pybind.cc 123.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/executor.h"
34
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
36
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
38
#include "paddle/fluid/framework/io/fs.h"
39
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
40
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
41 42 43
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/framework/op_info.h"
45
#include "paddle/fluid/framework/op_registry.h"
46
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
47
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
49
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
50
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/selected_rows.h"
53
#include "paddle/fluid/framework/tensor_util.h"
54
#include "paddle/fluid/framework/trainer.h"
55
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
56
#include "paddle/fluid/framework/version.h"
H
hong 已提交
57
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
58
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
60
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
61
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
62
#include "paddle/fluid/operators/py_func_op.h"
63
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
64
#include "paddle/fluid/platform/cpu_info.h"
65
#include "paddle/fluid/platform/device_context.h"
66
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
67
#include "paddle/fluid/platform/enforce.h"
68
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
69
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
70 71
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
72
#include "paddle/fluid/pybind/io.h"
73 74 75
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
76
#include "paddle/fluid/pybind/box_helper_py.h"
77
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
78
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
79
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
81
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
82
#include "paddle/fluid/pybind/generator_py.h"
83
#include "paddle/fluid/pybind/global_value_getter_setter.h"
84
#include "paddle/fluid/pybind/gloo_context_py.h"
85
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
86
#include "paddle/fluid/pybind/heter_wrapper_py.h"
87
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
88
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
89
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
90
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
91
#include "paddle/fluid/pybind/pybind_boost_headers.h"
92

93
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
94
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
95
#endif
96
#include "paddle/fluid/framework/data_type.h"
97 98
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
99
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
100
#include "paddle/fluid/pybind/tensor_py.h"
101
#include "paddle/fluid/string/to_string.h"
102 103
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
104
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
105
#endif
106
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
107
#include "paddle/fluid/platform/cuda_profiler.h"
108
#endif
Y
Yi Wang 已提交
109
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
110 111
#endif

112 113
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
114
#include "paddle/fluid/platform/npu_profiler.h"
115 116
#endif

117 118 119 120
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
121 122 123 124
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
125
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
126 127 128
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
129 130
#include "pybind11/stl.h"

131
DECLARE_bool(use_mkldnn);
132

Q
Qiao Longfei 已提交
133 134
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
135 136 137
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
138

139
namespace paddle {
140
namespace pybind {
141
bool IsCompiledWithCUDA() {
142 143 144 145 146 147 148 149 150
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
151 152 153 154 155 156
  return false;
#else
  return true;
#endif
}

157 158 159 160 161 162 163 164
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

165 166 167 168 169 170 171 172
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

173 174 175 176 177 178 179 180
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

181 182 183 184 185 186 187 188
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

189 190 191 192 193 194 195 196
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

197 198 199 200 201 202 203 204 205 206 207
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

208 209 210 211 212 213 214 215 216 217 218
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
237 238 239
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

279
bool IsCompiledWithBrpc() {
280
#ifndef PADDLE_WITH_DISTRIBUTE
281 282
  return false;
#endif
283
  return true;
284 285
}

Y
update  
Yancey1989 已提交
286
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
287
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
288 289 290 291 292 293
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
294 295 296 297 298 299 300 301 302 303
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
326 327 328
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
342 343
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
344 345
    }
    vec_res.emplace_back(
346
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
347 348 349 350 351 352 353 354 355 356 357 358
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
359 360
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
361 362 363 364 365 366 367 368 369 370 371 372
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
373 374 375
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
376 377 378 379
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
380 381
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
382 383 384 385
  }
  return vec_res;
}

386 387 388 389 390 391 392 393
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
394 395
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
396 397 398 399 400 401 402 403 404 405 406 407 408
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
409 410 411
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
412 413 414 415 416
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
417 418 419 420 421
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
422 423
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
424 425 426
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
427 428 429 430 431 432 433 434 435
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
436 437
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
438 439 440 441 442
  }

  return;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

467 468 469 470 471 472
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
473 474 475
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
476
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
477

478 479
  AssertStaticGraphAndDygraphGradMakerNoDiff();

480
  m.doc() = "C++ core of PaddlePaddle";
481

482 483 484 485
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

486
  BindException(&m);
Y
Yu Yang 已提交
487

488 489
  m.def("set_num_threads", &platform::SetNumThreads);

