pybind.cc 26.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16 17 18 19 20 21
#include <algorithm>
#include <map>
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
22

23
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
24 25 26 27 28 29 30
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
D
dzhwinter 已提交
36
#include "paddle/fluid/operators/activation_op.h"
Y
Yi Wang 已提交
37 38 39 40 41
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
42 43
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
44
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
46

47
#include "paddle/fluid/string/to_string.h"
48

D
Dong Zhihong 已提交
49
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
50 51 52
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
53 54
#endif

Q
Qiao Longfei 已提交
55 56 57
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

58
namespace paddle {
59
namespace pybind {
60
bool IsCompiledWithCUDA() {
61
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
62 63 64 65 66 67
  return false;
#else
  return true;
#endif
}

68 69
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
70

71 72 73 74
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

75
  BindException(&m);
Y
Yu Yang 已提交
76

77 78 79
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
80
      .def("get_dims",
81
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
82
      .def("set_dims",
Q
qijun 已提交
83
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
84
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
85
           })
D
dzhwinter 已提交
86 87 88 89
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
90
      .def("alloc_float",
D
dzhwinter 已提交
91
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
92
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
93
           })
Q
qijun 已提交
94
      .def("alloc_float",
Y
Yu Yang 已提交
95
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
96
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
97 98
           })
      .def("alloc_int",
Y
Yu Yang 已提交
99
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
100
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
101
           })
Q
qijun 已提交
102
      .def("alloc_int",
D
dzhwinter 已提交
103
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
104
             self.mutable_data<int>(place);
Q
qijun 已提交
105
           })
C
chengduoZH 已提交
106 107 108 109 110 111 112 113
      .def("alloc_int",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
      .def("alloc_float",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
114 115
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
116
      .def("set", PyCPUTensorSetFromArray<double>)
117
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
118
      .def("set", PyCPUTensorSetFromArray<bool>)
119
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
120
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
121
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
122 123
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
124
      .def("set", PyCUDATensorSetFromArray<double>)
125
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
126
      .def("set", PyCUDATensorSetFromArray<bool>)
127
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
128
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
C
chengduoZH 已提交
129 130 131 132 133 134
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
135
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qijun 已提交
136
#endif
137
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
138 139 140 141 142
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
143

144
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
145 146
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
147 148 149 150 151 152 153 154 155 156 157 158 159 160
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
161
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
162
      .def("set_lod",
163
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
164 165 166 167
             // the input lod is offset-based level-of-detail info
             LOG(WARNING)
                 << "set_lod is deprecated and will be removed by 9.2018, "
                    "please switch to set_recursive_sequence_lengths.";
Y
Yu Yang 已提交
168
             LoD new_lod;
169 170
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
171 172
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
173
             self.set_lod(new_lod);
D
dangqingqing 已提交
174
           })
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LOG(WARNING) << "lod is deprecated and will be removed by 9.2018, "
                             "please switch to recursive_sequence_lengths.";
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
215 216
      });

Q
qijun 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
230 231 232 233 234 235 236 237 238
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
239 240 241 242 243 244 245 246 247 248 249
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
250

251
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
252 253 254

All parameter, weight, gradient are variables in Paddle.
)DOC")
255
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
256
      .def("set_int",
257 258
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
259 260 261 262 263 264 265
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
266
      .def("get_tensor",
267 268
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
269 270
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
271 272 273
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
274 275 276 277 278
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
279 280 281
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
282 283 284 285 286 287 288
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Refine  
Yu Yang 已提交
289 290 291 292 293
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
294
           py::return_value_policy::reference);
295

Y
Refine  
Yu Yang 已提交
296 297 298
  py::class_<framework::ReaderHolder>(m, "Reader", "")
      .def("reset", &framework::ReaderHolder::ReInit);

299
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
300
      .def("var",
301
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
302
             return self.Var(name);
Y
Yu Yang 已提交
303
           },
304
           py::return_value_policy::reference)
305
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
306
      .def(py::init<>())
307
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
308
           py::return_value_policy::reference)
Y
Yu Yang 已提交
309
      .def("drop_kids", &Scope::DropKids);
310

