pybind.cc 82.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
32
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
33 34 35
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
36
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/framework/op_info.h"
38
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
42
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
45
#include "paddle/fluid/framework/trainer.h"
X
Xin Pan 已提交
46
#include "paddle/fluid/framework/version.h"
H
hong 已提交
47
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
49
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
52
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
53
#include "paddle/fluid/platform/cpu_info.h"
54
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/platform/enforce.h"
56
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
57 58
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
59
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
61
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
63
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
64
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
65
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
66
#include "paddle/fluid/pybind/ir.h"
67

W
wopeizl 已提交
68
#ifndef _WIN32
D
dongdaxiang 已提交
69
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
70
#endif
71
#include "paddle/fluid/framework/data_type.h"
72 73
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
74
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
75
#include "paddle/fluid/pybind/tensor_py.h"
76
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
77
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
78
#ifndef _WIN32
Y
Yi Wang 已提交
79
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
80
#endif
Y
Yi Wang 已提交
81 82
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
83 84
#endif

85 86 87 88
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
89 90
#include "pybind11/stl.h"

91 92 93
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
94
DECLARE_bool(use_mkldnn);
95 96 97
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
98

Q
Qiao Longfei 已提交
99 100 101
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

102
namespace paddle {
103
namespace pybind {
104
bool IsCompiledWithCUDA() {
105
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
106 107 108 109 110 111
  return false;
#else
  return true;
#endif
}

112 113 114 115 116 117 118 119
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

120 121 122 123 124 125 126 127
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

128
bool IsCompiledWithBrpc() {
129
#ifndef PADDLE_WITH_DISTRIBUTE
130 131
  return false;
#endif
132 133 134 135 136 137

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
138 139
}

Y
update  
Yancey1989 已提交
140
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
141
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
142 143 144 145 146 147
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
148 149 150 151 152 153 154 155 156 157
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
      PADDLE_THROW("Save parameter [%s] is None", para.first);
    }

    const char *kIVarField = "_ivar";
    PyObject *py_ivar = GetPythonAttribute(py_obj, kIVarField);
    PADDLE_ENFORCE_NOT_NULL(py_ivar, "Can not find  ivar in Variable");

    vec_res.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    Py_DECREF(py_ivar);
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return vec_res;
}

240 241 242 243 244 245
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
246 247 248
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
249
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
250

251
  m.doc() = "C++ core of PaddlePaddle";
252

253 254 255 256
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

257
  BindException(&m);
Y
Yu Yang 已提交
258

259 260
  m.def("set_num_threads", &platform::SetNumThreads);

H
hong 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
294 295 296 297 298 299
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
300
  m.def(
S
sneaxiy 已提交
301
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
302 303 304 305
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
306 307 308
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
309 310 311
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
312
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
313

314
  m.def("_set_fuse_parameter_group_size",
315
        &paddle::framework::ir::SetFuseParameterGroupsSize);
316
  m.def("_set_fuse_parameter_memory_size",
317
        &paddle::framework::ir::SetFuseParameterMemorySize);
318

S
sneaxiy 已提交
319 320 321
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

322 323
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

324
  BindImperative(&m);
325

326
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
327
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
328 329
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
330
      .def("_get_dims",
331
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
332
      .def("_set_dims",
Q
qijun 已提交
333
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
334
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
335
           })
Y
yuyang18 已提交
336
      .def("_set_layout",
D
dzhwinter 已提交
337 338 339
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
340
      .def("_alloc_float",
D
dzhwinter 已提交
341
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
342
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
343
           })
Y
yuyang18 已提交
344
      .def("_alloc_float",
Y
Yu Yang 已提交
345
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
346
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
347
           })
348 349 350 351
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
352
      .def("_alloc_int",
Y
Yu Yang 已提交
353
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
354
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
355
           })
Y
yuyang18 已提交
356
      .def("_alloc_int",
D
dzhwinter 已提交
357
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
358
             self.mutable_data<int>(place);
Q
qijun 已提交
359
           })
Y
yuyang18 已提交
360
      .def("_alloc_int",
C
chengduoZH 已提交
361 362 363
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
364
      .def("_alloc_float",
C
chengduoZH 已提交
365 366 367
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
383
      .def("_clear", &Tensor::clear)
L
Leo Chen 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
      .def("set", PyCPUTensorSetFromArray<float>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<int>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<double>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<int64_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<bool>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<uint16_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<uint8_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCPUTensorSetFromArray<int8_t>, py::arg("array"),
           py::arg("place"))
400
#ifdef PADDLE_WITH_CUDA
L
Leo Chen 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
      .def("set", PyCUDATensorSetFromArray<float>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<int>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<double>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<int64_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<bool>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<uint16_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<uint8_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDATensorSetFromArray<int8_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<float>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<int>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<double>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>, py::arg("array"),
           py::arg("place"))
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>, py::arg("array"),
           py::arg("place"), R"DOC(
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
Q
qijun 已提交
452
#endif
L
Leo Chen 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
Y
yuyang18 已提交
470 471 472 473
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
474
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
475
      .def("_dtype", [](Tensor &self) { return self.type(); })
476 477 478 479 480 481
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
482