490
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
491 492 493
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
494 495 496 497 498
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
499
    framework::Tensor tensor;
6
633WHU 已提交
500 501 502 503

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
504
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
505 506 507 508 509 510
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
511

512 513 514 515 516 517
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

518 519 520 521 522 523
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
524 525
  });

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
551 552 553 554 555 556
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
557
  m.def(
S
sneaxiy 已提交
558
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
559 560 561 562
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
563 564 565
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
582 583 584
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
585
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
586

587
  m.def("_set_fuse_parameter_group_size",
588
        &paddle::framework::ir::SetFuseParameterGroupsSize);
589
  m.def("_set_fuse_parameter_memory_size",
590
        &paddle::framework::ir::SetFuseParameterMemorySize);
591

S
sneaxiy 已提交
592 593 594
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

595 596
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

597 598 599
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

600
  BindImperative(&m);
601

602 603 604
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
605
      .def("_is_initialized",
606
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
607
      .def("_get_dims",
608
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
609
      .def("_set_dims",
610
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
611
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
612
           })
Y
yuyang18 已提交
613
      .def("_set_layout",
614
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
615 616
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
617
      .def("_alloc_float",
618
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
619
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
620
           })
621
      .def("_alloc_float",
622
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
623 624
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
625
      .def("_alloc_float",
626
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
627
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
628
           })
629 630 631 632
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
633
      .def("_alloc_double",
634
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
635 636
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
637
      .def("_alloc_int",
638
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
639
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
640
           })
641
      .def("_alloc_int",
642
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
643 644
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
645
      .def("_alloc_int",
646
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
647
             self.mutable_data<int>(place);
Q
qijun 已提交
648
           })
Y
yuyang18 已提交
649
      .def("_alloc_int",
650 651
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
652 653
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
654
      .def("_alloc_float",
655 656
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
657 658
             self.mutable_data<float>(place);
           })
659
      .def("_mutable_data",
660
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
661 662 663
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
664
      .def("_mutable_data",
665
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
666 667 668
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
669
      .def("_mutable_data",
670
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
671 672 673 674
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
675
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
676 677 678
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
679
      .def("_clear", &framework::Tensor::clear)
680 681 682 683 684
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
685
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
686
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
687 688
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
689
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
690
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
691 692
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
693
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
694 695
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
696 697 698 699
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
700
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
701
          LoDTensor is to be set.
702 703
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
717

718 719 720
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
737
      .def("_to_dlpack",
738
           [](framework::Tensor &self) {
6
633WHU 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
759 760 761 762
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
763 764
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
765
      .def("_layout",
766 767 768 769
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
770
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
771
      .def("__str__", [](const framework::Tensor &self) {
772 773 774 775
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
776

L
Leo Chen 已提交
777
  // TODO(cql): add reference: en_user_guide_lod_tensor
778
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
853 854 855 856 857 858 859

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
860 861

        )DOC")
862 863
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
864 865 866 867 868 869 870 871 872
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
873 874
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
875 876 877 878
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
879 880
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
881
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
882
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
883 884
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
885 886 887
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
888
      .def("set_lod",
889
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
890
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
891
             LoD new_lod;
892 893
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
894 895
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
896 897
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
898
             self.set_lod(new_lod);
S
sneaxiy 已提交
899 900 901 902 903
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
904 905 906 907
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
908 909 910 911 912 913 914 915 916 917

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
918
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
919
           )DOC")
920 921 922 923 924 925 926 927 928 929 930
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
931 932
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
933 934 935 936 937
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
938
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
939 940
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
941
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
942

L
Leo Chen 已提交
943
           For example, if recursive_sequence_lengths=[[2, 3]], which means
944
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
945
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
946 947

           Args:
L
Leo Chen 已提交
948 949 950 951
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
952 953 954 955 956 957 958 959 960 961

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
962 963
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
964
           )DOC")
965 966 967 968 969 970 971 972
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
973 974 975 976 977
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
978 979
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
980 981 982 983 984 985 986 987 988 989
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
990
           )DOC")
G
gongweibao 已提交
991
      // Set above comments of set_lod.
992 993 994 995 996 997 998 999
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1000 1001
           },
           R"DOC(
L
Leo Chen 已提交
1002 1003
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1004 1005

