pybind.cc 134.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46 47
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
48
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/op_info.h"
50
#include "paddle/fluid/framework/op_registry.h"
51
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
52
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/selected_rows.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/fluid/pybind/io.h"
79
#include "paddle/utils/none.h"
80 81 82
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
83
#include "paddle/fluid/pybind/bind_cost_model.h"
H
hutuxian 已提交
84
#include "paddle/fluid/pybind/box_helper_py.h"
85
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
86
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
87
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
88
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
89
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
90
#include "paddle/fluid/pybind/generator_py.h"
91
#include "paddle/fluid/pybind/global_value_getter_setter.h"
92
#include "paddle/fluid/pybind/gloo_context_py.h"
93
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
94
#include "paddle/fluid/pybind/heter_wrapper_py.h"
95
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
96
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
97
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
98
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
99
#include "paddle/fluid/pybind/pybind_boost_headers.h"
100

101
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
102
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
103
#endif
104
#include "paddle/fluid/framework/data_type.h"
105 106
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
107
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
108
#include "paddle/fluid/pybind/tensor_py.h"
109
#include "paddle/fluid/string/to_string.h"
110 111
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
112
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
113
#endif
114
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
115
#include "paddle/fluid/platform/cuda_profiler.h"
116
#endif
Y
Yi Wang 已提交
117
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
118 119
#endif

120 121
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
122
#include "paddle/fluid/platform/npu_profiler.h"
123 124
#endif

125
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
126
#include "paddle/fluid/platform/xpu/xpu_info.h"
127 128
#endif

129 130
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"

Y
Yanghello 已提交
131 132 133 134
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
135
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
136 137 138
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
139 140
#include "pybind11/stl.h"

141
DECLARE_bool(use_mkldnn);
142

Q
Qiao Longfei 已提交
143 144
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
145 146 147
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
148

149
namespace paddle {
150
namespace pybind {
151
bool IsCompiledWithCUDA() {
152 153 154 155 156 157 158 159 160
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
161 162 163 164 165 166
  return false;
#else
  return true;
#endif
}

167 168 169 170 171 172 173 174
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

175 176 177 178 179 180 181 182
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

183 184 185 186 187 188 189 190
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

191 192 193 194 195 196 197 198
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

199 200 201 202 203 204 205 206
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

207 208 209 210 211 212 213 214 215 216 217
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

218 219 220 221 222 223 224 225 226 227 228
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
247 248 249
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
250
      {"NPU", &platform::is_npu_place},
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

290
bool IsCompiledWithBrpc() {
291
#ifndef PADDLE_WITH_DISTRIBUTE
292 293
  return false;
#endif
294
  return true;
295 296
}

Y
update  
Yancey1989 已提交
297
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
298
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
299 300 301 302 303 304
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
305 306 307 308 309 310 311 312 313 314
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
337 338 339
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
353 354
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
355 356
    }
    vec_res.emplace_back(
357
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
358 359 360 361 362 363 364 365 366 367 368 369
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
370 371
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
372 373 374 375 376 377 378 379 380 381 382 383
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
384 385 386
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
387 388 389 390
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
391 392
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
393 394 395 396
  }
  return vec_res;
}

397 398 399 400 401 402 403 404
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
405 406
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
407 408 409 410 411 412 413 414 415 416 417 418 419
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
420 421 422
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
423 424 425 426 427
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
428 429 430 431 432
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
433 434
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
435 436 437
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
438 439 440 441 442 443 444 445 446
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
447 448
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
449 450 451 452 453
  }

  return;
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
  PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclGetVersion(&ver));
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

491 492 493 494 495 496
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

497 498
  BindCudaStream(&m);

Y
Yu Yang 已提交
499 500 501
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
502
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
503

504 505
  AssertStaticGraphAndDygraphGradMakerNoDiff();

506
  m.doc() = "C++ core of PaddlePaddle";
507

508 509 510 511
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

512
  BindException(&m);
Y
Yu Yang 已提交
513

514 515
  m.def("set_num_threads", &platform::SetNumThreads);

516 517
  m.def("disable_signal_handler", &DisableSignalHandler);

518
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
519 520 521
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

Z
Zeng Jinle 已提交
522 523 524 525
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

