pybind.cc 122.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33 34
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
35
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
37
#include "paddle/fluid/framework/io/fs.h"
38
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
39
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
40 41 42
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/op_info.h"
44
#include "paddle/fluid/framework/op_registry.h"
45
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
46
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
49
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
51
#include "paddle/fluid/framework/selected_rows.h"
52
#include "paddle/fluid/framework/tensor_util.h"
53
#include "paddle/fluid/framework/trainer.h"
54
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
55
#include "paddle/fluid/framework/version.h"
H
hong 已提交
56
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
58
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
59
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
60
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/operators/py_func_op.h"
62
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
63
#include "paddle/fluid/platform/cpu_info.h"
64
#include "paddle/fluid/platform/device_context.h"
65
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/platform/enforce.h"
67
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
68
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
69 70
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
71
#include "paddle/fluid/pybind/io.h"
72 73 74
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
75
#include "paddle/fluid/pybind/box_helper_py.h"
76
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
77
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
78
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
79
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
80
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
81
#include "paddle/fluid/pybind/generator_py.h"
82
#include "paddle/fluid/pybind/global_value_getter_setter.h"
83
#include "paddle/fluid/pybind/gloo_context_py.h"
84
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
85
#include "paddle/fluid/pybind/heter_wrapper_py.h"
86
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
87
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
88
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
89
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
90
#include "paddle/fluid/pybind/pybind_boost_headers.h"
91

92
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
93
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
94
#endif
95
#include "paddle/fluid/framework/data_type.h"
96 97
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
98
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
99
#include "paddle/fluid/pybind/tensor_py.h"
100
#include "paddle/fluid/string/to_string.h"
101 102
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
103
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
104
#endif
105
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
106
#include "paddle/fluid/platform/cuda_profiler.h"
107
#endif
Y
Yi Wang 已提交
108
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
109 110
#endif

111 112
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
113
#include "paddle/fluid/platform/npu_profiler.h"
114 115
#endif

116 117 118 119
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
120 121 122 123
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
124
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
125 126 127
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
128 129
#include "pybind11/stl.h"

130
DECLARE_bool(use_mkldnn);
131

Q
Qiao Longfei 已提交
132 133
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
134 135 136
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
137

138
namespace paddle {
139
namespace pybind {
140
bool IsCompiledWithCUDA() {
141 142 143 144 145 146 147 148 149
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
150 151 152 153 154 155
  return false;
#else
  return true;
#endif
}

156 157 158 159 160 161 162 163
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

164 165 166 167 168 169 170 171
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

172 173 174 175 176 177 178 179
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

180 181 182 183 184 185 186 187
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

188 189 190 191 192 193 194 195
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

196 197 198 199 200 201 202 203 204 205 206
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

207 208 209 210 211 212 213 214 215 216 217
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
236 237 238
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

278
bool IsCompiledWithBrpc() {
279
#ifndef PADDLE_WITH_DISTRIBUTE
280 281
  return false;
#endif
282
  return true;
283 284
}

Y
update  
Yancey1989 已提交
285
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
286
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
287 288 289 290 291 292
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
293 294 295 296 297 298 299 300 301 302
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
325 326 327
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
341 342
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
343 344
    }
    vec_res.emplace_back(
345
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
346 347 348 349 350 351 352 353 354 355 356 357
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
358 359
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
360 361 362 363 364 365 366 367 368 369 370 371
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
372 373 374
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
375 376 377 378
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
379 380
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
381 382 383 384
  }
  return vec_res;
}

385 386 387 388 389 390 391 392
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
393 394
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
395 396 397 398 399 400 401 402 403 404 405 406 407
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
408 409 410
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
411 412 413 414 415
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
416 417 418 419 420
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
421 422
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
423 424 425
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
426 427 428 429 430 431 432 433 434
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
435 436
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
437 438 439 440 441
  }

  return;
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

466 467 468 469 470 471
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
472 473 474
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
475
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
476

477 478
  AssertStaticGraphAndDygraphGradMakerNoDiff();

479
  m.doc() = "C++ core of PaddlePaddle";
480

481 482 483 484
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

485
  BindException(&m);
Y
Yu Yang 已提交
486

487 488
  m.def("set_num_threads", &platform::SetNumThreads);