           Returns:
L
Leo Chen 已提交
1006
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1018 1019 1020 1021 1022 1023 1024 1025
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1026
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1027 1028

           Returns:
L
Leo Chen 已提交
1029
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1041 1042 1043 1044 1045 1046 1047
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1048
           )DOC")
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1067
#ifdef _WIN32
1068
      });
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1119

Q
qijun 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1131 1132
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1133 1134
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1135 1136
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1137
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1138 1139 1140 1141 1142 1143
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1144
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1145
      .def("rows", [](SelectedRows &self) {
1146 1147 1148 1149 1150
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1151
      });
Q
qijun 已提交
1152

1153
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1154 1155 1156

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1157
      .def(py::init<>())
1158
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1159
      .def("set_int",
1160 1161
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1162 1163 1164 1165 1166 1167 1168
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1169
      .def("get_tensor",
1170 1171
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1172 1173
           },
           py::return_value_policy::reference)
1174 1175 1176 1177
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1178 1179 1180
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1181 1182 1183 1184 1185
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1186 1187 1188
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1189 1190 1191
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1192
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1193 1194 1195 1196 1197
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1198
#endif
Y
Refine  
Yu Yang 已提交
1199 1200
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1201 1202 1203 1204
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1205 1206
             return self.GetMutable<framework::ReaderHolder>();
           },
1207 1208 1209 1210 1211
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1212

S
sneaxiy 已提交
1213
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1214

S
sneaxiy 已提交
1215
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1229
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1230 1231 1232 1233 1234 1235
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1236 1237
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1238
      .def("var",
1239
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1240
             return self.Var(name);
Y
Yu Yang 已提交
1241
           },
S
sneaxiy 已提交
1242 1243
           py::arg("name"),
           R"DOC(
1244
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1245

1246
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1247
           current scope, the variable would be created. Otherwise,
1248
           return the existing variable.
S
sneaxiy 已提交
1249 1250

           Args:
1251 1252
               name (str): the variable name.

S
sneaxiy 已提交
1253
           Returns:
1254
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1255 1256 1257 1258
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1259
           Find variable named :code:`name` in the current scope or
1260
           its parent scope. Return None if not found. 
1261

S
sneaxiy 已提交
1262 1263
           Args:
               name (str): the variable name.
1264

S
sneaxiy 已提交
1265
           Returns:
1266
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1267
           )DOC",
1268
           py::return_value_policy::reference)
1269
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1270 1271 1272 1273 1274 1275
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1276
           py::return_value_policy::reference)
S
sneaxiy 已提交
1277 1278 1279
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1280 1281
           )DOC")
      .def("_kids", &Scope::kids);
1282

S
sneaxiy 已提交
1283 1284 1285 1286 1287 1288
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1289 1290
        R"DOC(
        Create a new scope.
1291

S
sneaxiy 已提交
1292 1293 1294
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1295 1296
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1297 1298
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1299 1300
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1301 1302 1303 1304
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1305 1306
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1307 1308
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1309 1310 1311
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1312 1313
    return ret_values;
  });
1314 1315 1316 1317 1318 1319 1320 1321
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1322
              res = op_checker->GetDefaultAttrsMap();
1323 1324 1325 1326
            }
          }
          return res;
        });
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1343 1344 1345
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1346 1347 1348 1349 1350
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1351 1352 1353
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1368
  m.def("prune", [](const ProgramDesc &origin,
1369
                    const std::set<std::string> &feeded_var_names,
1370
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1371
    ProgramDesc prog_with_targets(origin);
1372

1373
    for (const auto &t : targets) {
1374
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1375
    }
1376
    proto::ProgramDesc pruned_desc;
1377 1378 1379 1380
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1381
  });
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1399 1400 1401 1402
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1403 1404 1405
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1406 1407
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1408

Q
qijun 已提交
1409
  // clang-format off
Y
Yu Yang 已提交
1410
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1411 1412
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1413
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1414 1415
                    return new paddle::platform::CPUDeviceContext();
                  })
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1440
      .def_static("create",
D
dzhwinter 已提交
1441
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1442
                      -> paddle::platform::DeviceContext* {
1443
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1444 1445 1446 1447
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1448
#else
Q
qijun 已提交
1449
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1450
#endif
C
chengduoZH 已提交
1451 1452 1453 1454
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1455
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1456 1457 1458 1459
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1460 1461 1462 1463
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1464
// clang-format on
1465
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1466 1467
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1468
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1469 1470 1471 1472 1473