526 527 528 529 530 531 532 533 534 535 536 537 538
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
      .def("reset", &platform::CUDAGraph::Reset);
#endif

Z
Zeng Jinle 已提交
539 540 541 542
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
543 544 545
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
546 547 548 549 550 551

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
552 553
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
554
    framework::Tensor tensor;
6
633WHU 已提交
555

S
Siming Dai 已提交
556
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
557 558
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
559
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
560
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
561 562 563 564 565
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
566

567 568 569 570 571 572
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

573 574 575 576 577 578
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
579 580
  });

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
606 607 608 609 610 611
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
612
  m.def(
S
sneaxiy 已提交
613
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
614 615 616 617
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
618 619 620
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
637 638 639
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
640
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
641

642
  m.def("_set_fuse_parameter_group_size",
643
        &paddle::framework::ir::SetFuseParameterGroupsSize);
644
  m.def("_set_fuse_parameter_memory_size",
645
        &paddle::framework::ir::SetFuseParameterMemorySize);
646

S
sneaxiy 已提交
647 648 649
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

650 651
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

652 653 654
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

655
  BindImperative(&m);
656

657 658 659
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
660
      .def("_is_initialized",
661
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
662
      .def("_get_dims",
663
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
664
      .def("_set_dims",
665
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
666
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
667
           })
Y
yuyang18 已提交
668
      .def("_set_layout",
669
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
670 671
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
672
      .def("_alloc_float",
673
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
674
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
675
           })
676
      .def("_alloc_float",
677
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
678 679
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
680
      .def("_alloc_float",
681
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
682
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
683
           })
684 685 686 687
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
688
      .def("_alloc_double",
689
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
690 691
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
692
      .def("_alloc_int",
693
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
694
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
695
           })
696
      .def("_alloc_int",
697
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
698 699
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
700
      .def("_alloc_int",
701
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
702
             self.mutable_data<int>(place);
Q
qijun 已提交
703
           })
Y
yuyang18 已提交
704
      .def("_alloc_int",
705 706
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
707 708
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
709
      .def("_alloc_float",
710 711
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
712 713
             self.mutable_data<float>(place);
           })
714
      .def("_mutable_data",
715
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
716 717 718
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
719
      .def("_mutable_data",
720
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
721 722 723
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
724
      .def("_mutable_data",
725
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
726 727 728 729
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
730
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
731 732 733
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
734
      .def("_clear", &framework::Tensor::clear)
735 736 737 738 739
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
740 741 742 743 744 745 746 747 748 749 750
      .def("_copy_from",
           [](framework::Tensor &self, const framework::Tensor &other,
              const platform::Place &place, int64_t batch_size) {
             if (batch_size < 0) {
               framework::TensorCopy(other, place, &self);
             } else {
               auto sliced = other.Slice(0, batch_size);
               framework::TensorCopy(sliced, place, &self);
             }
           },
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
751
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
752
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
753 754
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
755
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
756
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
757 758
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
759
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
760 761
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
762 763 764 765
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
766
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
767
          LoDTensor is to be set.
768 769
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
783

784 785 786
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
803
      .def("_to_dlpack",
804
           [](framework::Tensor &self) {
6
633WHU 已提交
805
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
806
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
824 825 826 827
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
828 829
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
830
      .def("_layout",
831 832 833 834
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
835
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
836
      .def("__str__", [](const framework::Tensor &self) {
837 838 839 840
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
841

L
Leo Chen 已提交
842
  // TODO(cql): add reference: en_user_guide_lod_tensor
843
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
918 919 920 921 922 923 924

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
925 926

        )DOC")
927 928
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
929 930 931 932 933 934 935 936 937
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
938 939
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
940 941 942 943
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
944 945
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
946
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
947
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
948 949
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
950 951 952
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
953
      .def("set_lod",
954
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
955
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
956
             LoD new_lod;
957 958
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
959 960
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
961 962
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
963
             self.set_lod(new_lod);
S
sneaxiy 已提交
964 965 966 967 968
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
969 970 971 972
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
973 974 975 976 977 978 979 980 981 982

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
983
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
984
           )DOC")
985 986 987 988 989 990 991 992 993 994 995
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
996 997
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
998 999 1000 1001 1002
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1003
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1004 1005
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
1006
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
1007