L
Leo Chen 已提交
483
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
484
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
559 560 561 562 563 564 565

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
566 567

        )DOC")
568
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
569 570 571 572 573 574 575 576 577
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
578 579
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
580 581 582
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
583
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
584
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
585 586
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
587 588 589
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
590
      .def("set_lod",
591
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
592
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
593
             LoD new_lod;
594 595
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
596 597 598
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
599
             self.set_lod(new_lod);
S
sneaxiy 已提交
600 601 602 603 604
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
605 606 607 608
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
609 610 611 612 613 614 615 616 617 618

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
619
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
620
           )DOC")
621 622 623 624 625 626 627 628 629 630 631
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
632 633
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
634 635
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
636 637
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
638
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
639

L
Leo Chen 已提交
640
           For example, if recursive_sequence_lengths=[[2, 3]], which means
641
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
642
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
643 644

           Args:
L
Leo Chen 已提交
645 646 647 648
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
649 650 651 652 653 654 655 656 657 658

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
659 660
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
661
           )DOC")
662 663 664 665 666 667 668 669
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
670 671 672 673 674
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
675 676
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
677 678 679 680 681 682 683 684 685 686
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
687
           )DOC")
G
gongweibao 已提交
688
      // Set above comments of set_lod.
689 690 691 692 693 694 695 696
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
697 698
           },
           R"DOC(
L
Leo Chen 已提交
699 700
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
701 702

           Returns:
L
Leo Chen 已提交
703
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
704 705 706 707 708 709 710 711 712 713 714

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
715 716 717 718 719 720 721 722
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
723
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
724 725

           Returns:
L
Leo Chen 已提交
726
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
727 728 729 730 731 732 733 734 735 736 737

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
738 739 740 741 742 743 744
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
745
           )DOC")
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
764
      });
D
dangqingqing 已提交
765

Q
qijun 已提交
766 767 768 769 770 771 772 773 774 775 776
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
777 778
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
779 780
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
781 782 783 784 785 786 787 788 789
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
790
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
791
      .def("rows", [](SelectedRows &self) {
792 793 794 795 796
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
797
      });
Q
qijun 已提交
798

799
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
800 801 802

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
803
      .def(py::init<>())
804
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
805
      .def("set_int",
806 807
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
808 809 810 811 812 813 814
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
815
      .def("get_tensor",
816 817
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
818 819
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
820 821 822
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
823 824 825 826 827
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
828 829 830
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
831
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
832 833 834 835 836
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
837
#endif
Y
Refine  
Yu Yang 已提交
838 839
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
840
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
841 842
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
843
           py::return_value_policy::reference);
844

S
sneaxiy 已提交
845
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
846

S
sneaxiy 已提交
847 848 849 850
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
851

S
sneaxiy 已提交
852 853
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
854
      .def("push",
S
sneaxiy 已提交
855
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
856
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
857
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
858
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
859
           })
S
sneaxiy 已提交
860 861 862
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
Z
Zeng Jinle 已提交
863
      .def("kill", &LoDTensorBlockingQueue::Kill)
S
sneaxiy 已提交
864
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
865

S
sneaxiy 已提交
866
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
867 868
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
869
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
870 871 872 873
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
874
        py::return_value_policy::copy);
S
sneaxiy 已提交
875

S
sneaxiy 已提交
876
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

890
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
891 892 893 894 895 896
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
897 898
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
899
      .def("var",
900
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
901
             return self.Var(name);
Y
Yu Yang 已提交
902
           },
S
sneaxiy 已提交
903 904
           py::arg("name"),
           R"DOC(
905
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
906

907
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
908
           current scope, the variable would be created. Otherwise,
909
           return the existing variable.
S
sneaxiy 已提交
910 911

           Args:
912 913
               name (str): the variable name.