489
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
490 491 492
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
493 494 495 496 497
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
498
    framework::Tensor tensor;
6
633WHU 已提交
499 500 501 502

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
503
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
504 505 506 507 508 509
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
510

511 512 513 514 515 516
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

517 518 519 520 521 522
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
523 524
  });

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
550 551 552 553 554 555
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
556
  m.def(
S
sneaxiy 已提交
557
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
558 559 560 561
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
562 563 564
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
581 582 583
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
584
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
585

586
  m.def("_set_fuse_parameter_group_size",
587
        &paddle::framework::ir::SetFuseParameterGroupsSize);
588
  m.def("_set_fuse_parameter_memory_size",
589
        &paddle::framework::ir::SetFuseParameterMemorySize);
590

S
sneaxiy 已提交
591 592 593
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

594 595
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

596 597 598
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

599
  BindImperative(&m);
600

601 602 603
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
604
      .def("_is_initialized",
605
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
606
      .def("_get_dims",
607
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
608
      .def("_set_dims",
609
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
610
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
611
           })
Y
yuyang18 已提交
612
      .def("_set_layout",
613
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
614 615
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
616
      .def("_alloc_float",
617
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
618
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
619
           })
620
      .def("_alloc_float",
621
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
622 623
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
624
      .def("_alloc_float",
625
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
626
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
627
           })
628 629 630 631
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
632
      .def("_alloc_double",
633
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
634 635
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
636
      .def("_alloc_int",
637
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
638
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
639
           })
640
      .def("_alloc_int",
641
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
642 643
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
644
      .def("_alloc_int",
645
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
646
             self.mutable_data<int>(place);
Q
qijun 已提交
647
           })
Y
yuyang18 已提交
648
      .def("_alloc_int",
649 650
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
651 652
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
653
      .def("_alloc_float",
654 655
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
656 657
             self.mutable_data<float>(place);
           })
658
      .def("_mutable_data",
659
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
660 661 662
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
663
      .def("_mutable_data",
664
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
665 666 667
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
668
      .def("_mutable_data",
669
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
670 671 672 673
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
674
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
675 676 677
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
678
      .def("_clear", &framework::Tensor::clear)
679 680 681 682 683
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
684
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
685
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
686 687
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
688
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
689
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
690 691
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
692
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
693 694
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
695 696 697 698
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
699
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
700
          LoDTensor is to be set.
701 702
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
716

717 718 719
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
736
      .def("_to_dlpack",
737
           [](framework::Tensor &self) {
6
633WHU 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
758 759 760 761
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
762 763
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
764
      .def("_layout",
765 766 767 768
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
769
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
770
      .def("__str__", [](const framework::Tensor &self) {
771 772 773 774
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
775

L
Leo Chen 已提交
776
  // TODO(cql): add reference: en_user_guide_lod_tensor
777
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
852 853 854 855 856 857 858

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
859 860

        )DOC")
861 862
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
863 864 865 866 867 868 869 870 871
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
872 873
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
874 875 876 877
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
878 879
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
880
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
881
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
882 883
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
884 885 886
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
887
      .def("set_lod",
888
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
889
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
890
             LoD new_lod;
891 892
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
893 894
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
895 896
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
897
             self.set_lod(new_lod);
S
sneaxiy 已提交
898 899 900 901 902
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
903 904 905 906
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
907 908 909 910 911 912 913 914 915 916

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
917
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
918
           )DOC")
919 920 921 922 923 924 925 926 927 928 929
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
930 931
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
932 933 934 935 936
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
937
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
938 939
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
940
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
941

L
Leo Chen 已提交
942
           For example, if recursive_sequence_lengths=[[2, 3]], which means
943
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
944
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
945 946

           Args:
L
Leo Chen 已提交
947 948 949 950
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
951 952 953 954 955 956 957 958 959 960

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
961 962
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
963
           )DOC")
964 965 966 967 968 969 970 971
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
972 973 974 975 976
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
977 978
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
979 980 981 982 983 984 985 986 987 988
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
989
           )DOC")
G
gongweibao 已提交
990
      // Set above comments of set_lod.
991 992 993 994 995 996 997 998
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
999 1000
           },
           R"DOC(
L
Leo Chen 已提交
1001 1002
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1003 1004