L
Leo Chen 已提交
1008
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1009
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1010
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1011 1012

           Args:
L
Leo Chen 已提交
1013 1014 1015 1016
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1027 1028
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1029
           )DOC")
1030 1031 1032 1033 1034 1035 1036 1037
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1038 1039 1040 1041 1042
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1043 1044
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1055
           )DOC")
G
gongweibao 已提交
1056
      // Set above comments of set_lod.
1057 1058 1059 1060 1061 1062 1063 1064
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1065 1066
           },
           R"DOC(
L
Leo Chen 已提交
1067 1068
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1069 1070

           Returns:
L
Leo Chen 已提交
1071
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1083 1084 1085 1086 1087 1088 1089 1090
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1091
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1092 1093

           Returns:
L
Leo Chen 已提交
1094
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1106 1107 1108 1109 1110 1111 1112
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1113
           )DOC")
1114 1115 1116 1117 1118 1119
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
L
Leo Chen 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128
      .def("_as_type",
           [](const LoDTensor &self,
              paddle::framework::proto::VarType::Type type) {
             LoDTensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1141
#ifdef _WIN32
1142
      });
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1193

Q
qijun 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1205 1206
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1207 1208
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1209 1210
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1211
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1212 1213 1214 1215 1216 1217
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1218
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1219
      .def("rows", [](SelectedRows &self) {
1220 1221 1222 1223 1224
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1225
      });
Q
qijun 已提交
1226

1227
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1228 1229 1230

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1231
      .def(py::init<>())
1232
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1233
      .def("set_int",
1234 1235
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1236 1237 1238 1239 1240 1241 1242
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1243
      .def("get_tensor",
1244 1245
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1246 1247
           },
           py::return_value_policy::reference)
1248 1249 1250 1251
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1264 1265 1266
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1267 1268 1269 1270 1271
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1272 1273 1274
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1275 1276 1277
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1278
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1279 1280 1281 1282 1283
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1284
#endif
Y
Refine  
Yu Yang 已提交
1285 1286
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1287 1288 1289 1290
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1291 1292
             return self.GetMutable<framework::ReaderHolder>();
           },
1293
           py::return_value_policy::reference)
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1305 1306 1307 1308
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1309

S
sneaxiy 已提交
1310
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1311

S
sneaxiy 已提交
1312
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1326
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1327 1328 1329 1330 1331 1332
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1333 1334
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1335
      .def("var",
1336
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1337
             return self.Var(name);
Y
Yu Yang 已提交
1338
           },
S
sneaxiy 已提交
1339 1340
           py::arg("name"),
           R"DOC(
1341
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1342

1343
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1344
           current scope, the variable would be created. Otherwise,
1345
           return the existing variable.
S
sneaxiy 已提交
1346 1347

           Args:
1348 1349
               name (str): the variable name.

S
sneaxiy 已提交
1350
           Returns:
1351
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1352 1353 1354 1355
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1356
           Find variable named :code:`name` in the current scope or
1357
           its parent scope. Return None if not found. 
1358

S
sneaxiy 已提交
1359 1360
           Args:
               name (str): the variable name.
1361

S
sneaxiy 已提交
1362
           Returns:
1363
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1364
           )DOC",
1365
           py::return_value_policy::reference)
1366
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1367 1368 1369 1370 1371 1372
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1373
           py::return_value_policy::reference)
S
sneaxiy 已提交
1374 1375 1376
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1377 1378
           )DOC")
      .def("_kids", &Scope::kids);
1379

S
sneaxiy 已提交
1380 1381 1382 1383 1384 1385
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1386 1387
        R"DOC(
        Create a new scope.
1388

S
sneaxiy 已提交
1389 1390 1391
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1392 1393
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1394 1395
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1396 1397
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1398 1399 1400 1401
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1402 1403
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1404 1405
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1406 1407 1408
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1409 1410
    return ret_values;
  });
1411 1412 1413 1414 1415 1416 1417 1418
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1419
              res = op_checker->GetDefaultAttrsMap();
1420 1421 1422 1423
            }
          }
          return res;
        });
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1440 1441 1442
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1443 1444 1445 1446 1447
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1448 1449 1450
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1465
  m.def("prune", [](const ProgramDesc &origin,
1466
                    const std::set<std::string> &feeded_var_names,
1467
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1468
    ProgramDesc prog_with_targets(origin);
1469