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1474
    The memory of CUDAPlace with different dev_id is not accessible.
1475 1476 1477 1478 1479 1480 1481 1482
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1483 1484 1485 1486

    Examples:
        .. code-block:: python

1487 1488 1489
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1490

1491
        )DOC")
S
sneaxiy 已提交
1492 1493
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1494
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1519 1520
             new (&self) platform::CUDAPlace(dev_id);
#else
1521 1522 1523 1524 1525 1526 1527 1528 1529
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1530 1531
#endif
           })
1532
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1533 1534
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1535 1536 1537 1538
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1539
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1540
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1541 1542
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1543 1544 1545
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1546
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1547
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1594
#ifdef PADDLE_WITH_XPU
1595 1596 1597 1598 1599 1600 1601
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1602 1603 1604
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1605
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1606
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1607 1608 1609
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1610

1611
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1612
    CPUPlace is a descriptor of a device.
1613
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1614 1615 1616 1617

    Examples:
        .. code-block:: python

1618 1619
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1620

1621
        )DOC")
1622
      .def(py::init<>())
S
sneaxiy 已提交
1623 1624
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1625
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1626
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1627 1628 1629 1630
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1631
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1632
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1633

1634
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1635 1636 1637 1638 1639 1640
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1641 1642 1643 1644

    Examples:
        .. code-block:: python

1645 1646
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1647

1648
        )DOC")
S
sneaxiy 已提交
1649
      .def("__init__",
S
sneaxiy 已提交
1650
           [](platform::CUDAPinnedPlace &self) {
1651
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1652 1653 1654
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1655
#endif
S
sneaxiy 已提交
1656
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1657
           })
S
sneaxiy 已提交
1658 1659 1660 1661
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1662 1663
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1664 1665
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1666 1667 1668 1669
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1670
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1671 1672
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1715
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1730 1731
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1732 1733
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1734 1735
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1736 1737 1738 1739
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1740
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1741
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1742
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1743 1744
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1745 1746
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1747 1748
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1749 1750
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1751 1752 1753 1754
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1755 1756
      .def("gpu_device_id",
           [](platform::Place &self) {
1757
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1758
           })
1759 1760 1761 1762
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1763 1764 1765 1766
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1767 1768
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1769 1770 1771 1772
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1773 1774 1775 1776
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1777
      .def("set_place",
D
dzhwinter 已提交
1778
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1779
             self = gpu_place;
C
chengduoZH 已提交
1780
           })
1781 1782 1783 1784 1785
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1786 1787 1788 1789
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1790 1791
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1792

Y
Yu Yang 已提交
1793
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1794 1795 1796 1797 1798
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1799 1800 1801 1802 1803 1804 1805
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1806 1807
            return OpRegistry::CreateOp(desc);
          })
1808
      .def("run",
1809
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1810
              const platform::CPUPlace &place) { self.Run(scope, place); })
1811 1812 1813
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1814 1815 1816
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1817 1818
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1819
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1820 1821 1822 1823 1824
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1825 1826 1827 1828 1829 1830 1831
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1832 1833
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1834
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1835
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1836 1837 1838 1839
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1840

1841 1842 1843
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1844 1845 1846 1847 1848 1849 1850 1851 1852
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1853 1854
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1855
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1856
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1857
      .def("close", &Executor::Close)
1858 1859
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1860 1861
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1862 1863 1864 1865
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1866
             pybind11::gil_scoped_release release;
1867 1868 1869 1870 1871 1872 1873
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1874 1875 1876
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1877
              std::map<std::string, FetchType *> *fetch_targets,
1878 1879 1880 1881 1882 1883 1884 1885
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1886
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1887 1888 1889 1890 1891 1892 1893
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1904
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1905 1906
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1907
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1908 1909
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1910
      });
S
sneaxiy 已提交
1911

D
dzhwinter 已提交
1912
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1913
  m.def("init_glog", framework::InitGLOG);
1914 1915
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1916
  m.def("init_devices", []() { framework::InitDevices(); });
1917