           Returns:
L
Leo Chen 已提交
1005
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1017 1018 1019 1020 1021 1022 1023 1024
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1025
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1026 1027

           Returns:
L
Leo Chen 已提交
1028
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1040 1041 1042 1043 1044 1045 1046
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1047
           )DOC")
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1066
#ifdef _WIN32
1067
      });
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1118

Q
qijun 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1130 1131
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1132 1133
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1134 1135
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1136
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1137 1138 1139 1140 1141 1142
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1143
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1144
      .def("rows", [](SelectedRows &self) {
1145 1146 1147 1148 1149
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1150
      });
Q
qijun 已提交
1151

1152
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1153 1154 1155

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1156
      .def(py::init<>())
1157
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1158
      .def("set_int",
1159 1160
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1161 1162 1163 1164 1165 1166 1167
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1168
      .def("get_tensor",
1169 1170
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1171 1172
           },
           py::return_value_policy::reference)
1173 1174 1175 1176
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1177 1178 1179
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1180 1181 1182 1183 1184
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1185 1186 1187
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1188 1189 1190
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1191
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1192 1193 1194 1195 1196
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1197
#endif
Y
Refine  
Yu Yang 已提交
1198 1199
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1200 1201 1202 1203
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1204 1205
             return self.GetMutable<framework::ReaderHolder>();
           },
1206 1207 1208 1209 1210
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1211

S
sneaxiy 已提交
1212
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1213

S
sneaxiy 已提交
1214
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1228
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1229 1230 1231 1232 1233 1234
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1235 1236
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1237
      .def("var",
1238
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1239
             return self.Var(name);
Y
Yu Yang 已提交
1240
           },
S
sneaxiy 已提交
1241 1242
           py::arg("name"),
           R"DOC(
1243
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1244

1245
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1246
           current scope, the variable would be created. Otherwise,
1247
           return the existing variable.
S
sneaxiy 已提交
1248 1249

           Args:
1250 1251
               name (str): the variable name.

S
sneaxiy 已提交
1252
           Returns:
1253
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1254 1255 1256 1257
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1258
           Find variable named :code:`name` in the current scope or
1259
           its parent scope. Return None if not found. 
1260

S
sneaxiy 已提交
1261 1262
           Args:
               name (str): the variable name.
1263

S
sneaxiy 已提交
1264
           Returns:
1265
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1266
           )DOC",
1267
           py::return_value_policy::reference)
1268
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1269 1270 1271 1272 1273 1274
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1275
           py::return_value_policy::reference)
S
sneaxiy 已提交
1276 1277 1278
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1279 1280
           )DOC")
      .def("_kids", &Scope::kids);
1281

S
sneaxiy 已提交
1282 1283 1284 1285 1286 1287
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1288 1289
        R"DOC(
        Create a new scope.
1290

S
sneaxiy 已提交
1291 1292 1293
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1294 1295
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1296 1297
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1298 1299
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1300 1301 1302 1303
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1304 1305
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1306 1307
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1308 1309 1310
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1311 1312
    return ret_values;
  });
1313 1314 1315 1316 1317 1318 1319 1320
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1321
              res = op_checker->GetDefaultAttrsMap();
1322 1323 1324 1325
            }
          }
          return res;
        });
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1342 1343 1344
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1345 1346 1347 1348 1349
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1350 1351 1352
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1367
  m.def("prune", [](const ProgramDesc &origin,
1368
                    const std::set<std::string> &feeded_var_names,
1369
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1370
    ProgramDesc prog_with_targets(origin);
1371

1372
    for (const auto &t : targets) {
1373
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1374
    }
1375
    proto::ProgramDesc pruned_desc;
1376 1377 1378 1379
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1380
  });
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1398 1399 1400 1401
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1402 1403 1404
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1405 1406
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1407

Q
qijun 已提交
1408
  // clang-format off
Y
Yu Yang 已提交
1409
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1410 1411
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1412
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1413 1414
                    return new paddle::platform::CPUDeviceContext();
                  })
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1439
      .def_static("create",
D
dzhwinter 已提交
1440
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1441
                      -> paddle::platform::DeviceContext* {
1442
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1443 1444 1445 1446
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1447
#else
Q
qijun 已提交
1448
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1449
#endif
C
chengduoZH 已提交
1450 1451 1452 1453
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1454
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1455 1456 1457 1458
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1459 1460 1461 1462
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1463
// clang-format on
1464
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1465 1466
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1467
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1468 1469 1470 1471 1472