1470
    for (const auto &t : targets) {
1471
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1472
    }
1473
    proto::ProgramDesc pruned_desc;
1474 1475 1476 1477
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1478
  });
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1496 1497 1498 1499
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1500 1501 1502
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1503 1504
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1505

Q
qijun 已提交
1506
  // clang-format off
Y
Yu Yang 已提交
1507
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1508 1509
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1510
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1511 1512
                    return new paddle::platform::CPUDeviceContext();
                  })
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1537
      .def_static("create",
D
dzhwinter 已提交
1538
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1539
                      -> paddle::platform::DeviceContext* {
1540
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1541 1542 1543 1544
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1545
#else
Q
qijun 已提交
1546
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1547
#endif
C
chengduoZH 已提交
1548 1549 1550 1551
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1552
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1553 1554 1555 1556
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1557 1558 1559 1560
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1561
// clang-format on
1562
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1563 1564
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1565
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1566 1567 1568 1569 1570

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1571
    The memory of CUDAPlace with different dev_id is not accessible.
1572 1573 1574 1575 1576 1577 1578 1579
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1580 1581 1582 1583

    Examples:
        .. code-block:: python

1584 1585 1586
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1587

1588
        )DOC")
S
sneaxiy 已提交
1589 1590
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1591
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1616 1617
             new (&self) platform::CUDAPlace(dev_id);
#else
1618 1619 1620 1621 1622 1623 1624 1625 1626
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1627 1628
#endif
           })
1629
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1630 1631
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1632 1633 1634 1635
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1636
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1637
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1638 1639
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1640 1641 1642
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1643
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1644
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1645

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1691
#ifdef PADDLE_WITH_XPU
1692 1693 1694 1695 1696 1697 1698
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1699 1700 1701
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1702
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1703
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1704
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1705 1706 1707 1708
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1709
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1710 1711
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
1712
#endif
1713

1714
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1715
    CPUPlace is a descriptor of a device.
1716
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1717 1718 1719 1720

    Examples:
        .. code-block:: python

1721 1722
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1723

1724
        )DOC")
1725
      .def(py::init<>())
S
sneaxiy 已提交
1726 1727
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1728
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1729
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1730 1731 1732 1733
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1734
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1735
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1736

1737
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1738 1739 1740 1741 1742 1743
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1744 1745 1746 1747

    Examples:
        .. code-block:: python

1748 1749
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1750

1751
        )DOC")
S
sneaxiy 已提交
1752
      .def("__init__",
S
sneaxiy 已提交
1753
           [](platform::CUDAPinnedPlace &self) {
1754
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1755 1756 1757
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1758
#endif
S
sneaxiy 已提交
1759
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1760
           })
S
sneaxiy 已提交
1761 1762 1763 1764
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1765 1766
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1767 1768
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1769 1770 1771 1772
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1773
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1774 1775
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1818
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1833 1834
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1835 1836
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1837 1838
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1839 1840 1841 1842
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1843
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1844
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1845
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1846 1847
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1848 1849
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1850 1851
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1852 1853
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1854 1855 1856 1857
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1858 1859
      .def("gpu_device_id",
           [](platform::Place &self) {
1860
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1861
           })
1862 1863 1864 1865
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1866 1867 1868 1869
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1870 1871
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1872 1873 1874 1875
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1876 1877 1878 1879
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1880
      .def("set_place",
D
dzhwinter 已提交
1881
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1882
             self = gpu_place;
C
chengduoZH 已提交
1883
           })
1884 1885 1886 1887 1888
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1889 1890 1891 1892
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1893 1894
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1895

Y
Yu Yang 已提交
1896
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
1911
      .def("run",
1912
           [](OperatorBase &self, const Scope &scope,
1913 1914 1915 1916
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1917 1918
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1919 1920 1921 1922
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1923 1924
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1925 1926 1927 1928
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1929 1930
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1931 1932 1933 1934
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1935 1936 1937
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
1938
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1939 1940
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1941 1942 1943 1944 1945 1946 1947
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1948 1949
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1950
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1951
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1952 1953 1954 1955
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1956