1918
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1919
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1920
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1921
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1922
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1923
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1924
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1925
  m.def("supports_bfloat16", SupportsBfloat16);
1926
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1927
  m.def("op_supported_infos", OpSupportedInfos);
1928
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1929
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1930 1931 1932
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1952 1953 1954 1955 1956 1957 1958
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1968
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1969 1970 1971 1972 1973
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1974

1975
  m.def("set_feed_variable", framework::SetFeedVariable);
1976 1977 1978 1979 1980
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1981
            return py::cast(BOOST_GET(LoDTensor, var));
1982
          } else {
1983
            return py::cast(BOOST_GET(LoDTensorArray, var));
1984 1985
          }
        });
1986
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1987

X
Xin Pan 已提交
1988 1989
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1990 1991 1992 1993 1994
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1995
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1996

Y
Yu Yang 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2006
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2007
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2008 2009 2010

    Examples:
        .. code-block:: python
2011

Z
Zeng Jinle 已提交
2012 2013 2014 2015
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2016 2017
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2018 2019 2020 2021 2022 2023
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2024 2025 2026 2027
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2028 2029 2030
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2031 2032 2033 2034 2035 2036
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2037 2038
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2039 2040 2041 2042 2043 2044
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2067

2068 2069 2070 2071 2072 2073 2074 2075
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2076
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2077 2078
                 res[i] = py::cast(std::move(data));
               } else {
2079
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2095
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2096 2097 2098 2099 2100 2101 2102 2103
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2104
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2105 2106 2107 2108 2109 2110 2111 2112 2113
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2114 2115
        )DOC")
      .def("_move_to_list",
2116
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2117 2118 2119 2120
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2121
                 if (data_is_lod_tensor(self[i][j])) {
2122
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2123 2124
                   tmp[j] = py::cast(std::move(var));
                 } else {
2125
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2126 2127 2128 2129 2130 2131
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2141
  m.def("op_support_gpu", OpSupportGPU);
2142
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2143
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2144

2145
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2146 2147 2148
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2149 2150 2151 2152
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2153
#endif
P
peizhilin 已提交
2154
#endif
Y
Yu Yang 已提交
2155

2156 2157
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2158
  m.def("npu_finalize", []() { platform::AclInstance::Instance().Finalize(); });
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2179 2180 2181 2182 2183 2184
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2185 2186 2187 2188
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2189
      .value("kAll", platform::ProfilerState::kAll)
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2201
  m.def("set_tracer_option", platform::SetTracerOption);
2202 2203
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2204
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2205
  m.def("reset_profiler", platform::ResetProfiler);
2206
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2207 2208 2209
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2210

2211 2212
  m.def("size_of_dtype", framework::SizeOfType);

2213
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2214 2215
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2216 2217
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2218 2219
#endif  // PADDLE_WITH_CUDA

2220 2221 2222
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2223 2224
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2225
      .def("has", &ir::Pass::Has)
2226 2227 2228
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2229
           })
2230
      .def(
2231
          "set",
2232 2233 2234
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2235 2236
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2237 2238
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2253 2254
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2255
        self.Apply(graph.get());
F
flame 已提交
2256
      });
2257

X
fix  
Xin Pan 已提交
2258 2259
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2274
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2275

Y
yuyang18 已提交
2276
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2277 2278 2279 2280
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2281 2282 2283
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2284 2285 2286
    Examples:
        .. code-block:: python

2287 2288 2289 2290 2291 2292 2293 2294 2295
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2296

2297 2298
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2299

2300
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2301 2302
          sgd_optimizer.minimize(avg_loss)

2303
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2304 2305
          exec_strategy.num_threads = 4

2306 2307 2308
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2309 2310
        )DOC");

2311 2312 2313 2314
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2315

Y
yuyang18 已提交
2316
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2317 2318 2319 2320 2321
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2322
          },
2323 2324
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2325 2326 2327 2328 2329 2330 2331
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2345
      .def_property(
2346 2347
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2348
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2349 2350 2351
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2352 2353 2354 2355 2356
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2357 2358 2359
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2360 2361
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2362 2363 2364 2365 2366 2367 2368
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2369 2370 2371 2372
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2373
                because the temp variable's shape maybe the same between two iterations.
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2384