Y
Yu Yang 已提交
311 312
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
313 314
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
315 316 317 318 319 320 321 322 323 324
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
325 326
    return ret_values;
  });
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
343
  m.def("prune", [](const ProgramDesc &origin,
344
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
345
    ProgramDesc prog_with_targets(origin);
346
    for (const auto &t : targets) {
347
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
348
    }
349
    proto::ProgramDesc pruned_desc;
350
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
351
    return new ProgramDesc(pruned_desc);
352
  });
Y
Yu Yang 已提交
353
  m.def("inference_optimize", [](ProgramDesc &origin) {
354
    proto::ProgramDesc pruned_desc;
355
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
356
    return new ProgramDesc(pruned_desc);
357
  });
F
fengjiayi 已提交
358 359
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
360 361 362
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
363 364
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
365
  // clang-format off
Y
Yu Yang 已提交
366
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
367 368
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
369
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
370 371 372
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
373
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
374
                      -> paddle::platform::DeviceContext* {
375
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
376
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
377
#else
Q
qijun 已提交
378
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
379
#endif
C
chengduoZH 已提交
380 381 382 383 384 385 386 387 388 389 390
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
391 392 393 394
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
395
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
396
      .def(py::init<int>())
D
dzhwinter 已提交
397
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
398

399 400 401
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
402

C
chengduoZH 已提交
403 404 405 406
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
407 408 409 410 411 412 413
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
414
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
415
             self = gpu_place;
C
chengduoZH 已提交
416 417
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
418 419
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
420
      });
Y
Yu Yang 已提交
421

Y
Yu Yang 已提交
422 423 424
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
425
                    proto::OpDesc desc;
Y
Yu Yang 已提交
426 427 428 429 430
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
431
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
432
                  })
433
      .def("run",
434
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
435 436 437
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
438
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
439 440 441 442 443
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
444 445 446 447 448 449 450
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
451 452
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
453
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
454
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
455 456 457 458
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
459

F
fengjiayi 已提交
460
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
461
      .def(py::init<const platform::Place &>())
W
Wu Yi 已提交
462 463 464
#ifdef PADDLE_WITH_DISTRIBUTE
      .def("complete", &Executor::Complete)
#endif
465 466 467
      .def("run",
           (void (Executor::*)(const ProgramDesc &, Scope *, int, bool, bool)) &
               Executor::Run);
F
fengjiayi 已提交
468

D
dzhwinter 已提交
469
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
470
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
471 472
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
473

474
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
475 476 477 478 479 480
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
481

482
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
483
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
484

485 486 487 488 489
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
490

Y
Yu Yang 已提交
491 492 493 494 495 496 497 498 499
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
517 518 519
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
520
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
521
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
522
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
523 524 525 526

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
527
#endif
Y
Yu Yang 已提交
528

529 530 531 532
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
533
      .value("kAll", platform::ProfilerState::kAll)
534 535 536 537 538 539 540 541 542 543 544 545 546
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
547
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
548
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
549

Y
yuyang18 已提交
550
  // -- python binds for parallel executor.
Y
yuyang18 已提交
551 552 553 554 555 556 557 558 559 560
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
  py::class_<ExecutionStrategy>(pe, "ExecutionStrategy")
      .def(py::init())
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
          })
      .def_property(
561 562 563 564
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
Y
yuyang18 已提交
565 566 567 568 569 570
          })
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
Y
yuyang18 已提交
571 572 573 574 575 576 577 578
          })
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
Y
yuyang18 已提交
579
          });
Y
yuyang18 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy");

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
            self.reduce_ = strategy;
          })
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
            self.gradient_scale_ = strategy;
Y
yuyang18 已提交
605 606 607 608 609 610
          })
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
            self.debug_graphviz_path_ = path;
Y
yuyang18 已提交
611
          });
Y
yuyang18 已提交
612 613 614 615

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
616
                  const std::string &, Scope *, std::vector<Scope *> &,
617 618
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
T
typhoonzero 已提交
619
      .def("bcast_params", &ParallelExecutor::BCastParamsToGPUs)
Y
Yu Yang 已提交
620 621 622 623
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
624 625 626 627 628
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
629 630 631 632
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
Y
Yu Yang 已提交
633
      .def("run", &ParallelExecutor::Run);
Y
Yu Yang 已提交
634

635
  BindRecordIOWriter(&m);
636
  return m.ptr();
L
Luo Tao 已提交
637
}
638
}  // namespace pybind
639
}  // namespace paddle