1957 1958 1959
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1960 1961 1962 1963 1964 1965 1966 1967 1968
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

1969 1970
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1971
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1972
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1973
      .def("close", &Executor::Close)
1974 1975
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1976 1977
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1978 1979 1980 1981
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1982
             pybind11::gil_scoped_release release;
1983 1984 1985 1986 1987 1988 1989
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1990 1991 1992
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1993
              std::map<std::string, FetchType *> *fetch_targets,
1994 1995 1996 1997 1998 1999 2000 2001
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2002
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2003 2004 2005 2006 2007 2008 2009
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2020
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2021 2022
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2023
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2024 2025
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2026
      });
S
sneaxiy 已提交
2027

2028 2029 2030 2031
  py::class_<framework::CostInfo>(m, "CostInfo")
      .def(py::init<>())
      .def("total_time", [](CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes",
2032
           [](CostInfo &self) { return self.device_memory_bytes; });
2033

2034
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2035 2036 2037
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2038
           [](StandaloneExecutor &self,
H
hong 已提交
2039
              const std::unordered_map<std::string, py::array> &input_dict,
2040 2041 2042
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;
H
hong 已提交
2043 2044 2045 2046 2047

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2048 2049
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2050 2051
             }

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, framework::Tensor>
                  &input_dict,
              std::vector<std::string> fetch_names) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2072 2073 2074 2075
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2076
             }
W
wanghuancoder 已提交
2077
             return py::cast(std::move(ret));
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
           })
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
             std::vector<framework::Tensor> feed_tensors;
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

             CostInfo cost_info;
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2099 2100
           });

D
dzhwinter 已提交
2101
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2102
  m.def("init_glog", framework::InitGLOG);
2103 2104
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2105
  m.def("init_devices", []() { framework::InitDevices(); });
2106

2107
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2108
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2109
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2110
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2111
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2112
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2113
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2114
  m.def("supports_bfloat16", SupportsBfloat16);
2115
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2116
  m.def("op_supported_infos", OpSupportedInfos);
2117
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2118
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2119 2120 2121
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2141 2142 2143 2144 2145 2146 2147
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2157
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2158 2159 2160 2161 2162
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2163

S
Steffy-zxf 已提交
2164 2165 2166 2167 2168 2169
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2170 2171 2172 2173 2174
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2175
            return py::cast(BOOST_GET(LoDTensor, var));
2176
          } else {
2177
            return py::cast(BOOST_GET(LoDTensorArray, var));
2178 2179
          }
        });
2180
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2181

X
Xin Pan 已提交
2182 2183
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2184 2185 2186 2187
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2188
  BindCostModel(&m);
2189
  BindConstValue(&m);
2190
  BindGlobalValueGetterSetter(&m);
2191
  BindProcessMeshDesc(&m);
Y
Yu Yang 已提交
2192

Y
Yu Yang 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2202
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2203
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2204 2205 2206

    Examples:
        .. code-block:: python
2207

Z
Zeng Jinle 已提交
2208 2209 2210 2211
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2212 2213
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2214 2215 2216 2217 2218 2219
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2220 2221 2222 2223
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2224 2225 2226
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2227 2228 2229 2230 2231 2232
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2233 2234
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2235 2236 2237 2238 2239 2240
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2263

