 816 817

    Examples:
        .. code-block:: python

818
          import paddle.fluid as fluid
L
lujun 已提交
819 820
          gpu_place = fluid.CUDAPlace(0)

821
        )DOC")
S
sneaxiy 已提交
822 823 824
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
849 850
             new (&self) platform::CUDAPlace(dev_id);
#else
851 852 853 854 855 856 857 858 859
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
860 861
#endif
           })
S
sneaxiy 已提交
862 863 864 865 866 867
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
868
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
869

870 871 872
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
873 874 875 876

    Examples:
        .. code-block:: python

877
          import paddle.fluid as fluid
L
lujun 已提交
878 879
          cpu_place = fluid.CPUPlace()

880
        )DOC")
881
      .def(py::init<>())
S
sneaxiy 已提交
882 883 884 885 886 887
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
888
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
889

890 891 892
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
893 894 895 896

    Examples:
        .. code-block:: python

897
          import paddle.fluid as fluid
L
lujun 已提交
898 899
          place = fluid.CUDAPinnedPlace()

900
        )DOC")
S
sneaxiy 已提交
901
      .def("__init__",
S
sneaxiy 已提交
902
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
903 904 905
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
906
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
907
           })
S
sneaxiy 已提交
908 909 910 911 912 913 914 915
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
916 917
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
918 919
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
920 921 922 923 924
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
925 926
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
927 928 929 930 931 932
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
933 934 935 936
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
937 938
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
939 940 941 942 943
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
944
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
945
             self = gpu_place;
C
chengduoZH 已提交
946 947
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
948 949
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
950
      });
Y
Yu Yang 已提交
951

Y
Yu Yang 已提交
952
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
953 954 955 956 957 958 959 960 961 962 963
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
964
      .def("run",
965
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
966 967 968
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
969
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
970 971 972 973 974
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
975 976 977 978 979 980 981
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
982 983
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
984
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
985
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
986 987 988 989
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
990

991 992 993
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

F
fengjiayi 已提交
994
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
995
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
996
      .def("close", &Executor::Close)
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
1011 1012 1013 1014 1015 1016 1017 1018
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1019 1020
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
1021 1022
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
1023
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1024 1025
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1026
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1027 1028
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1029
      });
S
sneaxiy 已提交
1030

D
dzhwinter 已提交
1031
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1032
  m.def("init_glog", framework::InitGLOG);
1033
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1034 1035
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1036

1037
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1038
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1039
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1040
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1041
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1042 1043 1044 1045 1046 1047
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1048

1049
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1050
  m.def("get_fetch_variable", framework::GetFetchVariable);
1051
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1052

X
Xin Pan 已提交
1053 1054
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1055 1056 1057 1058 1059
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1060

Y
Yu Yang 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1070 1071 1072 1073 1074
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
1075

Z
Zeng Jinle 已提交
1076 1077 1078 1079
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1080 1081
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1092 1093 1094 1095 1096 1097
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1122

Y
Yu Yang 已提交
1123
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1124
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1125
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1126

P
peizhilin 已提交
1127
#ifndef _WIN32
D
dangqingqing 已提交
1128 1129 1130
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1131
#endif
P
peizhilin 已提交
1132
#endif
Y
Yu Yang 已提交
1133

1134 1135 1136 1137
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1138
      .value("kAll", platform::ProfilerState::kAll)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1152
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1153
  m.def("reset_profiler", platform::ResetProfiler);
1154
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1155 1156 1157
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1158

1159 1160
  m.def("size_of_dtype", framework::SizeOfType);

1161 1162 1163
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1164 1165
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1166
      .def("has", &ir::Pass::Has)
1167 1168 1169
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1170
           })
1171
      .def(
1172
          "set",
1173 1174 1175
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1176 1177
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1192 1193
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1194
        self.Apply(graph.get());
F
flame 已提交
1195
      });
1196

X
fix  
Xin Pan 已提交
1197 1198
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1213
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1214

Y
yuyang18 已提交
1215
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1216 1217 1218 1219
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1220 1221 1222
    Examples:
        .. code-block:: python

1223
          import paddle.fluid as fluid
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1234 1235 1236
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1237 1238
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1239 1240
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1241 1242
        )DOC");

Y
yuyang18 已提交
1243
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1244 1245 1246 1247 1248
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1259
      .def_property(
1260 1261 1262 1263
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1264 1265 1266 1267
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1268 1269 1270 1271 1272
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1273 1274 1275
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1276 1277
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1278 1279 1280 1281 1282 1283 1284
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1285 1286 1287 1288
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1289 1290
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1291 1292 1293 1294 1295 1296

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1297
              )DOC")
Q
Qiao Longfei 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1309 1310 1311 1312 1313
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1314

Y
yuyang18 已提交
1315
  exec_strategy.def_property(
Y
yuyang18 已提交
1316 1317 1318 1319 1320 1321 1322
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1323 1324
      });