S
sneaxiy 已提交
914
           Returns:
915
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
916 917 918 919
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
920
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
921
           its parent scope. Return None if not found.
922

S
sneaxiy 已提交
923 924
           Args:
               name (str): the variable name.
925

S
sneaxiy 已提交
926
           Returns:
927
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
928
           )DOC",
929
           py::return_value_policy::reference)
930
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
931 932 933 934 935 936
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
937
           py::return_value_policy::reference)
S
sneaxiy 已提交
938 939 940
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
941 942
           )DOC")
      .def("_kids", &Scope::kids);
943

S
sneaxiy 已提交
944 945 946 947 948 949
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
950 951
        R"DOC(
        Create a new scope.
952

S
sneaxiy 已提交
953 954 955
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
956 957
        py::return_value_policy::reference);

Y
Yu Yang 已提交
958 959
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
960 961
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
962 963 964 965
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
966 967
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
968 969 970 971
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
972 973
    return ret_values;
  });
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
990 991 992 993 994 995 996
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
  m.def("get_flags_use_mkldnn", []() { return FLAGS_use_mkldnn; });
997 998 999
#ifdef PADDLE_WITH_NGRAPH
  m.def("get_flags_use_ngraph", []() { return FLAGS_use_ngraph; });
#endif
1000

Y
Yu Yang 已提交
1001
  m.def("prune", [](const ProgramDesc &origin,
1002
                    const std::set<std::string> &feeded_var_names,
1003
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1004
    ProgramDesc prog_with_targets(origin);
1005

1006
    for (const auto &t : targets) {
1007
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1008
    }
1009
    proto::ProgramDesc pruned_desc;
1010
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
1011
    return new ProgramDesc(pruned_desc);
1012
  });
1013 1014 1015
  m.def("prune_backward", [](const framework::ProgramDesc &program) {
    return PruneBackward(program);
  });
1016 1017 1018 1019
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1020 1021 1022
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1023 1024
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1025
  // clang-format off
Y
Yu Yang 已提交
1026
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1027 1028
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1029
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1030 1031 1032
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1033
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1034
                      -> paddle::platform::DeviceContext* {
1035
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
1036
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
1037
#else
Q
qijun 已提交
1038
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1039
#endif
C
chengduoZH 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1051
// clang-format on
P
peizhilin 已提交
1052
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
1053 1054
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1055
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1056 1057 1058 1059 1060 1061 1062 1063
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1064
    The memory of CUDAPlace with different dev_id is not accessible.
1065 1066 1067 1068 1069 1070 1071 1072
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1073 1074 1075 1076

    Examples:
        .. code-block:: python

1077
          import paddle.fluid as fluid
L
lujun 已提交
1078 1079
          gpu_place = fluid.CUDAPlace(0)

1080
        )DOC")
S
sneaxiy 已提交
1081 1082 1083
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1108 1109
             new (&self) platform::CUDAPlace(dev_id);
#else
1110 1111 1112 1113 1114 1115 1116 1117 1118
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1119 1120
#endif
           })
S
sneaxiy 已提交
1121 1122 1123 1124 1125 1126
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
1127
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1128

1129
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1130 1131
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1132 1133 1134 1135

    Examples:
        .. code-block:: python

1136
          import paddle.fluid as fluid
1137
          cpu_place = fluid.CPUPlace()to be allocated
L
lujun 已提交
1138

1139
        )DOC")
1140
      .def(py::init<>())
S
sneaxiy 已提交
1141 1142 1143 1144 1145 1146
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1147
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1148

1149
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1150 1151 1152 1153 1154 1155
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1156 1157 1158 1159

    Examples:
        .. code-block:: python

1160
          import paddle.fluid as fluid
L
lujun 已提交
1161 1162
          place = fluid.CUDAPinnedPlace()

1163
        )DOC")
S
sneaxiy 已提交
1164
      .def("__init__",
S
sneaxiy 已提交
1165
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1166 1167 1168
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
1169
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1170
           })
S
sneaxiy 已提交
1171 1172 1173 1174 1175 1176 1177 1178
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1179 1180
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1181 1182
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1183 1184 1185 1186 1187
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1188 1189
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1190 1191 1192 1193 1194 1195
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1196 1197 1198 1199
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
1200 1201
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1202 1203 1204 1205 1206
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1207
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1208
             self = gpu_place;
C
chengduoZH 已提交
1209 1210
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1211 1212
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1213
      });
Y
Yu Yang 已提交
1214