2264 2265 2266 2267 2268 2269 2270 2271
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2272
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2273 2274
                 res[i] = py::cast(std::move(data));
               } else {
2275
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2291
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2292 2293 2294 2295 2296 2297 2298 2299
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2300
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2301 2302 2303 2304 2305 2306 2307 2308 2309
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2310 2311
        )DOC")
      .def("_move_to_list",
2312
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2313 2314 2315 2316
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2317
                 if (data_is_lod_tensor(self[i][j])) {
2318
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2319 2320
                   tmp[j] = py::cast(std::move(var));
                 } else {
2321
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2322 2323 2324 2325 2326 2327
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2337
  m.def("op_support_gpu", OpSupportGPU);
2338
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2339
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
2340 2341 2342 2343 2344 2345 2346 2347
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
      .def_readonly("name", &gpuDeviceProp::name)
      .def_readonly("major", &gpuDeviceProp::major)
      .def_readonly("minor", &gpuDeviceProp::minor)
      .def_readonly("is_multi_gpu_board", &gpuDeviceProp::isMultiGpuBoard)
      .def_readonly("is_integrated", &gpuDeviceProp::integrated)
      .def_readonly("multi_processor_count",
                    &gpuDeviceProp::multiProcessorCount)
      .def_readonly("total_memory", &gpuDeviceProp::totalGlobalMem)
      .def("__repr__", [](const gpuDeviceProp &gpu_device_prop) {
        std::ostringstream stream;
        stream << "_gpuDeviceProperties(name='" << gpu_device_prop.name
               << "', major=" << gpu_device_prop.major
               << ", minor=" << gpu_device_prop.minor << ", total_memory="
               << gpu_device_prop.totalGlobalMem / (1024 * 1024)
               << "MB, multi_processor_count="
               << gpu_device_prop.multiProcessorCount << ")";
        return stream.str();
      });
D
dangqingqing 已提交
2373

2374
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2375 2376 2377
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2378 2379 2380 2381
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2382
#endif
P
peizhilin 已提交
2383
#endif
Y
Yu Yang 已提交
2384

2385 2386
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2387 2388 2389 2390
  m.def("npu_finalize", []() {
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2391
      platform::NPUDeviceGuard guard(devices[i]);
2392 2393 2394 2395
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2416 2417 2418 2419 2420 2421
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2422 2423 2424 2425
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2426
      .value("kAll", platform::ProfilerState::kAll)
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2438
  m.def("set_tracer_option", platform::SetTracerOption);
2439 2440
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2441
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2442
  m.def("reset_profiler", platform::ResetProfiler);
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
  m.def("register_pass", [](const std::string &pass_type,
                            const py::object &callable) {
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2458
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2459 2460 2461
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2462

2463 2464
  m.def("size_of_dtype", framework::SizeOfType);

2465
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2466 2467
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2468 2469
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2470
#endif  // PADDLE_WITH_CUDA
2471 2472
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2473

2474 2475 2476
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2477 2478
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2479
      .def("has", &ir::Pass::Has)
2480 2481 2482
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2483
           })
2484
      .def(
2485
          "set",
2486 2487 2488
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2489 2490
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2491 2492
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2507 2508
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2509
        self.Apply(graph.get());
F
flame 已提交
2510
      });
2511

X
fix  
Xin Pan 已提交
2512 2513
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2528
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2529
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2530 2531 2532 2533
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2534 2535 2536
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2537 2538 2539
    Examples:
        .. code-block:: python

2540 2541 2542 2543 2544 2545 2546 2547 2548
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2549

2550 2551
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2552

2553
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2554 2555
          sgd_optimizer.minimize(avg_loss)

2556
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2557 2558
          exec_strategy.num_threads = 4

2559 2560 2561
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2562 2563
        )DOC");

2564 2565 2566 2567
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2568

Y
yuyang18 已提交
2569
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2570 2571 2572 2573 2574
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2575
          },
2576 2577
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2578 2579 2580 2581 2582 2583 2584
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2598
      .def_property(
2599 2600
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2601
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2602 2603 2604
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2605 2606 2607 2608 2609
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2610 2611 2612
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2613 2614
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2615 2616 2617 2618 2619 2620 2621
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2622 2623 2624 2625
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2626
                because the temp variable's shape maybe the same between two iterations.
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2637

2638 2639 2640 2641 2642 2643 2644
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2645
              )DOC")
Q
Qiao Longfei 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2667
              )DOC")
2668 2669 2670 2671 2672 2673 2674 2675
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2676 2677 2678 2679 2680
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2681

Y
yuyang18 已提交
2682
  exec_strategy.def_property(
Y
yuyang18 已提交
2683 2684 2685 2686 2687 2688 2689
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2690 2691
      });

C
chengduo 已提交
2692 2693 2694 2695
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2696 2697 2698
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2699 2700 2701
    Examples:
        .. code-block:: python