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1473
    The memory of CUDAPlace with different dev_id is not accessible.
1474 1475 1476 1477 1478 1479 1480 1481
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1482 1483 1484 1485

    Examples:
        .. code-block:: python

1486 1487 1488
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1489

1490
        )DOC")
S
sneaxiy 已提交
1491 1492
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1493
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1518 1519
             new (&self) platform::CUDAPlace(dev_id);
#else
1520 1521 1522 1523 1524 1525 1526 1527 1528
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1529 1530
#endif
           })
1531
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1532 1533
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1534 1535 1536 1537
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1538
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1539
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1540 1541
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1542 1543 1544
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1545
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1546
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1593
#ifdef PADDLE_WITH_XPU
1594 1595 1596 1597 1598 1599 1600
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1601 1602 1603
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1604
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1605
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1606 1607 1608
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1609

1610
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1611
    CPUPlace is a descriptor of a device.
1612
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1613 1614 1615 1616

    Examples:
        .. code-block:: python

1617 1618
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1619

1620
        )DOC")
1621
      .def(py::init<>())
S
sneaxiy 已提交
1622 1623
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1624
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1625
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1626 1627 1628 1629
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1630
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1631
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1632

1633
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1634 1635 1636 1637 1638 1639
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1640 1641 1642 1643

    Examples:
        .. code-block:: python

1644 1645
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1646

1647
        )DOC")
S
sneaxiy 已提交
1648
      .def("__init__",
S
sneaxiy 已提交
1649
           [](platform::CUDAPinnedPlace &self) {
1650
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1651 1652 1653
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1654
#endif
S
sneaxiy 已提交
1655
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1656
           })
S
sneaxiy 已提交
1657 1658 1659 1660
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1661 1662
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1663 1664
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1665 1666 1667 1668
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1669
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1670 1671
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1714
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1729 1730
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1731 1732
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1733 1734
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1735 1736 1737 1738
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1739
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1740
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1741
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1742 1743
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1744 1745
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1746 1747
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1748 1749
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1750 1751 1752 1753
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1754 1755
      .def("gpu_device_id",
           [](platform::Place &self) {
1756
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1757
           })
1758 1759 1760 1761
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1762 1763 1764 1765
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1766 1767
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1768 1769 1770 1771
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1772 1773 1774 1775
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1776
      .def("set_place",
D
dzhwinter 已提交
1777
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1778
             self = gpu_place;
C
chengduoZH 已提交
1779
           })
1780 1781 1782 1783 1784
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1785 1786 1787 1788
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1789 1790
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1791

Y
Yu Yang 已提交
1792
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1793 1794 1795 1796 1797
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1798 1799 1800 1801 1802 1803 1804
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1805 1806
            return OpRegistry::CreateOp(desc);
          })
1807
      .def("run",
1808
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1809
              const platform::CPUPlace &place) { self.Run(scope, place); })
1810 1811 1812
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1813 1814 1815
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1816 1817
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1818
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1819 1820 1821 1822 1823
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1824 1825 1826 1827 1828 1829 1830
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1831 1832
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1833
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1834
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1835 1836 1837 1838
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1839

1840 1841 1842
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1843 1844 1845 1846 1847 1848 1849 1850 1851
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1852
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1853
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1854
      .def("close", &Executor::Close)
1855 1856
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1857 1858
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1859 1860 1861 1862
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1863
             pybind11::gil_scoped_release release;
1864 1865 1866 1867 1868 1869 1870
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1871 1872 1873
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1874
              std::map<std::string, FetchType *> *fetch_targets,
1875 1876 1877 1878 1879 1880 1881 1882
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1883
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1884 1885 1886 1887 1888 1889 1890
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1901
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1902 1903
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1904
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1905 1906
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1907
      });
S
sneaxiy 已提交
1908

D
dzhwinter 已提交
1909
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1910
  m.def("init_glog", framework::InitGLOG);
1911 1912
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1913
  m.def("init_devices", []() { framework::InitDevices(); });
1914