Y
Yu Yang 已提交
1215
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
1227
      .def("run",
1228
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1229 1230 1231
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1232
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1233 1234 1235 1236 1237
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1238 1239 1240 1241 1242 1243 1244
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1245 1246
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1247
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1248
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1249 1250 1251 1252
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1253

1254 1255 1256
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1257 1258 1259 1260 1261 1262 1263 1264 1265
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1266
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1267
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1268
      .def("close", &Executor::Close)
1269 1270
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
G
guru4elephant 已提交
1294 1295 1296 1297 1298 1299 1300 1301
      .def("run_cached_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1302 1303
      .def("prepare_ctx_cache", &Executor::PrepareCtxCache,
           py::call_guard<py::gil_scoped_release>())
1304 1305
      .def("create_variables", &Executor::CreateVariables,
           py::call_guard<py::gil_scoped_release>())
S
sneaxiy 已提交
1306
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1307 1308
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1309
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1310 1311
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1312
      });
S
sneaxiy 已提交
1313

D
dzhwinter 已提交
1314
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1315
  m.def("init_glog", framework::InitGLOG);
1316
  m.def("init_dgc", framework::InitDGC);
1317
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1318 1319
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1320

1321
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1322
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1323
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1324
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1325
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1326 1327 1328 1329 1330 1331
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1332

1333
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1334
  m.def("get_fetch_variable", framework::GetFetchVariable);
1335
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1336

X
Xin Pan 已提交
1337 1338
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1339 1340 1341 1342 1343
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1344

Y
Yu Yang 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1354
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1355
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1356 1357 1358

    Examples:
        .. code-block:: python
1359

Z
Zeng Jinle 已提交
1360 1361 1362 1363
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1364 1365
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1376 1377 1378 1379 1380 1381
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1382 1383
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1384 1385 1386 1387 1388 1389
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1412

Y
Yu Yang 已提交
1413
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1414
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1415
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1416

P
peizhilin 已提交
1417
#ifndef _WIN32
D
dangqingqing 已提交
1418 1419 1420
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1421
#endif
P
peizhilin 已提交
1422
#endif
Y
Yu Yang 已提交
1423

1424 1425 1426 1427
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1428
      .value("kAll", platform::ProfilerState::kAll)
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1442
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1443
  m.def("reset_profiler", platform::ResetProfiler);
1444
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1445 1446 1447
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1448

1449 1450
  m.def("size_of_dtype", framework::SizeOfType);

1451 1452 1453
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1454 1455
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1456
      .def("has", &ir::Pass::Has)
1457 1458 1459
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1460
           })
1461
      .def(
1462
          "set",
1463 1464 1465
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1466 1467
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1482 1483
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1484
        self.Apply(graph.get());
F
flame 已提交
1485
      });
1486

X
fix  
Xin Pan 已提交
1487 1488
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1503
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1504

Y
yuyang18 已提交
1505
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1506 1507 1508 1509
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1510 1511 1512
    Examples:
        .. code-block:: python

1513
          import paddle.fluid as fluid
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1524 1525 1526
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1527 1528
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1529 1530
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1531 1532
        )DOC");

Y
yuyang18 已提交
1533
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1534 1535 1536 1537 1538
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1549
      .def_property(
1550 1551 1552 1553
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1554 1555 1556 1557
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1558 1559 1560 1561 1562
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1563 1564 1565
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1566 1567
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1568 1569 1570 1571 1572 1573 1574
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1575 1576 1577 1578
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1579 1580
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1581 1582 1583 1584 1585 1586

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1587
              )DOC")
Q
Qiao Longfei 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
1597
                user call exe.run() in python
Q
Qiao Longfei 已提交
1598
              )DOC")
1599 1600 1601 1602 1603
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1604

Y
yuyang18 已提交
1605
  exec_strategy.def_property(
Y
yuyang18 已提交
1606 1607 1608 1609 1610 1611 1612
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1613 1614
      });

C
chengduo 已提交
1615 1616 1617 1618
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1619 1620 1621
    Examples:
        .. code-block:: python

1622 1623
            import os
            import numpy as np
F
flame 已提交
1624
            import paddle.fluid as fluid
1625 1626 1627 1628 1629 1630 1631 1632 1633

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
1634
            build_strategy = fluid.BuildStrategy()
1635 1636
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
1637
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
1638 1639 1640 1641
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
1642
)DOC");
Y
yuyang18 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1659 1660
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1661
            self.reduce_ = strategy;
C
chengduo 已提交
1662
          },
1663
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
1664 1665
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
1666
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
1667 1668
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
1669
                Default is 'AllReduce'.
F
flame 已提交
1670 1671 1672 1673 1674 1675 1676 1677