2702
            import os
2703 2704 2705 2706
            import paddle
            import paddle.static as static

            paddle.enable_static()
2707

2708 2709
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2710

2711 2712 2713 2714
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2715

2716
            build_strategy = static.BuildStrategy()
2717 2718
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2719 2720
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2721
            program = program.with_data_parallel(loss_name=loss.name,
2722 2723
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2724
)DOC");
Y
yuyang18 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2737
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2738 2739 2740 2741
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2742 2743 2744 2745
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2746
            self.reduce_ = strategy;
C
chengduo 已提交
2747
          },
2748
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2749 2750
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2751
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2752 2753
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2754
                Default is 'AllReduce'.
F
flame 已提交
2755 2756 2757 2758

                Examples:
                    .. code-block:: python

2759 2760 2761 2762 2763 2764 2765
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2766
                  )DOC")
Y
yuyang18 已提交
2767 2768 2769 2770 2771
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2772 2773 2774 2775
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2776
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2777
          },
2778
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2779
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2780 2781
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2782
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2783 2784 2785 2786

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2787 2788
                        import numpy
                        import os
2789 2790 2791 2792
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2793 2794

                        use_cuda = True
2795 2796
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2797 2798

                        # NOTE: If you use CPU to run the program, you need
2799
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2800 2801 2802 2803 2804 2805
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2806
                            places = static.cpu_places()
C
chengduo 已提交
2807
                        else:
2808
                            places = static.cuda_places()
C
chengduo 已提交
2809

2810 2811 2812 2813
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2814

2815
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2816

2817
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2818
                        build_strategy.gradient_scale_strategy = \
2819 2820 2821
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2822
                                          loss_name=loss.name, build_strategy=build_strategy,
2823
                                          places=places)
C
chengduo 已提交
2824 2825 2826 2827 2828 2829

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2830 2831
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2832
                   )DOC")
Y
yuyang18 已提交
2833 2834 2835 2836
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2837 2838 2839 2840
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2841
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2842
          },
2843
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2844
                writing the SSA Graph to file in the form of graphviz.
2845
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2846 2847 2848 2849

                Examples:
                    .. code-block:: python

2850 2851 2852 2853
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2854

2855 2856
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2857
                    )DOC")
S
sneaxiy 已提交
2858 2859 2860 2861 2862 2863
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2864 2865 2866 2867
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2868 2869
            self.enable_sequential_execution_ = b;
          },
2870 2871
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2872 2873 2874 2875

                Examples:
                    .. code-block:: python

2876 2877 2878 2879 2880 2881
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2882 2883
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2884 2885 2886 2887 2888 2889
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2890 2891 2892 2893
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2894 2895
            self.remove_unnecessary_lock_ = b;
          },
2896 2897
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2898 2899 2900 2901

                Examples:
                    .. code-block:: python

2902 2903 2904 2905 2906 2907
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2908 2909
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2910 2911 2912 2913
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2914
#ifdef WIN32
2915
            PADDLE_THROW(platform::errors::Unavailable(
2916
                "Distribution mode is not supported on Windows platform."));
2917
#endif
2918 2919
            self.num_trainers_ = num_trainers;
          })
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2932 2933 2934 2935 2936 2937
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2938 2939 2940 2941 2942 2943
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2944
      .def_property("use_hierarchical_allreduce",
2945 2946 2947 2948 2949 2950
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2951
      .def_property("hierarchical_allreduce_inter_nranks",
2952 2953 2954 2955 2956 2957 2958
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2959 2960 2961 2962 2963 2964
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2965 2966 2967 2968
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2969 2970
            self.fuse_elewise_add_act_ops_ = b;
          },
2971
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2972
                to fuse elementwise_add_op and activation_op,
2973
                it may make the execution faster. Default is False.
F
flame 已提交
2974 2975 2976 2977

                Examples:
                    .. code-block:: python

2978 2979 2980 2981 2982 2983
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2984 2985
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2986 2987 2988 2989
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2990
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2991
                              platform::errors::PreconditionNotMet(
2992 2993
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3003 3004 3005 3006 3007 3008
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3009 3010
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3036 3037 3038 3039
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3040
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3041
                              platform::errors::PreconditionNotMet(
3042 3043
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3054 3055 3056 3057 3058 3059
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3060 3061
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3062 3063 3064 3065 3066 3067
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3068 3069 3070 3071
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3072 3073
            self.fuse_relu_depthwise_conv_ = b;
          },
3074
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3075 3076 3077
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3078
                Default is False.
F
flame 已提交
3079 3080 3081 3082