2385 2386 2387 2388 2389 2390 2391
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2392
              )DOC")
Q
Qiao Longfei 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2414
              )DOC")
2415 2416 2417 2418 2419 2420 2421 2422
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2423 2424 2425 2426 2427
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2428

Y
yuyang18 已提交
2429
  exec_strategy.def_property(
Y
yuyang18 已提交
2430 2431 2432 2433 2434 2435 2436
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2437 2438
      });

C
chengduo 已提交
2439 2440 2441 2442
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2443 2444 2445
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2446 2447 2448
    Examples:
        .. code-block:: python

2449
            import os
2450 2451 2452 2453
            import paddle
            import paddle.static as static

            paddle.enable_static()
2454

2455 2456
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2457

2458 2459 2460 2461
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2462

2463
            build_strategy = static.BuildStrategy()
2464 2465
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2466 2467
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2468
            program = program.with_data_parallel(loss_name=loss.name,
2469 2470
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2471
)DOC");
Y
yuyang18 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2488 2489 2490 2491
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2492
            self.reduce_ = strategy;
C
chengduo 已提交
2493
          },
2494
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2495 2496
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2497
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2498 2499
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2500
                Default is 'AllReduce'.
F
flame 已提交
2501 2502 2503 2504

                Examples:
                    .. code-block:: python

2505 2506 2507 2508 2509 2510 2511
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2512
                  )DOC")
Y
yuyang18 已提交
2513 2514 2515 2516 2517
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2518 2519 2520 2521
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2522
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2523
          },
2524
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2525
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2526 2527
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2528
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2529 2530 2531 2532

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2533 2534
                        import numpy
                        import os
2535 2536 2537 2538
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2539 2540

                        use_cuda = True
2541 2542
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2543 2544

                        # NOTE: If you use CPU to run the program, you need
2545
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2546 2547 2548 2549 2550 2551
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2552
                            places = static.cpu_places()
C
chengduo 已提交
2553
                        else:
2554
                            places = static.cuda_places()
C
chengduo 已提交
2555

2556 2557 2558 2559
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2560

2561
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2562

2563
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2564
                        build_strategy.gradient_scale_strategy = \
2565 2566 2567
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2568
                                          loss_name=loss.name, build_strategy=build_strategy,
2569
                                          places=places)
C
chengduo 已提交
2570 2571 2572 2573 2574 2575

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2576 2577
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2578
                   )DOC")
Y
yuyang18 已提交
2579 2580 2581 2582
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2583 2584 2585 2586
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2587
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2588
          },
2589
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2590
                writing the SSA Graph to file in the form of graphviz.
2591
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2592 2593 2594 2595

                Examples:
                    .. code-block:: python

2596 2597 2598 2599
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2600

2601 2602
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2603
                    )DOC")
S
sneaxiy 已提交
2604 2605 2606 2607 2608 2609
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2610 2611 2612 2613
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2614 2615
            self.enable_sequential_execution_ = b;
          },
2616 2617
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2618 2619 2620 2621

                Examples:
                    .. code-block:: python

2622 2623 2624 2625 2626 2627
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2628 2629
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2630 2631 2632 2633 2634 2635
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2636 2637 2638 2639
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2640 2641
            self.remove_unnecessary_lock_ = b;
          },
2642 2643
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2644 2645 2646 2647

                Examples:
                    .. code-block:: python

2648 2649 2650 2651 2652 2653
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2654 2655
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2656 2657 2658 2659
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2660
#ifdef WIN32
2661
            PADDLE_THROW(platform::errors::Unavailable(
2662
                "Distribution mode is not supported on Windows platform."));
2663
#endif
2664 2665
            self.num_trainers_ = num_trainers;
          })
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2678 2679 2680 2681 2682 2683
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2684 2685 2686 2687 2688 2689
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2690
      .def_property("use_hierarchical_allreduce",
2691 2692 2693 2694 2695 2696
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2697
      .def_property("hierarchical_allreduce_inter_nranks",
2698 2699 2700 2701 2702 2703 2704
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2705 2706 2707 2708 2709 2710
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2711 2712 2713 2714
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2715 2716
            self.fuse_elewise_add_act_ops_ = b;
          },
2717
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2718
                to fuse elementwise_add_op and activation_op,
2719
                it may make the execution faster. Default is False.
F
flame 已提交
2720 2721 2722 2723