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1678 1679 1680 1681 1682
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1683 1684
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1685
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1686
          },
1687 1688
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
1689 1690
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
1691
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
1692 1693 1694 1695 1696

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1725
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1740
                   )DOC")
Y
yuyang18 已提交
1741 1742 1743 1744
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1745 1746
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1747
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1748
          },
1749
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
1750
                writing the SSA Graph to file in the form of graphviz.
1751
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
1752 1753 1754 1755 1756 1757

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1758 1759
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1760
                    )DOC")
S
sneaxiy 已提交
1761 1762 1763 1764 1765 1766
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1767 1768
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1769 1770
            self.enable_sequential_execution_ = b;
          },
1771 1772
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
1773 1774 1775 1776 1777 1778 1779 1780

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1781 1782 1783 1784 1785 1786
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1787 1788
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1789 1790
            self.remove_unnecessary_lock_ = b;
          },
1791 1792
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
1793 1794 1795 1796 1797 1798 1799 1800

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1801 1802 1803 1804
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1805 1806 1807
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1808 1809
            self.num_trainers_ = num_trainers;
          })
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1822 1823 1824 1825 1826 1827
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1828
      .def_property("use_hierarchical_allreduce",
1829 1830 1831 1832 1833 1834
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1835
      .def_property("hierarchical_allreduce_inter_nranks",
1836 1837 1838 1839 1840 1841 1842
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1843 1844 1845 1846 1847 1848
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1849 1850
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
1851 1852
            self.fuse_elewise_add_act_ops_ = b;
          },
1853
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1854
                to fuse elementwise_add_op and activation_op,
1855
                it may make the execution faster. Default is False.
F
flame 已提交
1856 1857 1858 1859 1860 1861 1862 1863

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1864 1865 1866 1867 1868 1869
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1870 1871
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
1872 1873
            self.fuse_relu_depthwise_conv_ = b;
          },
1874
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1875 1876 1877
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
1878
                Default is False.
F
flame 已提交
1879 1880 1881 1882 1883 1884 1885 1886

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
1897
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
1898 1899 1900 1901
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
1902 1903 1904 1905 1906 1907 1908 1909 1910
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
1911 1912
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
1913 1914
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
1915 1916
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1917 1918
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
1919 1920
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1921 1922 1923 1924
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1925 1926
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
1927 1928
            self.sync_batch_norm_ = b;
          },
1929
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
1930 1931 1932
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
1933 1934
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
1935 1936 1937 1938 1939 1940 1941 1942

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
1943 1944
      .def_property(
          "memory_optimize",
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
H
hong 已提交
1960 1961
                  "BuildStrategy.memory_optimize must be None, False or "
                  "True");
1962 1963
            }
          },
1964
          R"DOC((bool, optional): memory opitimize aims to save total memory
1965
                consumption, set to True to enable it.
1966

1967 1968 1969
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
1970
                True means enabling and False means disabling. Default is None.)DOC")
1971 1972 1973
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
1974 1975 1976 1977 1978 1979 1980 1981 1982
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
1983 1984 1985
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1986
      .def_property(
D
dzhwinter 已提交
1987 1988 1989
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1990 1991
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
1992 1993 1994 1995
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
1996
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1997 1998 1999 2000 2001 2002 2003
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2004 2005 2006 2007
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2008 2009 2010 2011 2012 2013 2014 2015 2016
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2017
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2018
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2019 2020 2021 2022 2023
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2024 2025

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2026
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2027
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2028
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2029 2030 2031 2032
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2033 2034 2035 2036 2037
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2038 2039 2040
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2041 2042 2043 2044
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
2045
      .def("run", [](ParallelExecutor &self,
2046
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
2047
        pybind11::gil_scoped_release release;
2048
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
2049
      });
Y
Yu Yang 已提交
2050

D
dongdaxiang 已提交
2051
  BindFleetWrapper(&m);
H
hutuxian 已提交
2052
  BindBoxHelper(&m);
W
wopeizl 已提交
2053
#ifndef _WIN32
D
dongdaxiang 已提交
2054
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2055
#endif
F
flame 已提交
2056 2057
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2058
  BindInferenceApi(&m);
2059
  BindDataset(&m);
2060 2061 2062
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
2063
}
2064
}  // namespace pybind
2065
}  // namespace paddle