1915
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1916
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1917
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1918
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1919
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1920
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1921
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1922
  m.def("supports_bfloat16", SupportsBfloat16);
1923
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1924
  m.def("op_supported_infos", OpSupportedInfos);
1925
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1926
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1927 1928 1929
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1949 1950 1951 1952 1953 1954 1955
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1965
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1966 1967 1968 1969 1970
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1971

1972
  m.def("set_feed_variable", framework::SetFeedVariable);
1973 1974 1975 1976 1977
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1978
            return py::cast(BOOST_GET(LoDTensor, var));
1979
          } else {
1980
            return py::cast(BOOST_GET(LoDTensorArray, var));
1981 1982
          }
        });
1983
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1984

X
Xin Pan 已提交
1985 1986
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1987 1988 1989 1990 1991
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1992
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1993

Y
Yu Yang 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2003
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2004
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2005 2006 2007

    Examples:
        .. code-block:: python
2008

Z
Zeng Jinle 已提交
2009 2010 2011 2012
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2013 2014
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2015 2016 2017 2018 2019 2020
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2021 2022 2023 2024
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2025 2026 2027
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2028 2029 2030 2031 2032 2033
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2034 2035
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2036 2037 2038 2039 2040 2041
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2064

2065 2066 2067 2068 2069 2070 2071 2072
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2073
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2074 2075
                 res[i] = py::cast(std::move(data));
               } else {
2076
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2092
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2093 2094 2095 2096 2097 2098 2099 2100
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2101
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2102 2103 2104 2105 2106 2107 2108 2109 2110
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2111 2112
        )DOC")
      .def("_move_to_list",
2113
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2114 2115 2116 2117
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2118
                 if (data_is_lod_tensor(self[i][j])) {
2119
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2120 2121
                   tmp[j] = py::cast(std::move(var));
                 } else {
2122
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2123 2124 2125 2126 2127 2128
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2138
  m.def("op_support_gpu", OpSupportGPU);
2139
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2140
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2141

2142
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2143 2144 2145
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2146 2147 2148 2149
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2150
#endif
P
peizhilin 已提交
2151
#endif
Y
Yu Yang 已提交
2152

2153 2154
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2155
  m.def("npu_finalize", []() { platform::AclInstance::Instance().Finalize(); });
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2176 2177 2178 2179 2180 2181
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2182 2183 2184 2185
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2186
      .value("kAll", platform::ProfilerState::kAll)
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2198
  m.def("set_tracer_option", platform::SetTracerOption);
2199 2200
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2201
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2202
  m.def("reset_profiler", platform::ResetProfiler);
2203
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2204 2205 2206
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2207

2208 2209
  m.def("size_of_dtype", framework::SizeOfType);

2210
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2211 2212
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2213 2214
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2215 2216
#endif  // PADDLE_WITH_CUDA

2217 2218 2219
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2220 2221
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2222
      .def("has", &ir::Pass::Has)
2223 2224 2225
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2226
           })
2227
      .def(
2228
          "set",
2229 2230 2231
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2232 2233
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2234 2235
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2250 2251
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2252
        self.Apply(graph.get());
F
flame 已提交
2253
      });
2254

X
fix  
Xin Pan 已提交
2255 2256
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2271
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2272

Y
yuyang18 已提交
2273
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2274 2275 2276 2277
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2278 2279 2280
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2281 2282 2283
    Examples:
        .. code-block:: python

2284 2285 2286 2287 2288 2289 2290 2291 2292
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2293

2294 2295
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2296

2297
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2298 2299
          sgd_optimizer.minimize(avg_loss)

2300
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2301 2302
          exec_strategy.num_threads = 4

2303 2304 2305
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2306 2307
        )DOC");

2308 2309 2310 2311
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2312

Y
yuyang18 已提交
2313
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2314 2315 2316 2317 2318
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2319
          },
2320 2321
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2322 2323 2324 2325 2326 2327 2328
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2342
      .def_property(
2343 2344
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2345
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2346 2347 2348
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2349 2350 2351 2352 2353
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2354 2355 2356
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2357 2358
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2359 2360 2361 2362 2363 2364 2365
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2366 2367 2368 2369
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2370
                because the temp variable's shape maybe the same between two iterations.
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2381