                Examples:
                    .. code-block:: python

3083 3084 3085 3086 3087 3088
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3089 3090
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3091 3092 3093
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3094
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3095 3096
                    },
                    [](BuildStrategy &self, bool b) {
3097 3098 3099 3100
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3101 3102
                      self.fuse_broadcast_ops_ = b;
                    },
3103
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3104 3105 3106 3107
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3108 3109 3110 3111 3112
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3113 3114 3115 3116 3117 3118
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3119 3120
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3121 3122
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3123
                      return self.fuse_all_optimizer_ops_ == true ||
3124
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3125 3126
                    },
                    [](BuildStrategy &self, bool b) {
3127 3128 3129 3130
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3131 3132
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3133 3134 3135 3136
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3137 3138 3139 3140
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3141 3142
            self.sync_batch_norm_ = b;
          },
3143
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3144 3145 3146
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3147 3148
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3149 3150 3151 3152

                Examples:
                    .. code-block:: python

3153 3154 3155 3156 3157 3158
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3159 3160
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3161 3162
      .def_property(
          "memory_optimize",
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3173
              self.memory_optimize_ = paddle::none;
3174 3175 3176
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3177
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3178 3179
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3180 3181
            }
          },
3182
          R"DOC((bool, optional): memory opitimize aims to save total memory
3183
                consumption, set to True to enable it.
3184

3185 3186 3187
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3202 3203 3204
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3205 3206 3207
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3208
              PADDLE_THROW(platform::errors::Unavailable(
3209
                  "Distribution mode is not supported on Windows platform."));
3210 3211 3212 3213 3214
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3215 3216 3217
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3218
      .def_property(
D
dzhwinter 已提交
3219 3220 3221
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3222 3223 3224 3225
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3226 3227
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3228 3229
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3230
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3231
          },
C
chengduo 已提交
3232
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3233 3234 3235 3236 3237 3238 3239
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3240 3241 3242 3243
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3244 3245 3246 3247 3248 3249 3250 3251 3252
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3253 3254 3255 3256 3257 3258
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3259 3260 3261 3262 3263 3264 3265
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3266 3267 3268 3269 3270 3271
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3272
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3273
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3274 3275 3276 3277 3278
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3279

3280 3281 3282 3283 3284 3285
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3286
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3287
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3288
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3289
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3290 3291 3292 3293
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3294 3295 3296 3297 3298
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3299 3300 3301
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3302 3303 3304 3305
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3306 3307
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3308 3309 3310 3311 3312 3313 3314 3315
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3316
               return py::cast(
3317
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3318 3319
             } else {
               return py::cast(std::move(
3320
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3321
             }
3322 3323
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3324

D
dongdaxiang 已提交
3325
  BindFleetWrapper(&m);
3326
  BindIO(&m);
T
Thunderbrook 已提交
3327

T
Thunderbrook 已提交
3328 3329
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3330
#endif
T
Thunderbrook 已提交
3331
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3332
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3333
#endif
3334
  BindGlooWrapper(&m);
H
hutuxian 已提交
3335
  BindBoxHelper(&m);
H
hutuxian 已提交
3336 3337 3338
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3339
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3340
  BindNCCLWrapper(&m);
3341 3342 3343
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3344
#endif
F
flame 已提交
3345 3346
  BindGraph(&m);
  BindNode(&m);
3347
  BindPass(&m);
F
flame 已提交
3348
  BindInferenceApi(&m);
3349
  BindCompatible(&m);
3350
  BindDataset(&m);
Y
yaoxuefeng 已提交
3351
  BindGenerator(&m);
3352 3353 3354
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3355
  BindAscendDevice(&m);
3356
#endif
Y
Yanghello 已提交
3357 3358 3359
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3360

T
tangwei12 已提交
3361
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3362 3363
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3364
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3365 3366
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3367 3368 3369 3370 3371
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3372 3373 3374 3375
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3376
  BindSparseShardingTools(&m);
3377
#endif
L
Luo Tao 已提交
3378
}
3379
}  // namespace pybind
3380
}  // namespace paddle