C
chengduo 已提交
1325 1326 1327 1328
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1329 1330 1331
    Examples:
        .. code-block:: python

F
flame 已提交
1332 1333 1334
            import paddle.fluid as fluid
            build_strategy = fluid.BuildStrategy()
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
C
chengduo 已提交
1335
)DOC");
Y
yuyang18 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1352 1353
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1354
            self.reduce_ = strategy;
C
chengduo 已提交
1355
          },
C
chengduo 已提交
1356 1357 1358 1359 1360 1361 1362
          R"DOC(The type is fluid.BuildStrategy.ReduceStrategy, there are two reduce
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
                you should choose AllReduce; if you choose Reduce, all the parameters'
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
                Default 'AllReduce'.
F
flame 已提交
1363 1364 1365 1366 1367 1368 1369 1370

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1371 1372 1373 1374 1375
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1376 1377
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1378
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1379
          },
C
chengduo 已提交
1380 1381 1382 1383 1384
          R"DOC(The type is fluid.BuildStrategy.GradientScaleStrategy, there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, CoeffNumDevice,
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
                you can choose Customized. Default 'CoeffNumDevice'.
F
flame 已提交
1385 1386 1387 1388 1389

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1418
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1433
                   )DOC")
Y
yuyang18 已提交
1434 1435 1436 1437
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1438 1439
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1440
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1441
          },
C
chengduo 已提交
1442
          R"DOC(The type is STR, debug_graphviz_path indicates the path that
F
flame 已提交
1443 1444 1445 1446 1447 1448 1449 1450
                writing the SSA Graph to file in the form of graphviz.
                It is useful for debugging. Default ""

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1451 1452
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1453
                    )DOC")
S
sneaxiy 已提交
1454 1455 1456 1457 1458 1459
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1460 1461
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1462 1463
            self.enable_sequential_execution_ = b;
          },
C
chengduo 已提交
1464 1465
          R"DOC(The type is BOOL. If set True, the execution order of ops would
                be the same as what is in the program. Default False.
F
flame 已提交
1466 1467 1468 1469 1470 1471 1472 1473

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1474 1475 1476 1477 1478 1479
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1480 1481
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1482 1483
            self.remove_unnecessary_lock_ = b;
          },
C
chengduo 已提交
1484 1485
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default True.
F
flame 已提交
1486 1487 1488 1489 1490 1491 1492 1493

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1494 1495 1496 1497
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1498 1499 1500
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1501 1502
            self.num_trainers_ = num_trainers;
          })
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1515 1516 1517 1518 1519 1520
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1521
      .def_property("use_hierarchical_allreduce",
1522 1523 1524 1525 1526 1527
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1528
      .def_property("hierarchical_allreduce_inter_nranks",
1529 1530 1531 1532 1533 1534 1535
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1536 1537 1538 1539 1540 1541
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1542 1543
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
1544 1545 1546
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
                to fuse elementwise_add_op and activation_op,
                it may make the execution faster. Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1557 1558 1559 1560 1561 1562
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1563 1564
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
1565 1566 1567
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
                Default False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
                    R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
1591 1592 1593 1594 1595
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1596 1597
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
1598 1599
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
1600 1601
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1602 1603
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
1604 1605
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1606 1607 1608 1609
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1610 1611
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

F
flame 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629
                Default False

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1630 1631
      .def_property(
          "memory_optimize",
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
                  "BuildStrategy.memory_optimize must be None, False or True");
            }
          },
          R"DOC(The type is BOOL or None, memory opitimize aims to save total memory
1651
                consumption, set to True to enable it.
1652

1653 1654 1655 1656
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
                True means enabling and False means disabling. Default None.)DOC")
1657 1658 1659
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1660 1661 1662 1663 1664 1665 1666 1667 1668
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1669 1670 1671
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1672
      .def_property(
D
dzhwinter 已提交
1673 1674 1675
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1676 1677
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
1678 1679 1680 1681
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
1682
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1683 1684 1685 1686 1687 1688 1689
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
1690 1691 1692 1693
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1694 1695 1696 1697 1698 1699 1700 1701 1702
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1703
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1704
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1705 1706 1707 1708 1709
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1710 1711

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1712
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1713
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1714
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1715 1716 1717 1718
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1719 1720 1721 1722 1723
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1724 1725 1726
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1727 1728 1729 1730
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1731
      .def("run", [](ParallelExecutor &self,
1732
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
1733
        pybind11::gil_scoped_release release;
1734
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
1735
      });
Y
Yu Yang 已提交
1736

D
dongdaxiang 已提交
1737
  BindFleetWrapper(&m);
H
hutuxian 已提交
1738
  BindBoxHelper(&m);
W
wopeizl 已提交
1739
#ifndef _WIN32
D
dongdaxiang 已提交
1740
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1741
#endif
F
flame 已提交
1742 1743
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1744
  BindInferenceApi(&m);
1745
  BindDataset(&m);
1746 1747 1748
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
1749
}
1750
}  // namespace pybind
1751
}  // namespace paddle