2382 2383 2384 2385 2386 2387 2388
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2389
              )DOC")
Q
Qiao Longfei 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2411
              )DOC")
2412 2413 2414 2415 2416 2417 2418 2419
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2420 2421 2422 2423 2424
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2425

Y
yuyang18 已提交
2426
  exec_strategy.def_property(
Y
yuyang18 已提交
2427 2428 2429 2430 2431 2432 2433
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2434 2435
      });

C
chengduo 已提交
2436 2437 2438 2439
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2440 2441 2442
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2443 2444 2445
    Examples:
        .. code-block:: python

2446
            import os
2447 2448 2449 2450
            import paddle
            import paddle.static as static

            paddle.enable_static()
2451

2452 2453
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2454

2455 2456 2457 2458
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2459

2460
            build_strategy = static.BuildStrategy()
2461 2462
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2463 2464
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2465
            program = program.with_data_parallel(loss_name=loss.name,
2466 2467
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2468
)DOC");
Y
yuyang18 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2485 2486 2487 2488
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2489
            self.reduce_ = strategy;
C
chengduo 已提交
2490
          },
2491
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2492 2493
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2494
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2495 2496
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2497
                Default is 'AllReduce'.
F
flame 已提交
2498 2499 2500 2501

                Examples:
                    .. code-block:: python

2502 2503 2504 2505 2506 2507 2508
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2509
                  )DOC")
Y
yuyang18 已提交
2510 2511 2512 2513 2514
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2515 2516 2517 2518
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2519
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2520
          },
2521
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2522
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2523 2524
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2525
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2526 2527 2528 2529

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2530 2531
                        import numpy
                        import os
2532 2533 2534 2535
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2536 2537

                        use_cuda = True
2538 2539
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2540 2541

                        # NOTE: If you use CPU to run the program, you need
2542
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2543 2544 2545 2546 2547 2548
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2549
                            places = static.cpu_places()
C
chengduo 已提交
2550
                        else:
2551
                            places = static.cuda_places()
C
chengduo 已提交
2552

2553 2554 2555 2556
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2557

2558
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2559

2560
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2561
                        build_strategy.gradient_scale_strategy = \
2562 2563 2564
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2565
                                          loss_name=loss.name, build_strategy=build_strategy,
2566
                                          places=places)
C
chengduo 已提交
2567 2568 2569 2570 2571 2572

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2573 2574
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2575
                   )DOC")
Y
yuyang18 已提交
2576 2577 2578 2579
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2580 2581 2582 2583
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2584
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2585
          },
2586
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2587
                writing the SSA Graph to file in the form of graphviz.
2588
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2589 2590 2591 2592

                Examples:
                    .. code-block:: python

2593 2594 2595 2596
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2597

2598 2599
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2600
                    )DOC")
S
sneaxiy 已提交
2601 2602 2603 2604 2605 2606
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2607 2608 2609 2610
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2611 2612
            self.enable_sequential_execution_ = b;
          },
2613 2614
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2615 2616 2617 2618

                Examples:
                    .. code-block:: python

2619 2620 2621 2622 2623 2624
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2625 2626
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2627 2628 2629 2630 2631 2632
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2633 2634 2635 2636
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2637 2638
            self.remove_unnecessary_lock_ = b;
          },
2639 2640
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2641 2642 2643 2644

                Examples:
                    .. code-block:: python

2645 2646 2647 2648 2649 2650
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2651 2652
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2653 2654 2655 2656
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2657
#ifdef WIN32
2658
            PADDLE_THROW(platform::errors::Unavailable(
2659
                "Distribution mode is not supported on Windows platform."));
2660
#endif
2661 2662
            self.num_trainers_ = num_trainers;
          })
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2675 2676 2677 2678 2679 2680
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2681 2682 2683 2684 2685 2686
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2687
      .def_property("use_hierarchical_allreduce",
2688 2689 2690 2691 2692 2693
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2694
      .def_property("hierarchical_allreduce_inter_nranks",
2695 2696 2697 2698 2699 2700 2701
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2702 2703 2704 2705 2706 2707
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2708 2709 2710 2711
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2712 2713
            self.fuse_elewise_add_act_ops_ = b;
          },
2714
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2715
                to fuse elementwise_add_op and activation_op,
2716
                it may make the execution faster. Default is False.
F
flame 已提交
2717 2718 2719 2720