                Examples:
                    .. code-block:: python

2724 2725 2726 2727 2728 2729
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2730 2731
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2732 2733 2734 2735
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2736
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2737
                              platform::errors::PreconditionNotMet(
2738 2739
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2749 2750 2751 2752 2753 2754
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2755 2756
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2782 2783 2784 2785
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2786
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2787
                              platform::errors::PreconditionNotMet(
2788 2789
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2800 2801 2802 2803 2804 2805
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2806 2807
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2808 2809 2810 2811 2812 2813
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2814 2815 2816 2817
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2818 2819
            self.fuse_relu_depthwise_conv_ = b;
          },
2820
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2821 2822 2823
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2824
                Default is False.
F
flame 已提交
2825 2826 2827 2828

                Examples:
                    .. code-block:: python

2829 2830 2831 2832 2833 2834
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2835 2836
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2837 2838 2839 2840 2841 2842
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2843 2844 2845 2846
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2847 2848
                      self.fuse_broadcast_ops_ = b;
                    },
2849
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2850 2851 2852 2853
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2854 2855 2856 2857 2858
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2859 2860 2861 2862 2863 2864
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2865 2866
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2867 2868
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2869 2870
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2871 2872
                    },
                    [](BuildStrategy &self, bool b) {
2873 2874 2875 2876
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2877 2878
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2879 2880 2881 2882
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2883 2884 2885 2886
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2887 2888
            self.sync_batch_norm_ = b;
          },
2889
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2890 2891 2892
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2893 2894
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2895 2896 2897 2898

                Examples:
                    .. code-block:: python

2899 2900 2901 2902 2903 2904
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2905 2906
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2907 2908
      .def_property(
          "memory_optimize",
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2923 2924 2925
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2926 2927
            }
          },
2928
          R"DOC((bool, optional): memory opitimize aims to save total memory
2929
                consumption, set to True to enable it.
2930

2931 2932 2933
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2948 2949 2950
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2951 2952 2953
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2954
              PADDLE_THROW(platform::errors::Unavailable(
2955
                  "Distribution mode is not supported on Windows platform."));
2956 2957 2958 2959 2960
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2961 2962 2963
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2964
      .def_property(
D
dzhwinter 已提交
2965 2966 2967
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2968 2969 2970 2971
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2972 2973
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2974 2975 2976 2977
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2978
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2979 2980 2981 2982 2983 2984 2985
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2986 2987 2988 2989
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2990 2991 2992 2993 2994 2995 2996 2997 2998
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2999
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3000
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3001 3002 3003 3004 3005
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3006 3007

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3008
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3009
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3010
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3011 3012 3013 3014
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3015 3016 3017 3018 3019
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3020 3021 3022
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3023 3024 3025 3026
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3027 3028
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3029 3030 3031 3032 3033 3034 3035 3036
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3037
               return py::cast(
3038
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3039 3040
             } else {
               return py::cast(std::move(
3041
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3042
             }
3043 3044
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3045

D
dongdaxiang 已提交
3046
  BindFleetWrapper(&m);
3047
  BindIO(&m);
T
Thunderbrook 已提交
3048

T
Thunderbrook 已提交
3049 3050
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3051
#endif
T
Thunderbrook 已提交
3052
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3053
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3054
#endif
3055
  BindGlooWrapper(&m);
H
hutuxian 已提交
3056
  BindBoxHelper(&m);
H
hutuxian 已提交
3057 3058 3059
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3060
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3061
  BindNCCLWrapper(&m);
3062 3063 3064
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3065
#endif
F
flame 已提交
3066 3067
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
3068
  BindInferenceApi(&m);
3069
  BindCompatible(&m);
3070
  BindDataset(&m);
Y
yaoxuefeng 已提交
3071
  BindGenerator(&m);
3072 3073 3074
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3075
  BindAscendDevice(&m);
3076
#endif
Y
Yanghello 已提交
3077 3078 3079
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3080

T
tangwei12 已提交
3081
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3082 3083
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3084
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3085 3086
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3087 3088 3089 3090 3091
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3092 3093 3094 3095
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3096
  BindSparseShardingTools(&m);
3097
#endif
L
Luo Tao 已提交
3098
}
3099
}  // namespace pybind
3100
}  // namespace paddle