                Examples:
                    .. code-block:: python

2721 2722 2723 2724 2725 2726
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2727 2728
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2729 2730 2731 2732
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2733
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2734
                              platform::errors::PreconditionNotMet(
2735 2736
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2746 2747 2748 2749 2750 2751
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2752 2753
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2779 2780 2781 2782
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2783
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2784
                              platform::errors::PreconditionNotMet(
2785 2786
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2797 2798 2799 2800 2801 2802
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2803 2804
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2805 2806 2807 2808 2809 2810
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2811 2812 2813 2814
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2815 2816
            self.fuse_relu_depthwise_conv_ = b;
          },
2817
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2818 2819 2820
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2821
                Default is False.
F
flame 已提交
2822 2823 2824 2825

                Examples:
                    .. code-block:: python

2826 2827 2828 2829 2830 2831
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2832 2833
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2834 2835 2836 2837 2838 2839
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2840 2841 2842 2843
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2844 2845
                      self.fuse_broadcast_ops_ = b;
                    },
2846
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2847 2848 2849 2850
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2851 2852 2853 2854 2855
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2856 2857 2858 2859 2860 2861
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2862 2863
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2864 2865
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2866 2867
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2868 2869
                    },
                    [](BuildStrategy &self, bool b) {
2870 2871 2872 2873
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2874 2875
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2876 2877 2878 2879
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2880 2881 2882 2883
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2884 2885
            self.sync_batch_norm_ = b;
          },
2886
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2887 2888 2889
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2890 2891
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2892 2893 2894 2895

                Examples:
                    .. code-block:: python

2896 2897 2898 2899 2900 2901
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2902 2903
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2904 2905
      .def_property(
          "memory_optimize",
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2920 2921 2922
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2923 2924
            }
          },
2925
          R"DOC((bool, optional): memory opitimize aims to save total memory
2926
                consumption, set to True to enable it.
2927

2928 2929 2930
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2945 2946 2947
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2948 2949 2950
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2951
              PADDLE_THROW(platform::errors::Unavailable(
2952
                  "Distribution mode is not supported on Windows platform."));
2953 2954 2955 2956 2957
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2958 2959 2960
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2961
      .def_property(
D
dzhwinter 已提交
2962 2963 2964
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2965 2966 2967 2968
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2969 2970
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2971 2972 2973 2974
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2975
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2976 2977 2978 2979 2980 2981 2982
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2983 2984 2985 2986
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2987 2988 2989 2990 2991 2992 2993 2994 2995
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2996
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2997
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2998 2999 3000 3001 3002
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3003 3004

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3005
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3006
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3007
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3008 3009 3010 3011
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3012 3013 3014 3015 3016
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3017 3018 3019
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3020 3021 3022 3023
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3024 3025
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3026 3027 3028 3029 3030 3031 3032 3033
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3034
               return py::cast(
3035
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3036 3037
             } else {
               return py::cast(std::move(
3038
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3039
             }
3040 3041
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3042

D
dongdaxiang 已提交
3043
  BindFleetWrapper(&m);
3044
  BindIO(&m);
T
Thunderbrook 已提交
3045

T
Thunderbrook 已提交
3046 3047
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3048
#endif
T
Thunderbrook 已提交
3049
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3050
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3051
#endif
3052
  BindGlooWrapper(&m);
H
hutuxian 已提交
3053
  BindBoxHelper(&m);
H
hutuxian 已提交
3054 3055 3056
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3057
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3058
  BindNCCLWrapper(&m);
3059 3060 3061
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3062
#endif
F
flame 已提交
3063 3064
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
3065
  BindInferenceApi(&m);
3066
  BindCompatible(&m);
3067
  BindDataset(&m);
Y
yaoxuefeng 已提交
3068
  BindGenerator(&m);
3069 3070 3071
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3072
  BindAscendDevice(&m);
3073
#endif
Y
Yanghello 已提交
3074 3075 3076
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3077

T
tangwei12 已提交
3078
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3079 3080
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3081
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3082 3083
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3084 3085 3086 3087 3088
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3089 3090 3091 3092
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3093
  BindSparseShardingTools(&m);
3094
#endif
L
Luo Tao 已提交
3095
}
3096
}  // namespace pybind
3097
}  // namespace paddle