pybind.cc 112.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
36
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
37 38 39
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
42
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
46
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/selected_rows.h"
49
#include "paddle/fluid/framework/tensor_util.h"
50
#include "paddle/fluid/framework/trainer.h"
51
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
52
#include "paddle/fluid/framework/version.h"
H
hong 已提交
53
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
56
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/operators/py_func_op.h"
59
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/platform/cpu_info.h"
61
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/platform/enforce.h"
63
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
64
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
67
#include "paddle/fluid/pybind/box_helper_py.h"
68
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
69
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
70
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
71
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
72
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
73
#include "paddle/fluid/pybind/generator_py.h"
74
#include "paddle/fluid/pybind/global_value_getter_setter.h"
75
#include "paddle/fluid/pybind/gloo_context_py.h"
76
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
77
#include "paddle/fluid/pybind/heter_wrapper_py.h"
78
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
79
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
80
#include "paddle/fluid/pybind/ir.h"
81
#include "paddle/fluid/pybind/pybind_boost_headers.h"
82

83
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
84
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
85
#endif
86
#include "paddle/fluid/framework/data_type.h"
87 88
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
89
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
90
#include "paddle/fluid/pybind/tensor_py.h"
91
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
92
#ifdef PADDLE_WITH_CUDA
93
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
94
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
95
#endif
Y
Yi Wang 已提交
96 97
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
98 99
#endif

100 101 102 103
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

104 105 106 107
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

Y
Yanghello 已提交
108 109 110 111
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

M
minqiyang 已提交
112 113
#include "pybind11/stl.h"

114
DECLARE_bool(use_mkldnn);
115

Q
Qiao Longfei 已提交
116 117
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
118 119 120
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
121

122
namespace paddle {
123
namespace pybind {
124
bool IsCompiledWithCUDA() {
125
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
126 127 128 129 130 131
  return false;
#else
  return true;
#endif
}

132 133 134 135 136 137 138 139
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

140 141 142 143 144 145 146 147
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

148 149 150 151 152 153 154 155 156 157 158
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

159
bool IsCompiledWithBrpc() {
160
#ifndef PADDLE_WITH_DISTRIBUTE
161 162
  return false;
#endif
163 164 165 166 167 168

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
169 170
}

Y
update  
Yancey1989 已提交
171
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
172
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
173 174 175 176 177 178
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
179 180 181 182 183 184 185 186 187 188
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
211 212 213
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
227 228
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
229 230
    }
    vec_res.emplace_back(
231
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
232 233 234 235 236 237 238 239 240 241 242 243
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
244 245
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
246 247 248 249 250 251 252 253 254 255 256 257
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
258 259 260
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
261 262 263 264
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
265 266
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
267 268 269 270
  }
  return vec_res;
}

271 272 273 274 275 276 277 278
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
279 280
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
281 282 283 284 285 286 287 288 289 290 291 292 293
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
294 295 296
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
297 298 299 300 301
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
302 303 304 305 306
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
307 308
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
309 310 311
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
312 313 314 315 316 317 318 319 320
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
321 322
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
323 324 325 326 327
  }

  return;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

352 353 354 355 356 357
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
358 359 360
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
361
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
362

363 364
  AssertStaticGraphAndDygraphGradMakerNoDiff();

365
  m.doc() = "C++ core of PaddlePaddle";
366

367 368 369 370
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

371
  BindException(&m);
Y
Yu Yang 已提交
372

373 374
  m.def("set_num_threads", &platform::SetNumThreads);

375 376 377 378
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
397 398 399 400 401 402 403 404 405
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
406
           const Scope &scope, const Executor *executor) {
H
hong 已提交
407
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
408
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
409 410 411
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

412 413 414 415 416 417
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
437

438 439 440 441 442 443
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
444 445
  });

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
471 472 473 474 475 476
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
477
  m.def(
S
sneaxiy 已提交
478
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
479 480 481 482
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
483 484 485
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
502 503 504
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
505
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
506

507
  m.def("_set_fuse_parameter_group_size",
508
        &paddle::framework::ir::SetFuseParameterGroupsSize);
509
  m.def("_set_fuse_parameter_memory_size",
510
        &paddle::framework::ir::SetFuseParameterMemorySize);
511

S
sneaxiy 已提交
512 513 514
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

515 516
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

517
  BindImperative(&m);
518

519
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
520
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
521 522
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
523
      .def("_get_dims",
524
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
525
      .def("_set_dims",
Q
qijun 已提交
526
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
527
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
528
           })
Y
yuyang18 已提交
529
      .def("_set_layout",
D
dzhwinter 已提交
530 531 532
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
533
      .def("_alloc_float",
D
dzhwinter 已提交
534
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
535
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
536
           })
537 538 539 540
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
541
      .def("_alloc_float",
Y
Yu Yang 已提交
542
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
543
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
544
           })
545 546 547 548
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
549
      .def("_alloc_int",
Y
Yu Yang 已提交
550
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
551
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
552
           })
553 554 555 556
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
557
      .def("_alloc_int",
D
dzhwinter 已提交
558
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
559
             self.mutable_data<int>(place);
Q
qijun 已提交
560
           })
Y
yuyang18 已提交
561
      .def("_alloc_int",
C
chengduoZH 已提交
562 563 564
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
565
      .def("_alloc_float",
C
chengduoZH 已提交
566 567 568
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
569 570 571 572 573
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
574 575 576 577 578
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
579 580 581 582 583 584 585 586 587 588
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
589
      .def("_clear", &Tensor::clear)
590
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
591
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
592 593
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
594
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
595
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
596
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
597 598
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
599 600 601 602
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
603
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
604
          LoDTensor is to be set.
605 606
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
620

L
Leo Chen 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
660 661 662 663
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
664
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
665
      .def("_dtype", [](Tensor &self) { return self.type(); })
666 667
      .def("_layout",
           [](Tensor &self) { return DataLayoutToString(self.layout()); })
668
      .def("_share_data_with", &Tensor::ShareDataWith)
669 670 671 672 673 674
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
675

L
Leo Chen 已提交
676
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
677
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
752 753 754 755 756 757 758

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
759 760

        )DOC")
761
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
762 763 764 765 766 767 768 769 770
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
771 772
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
773 774 775 776
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
777 778
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
779
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
780
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
781 782
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
783 784 785
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
786
      .def("set_lod",
787
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
788
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
789
             LoD new_lod;
790 791
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
792 793
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
794 795
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
796
             self.set_lod(new_lod);
S
sneaxiy 已提交
797 798 799 800 801
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
802 803 804 805
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
806 807 808 809 810 811 812 813 814 815

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
816
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
817
           )DOC")
818 819 820 821 822 823 824 825 826 827 828
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
829 830
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
831 832 833 834 835
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
836
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
837 838
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
839
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
840

L
Leo Chen 已提交
841
           For example, if recursive_sequence_lengths=[[2, 3]], which means
842
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
843
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
844 845

           Args:
L
Leo Chen 已提交
846 847 848 849
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
850 851 852 853 854 855 856 857 858 859

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
860 861
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
862
           )DOC")
863 864 865 866 867 868 869 870
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
871 872 873 874 875
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
876 877
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
878 879 880 881 882 883 884 885 886 887
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
888
           )DOC")
G
gongweibao 已提交
889
      // Set above comments of set_lod.
890 891 892 893 894 895 896 897
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
898 899
           },
           R"DOC(
L
Leo Chen 已提交
900 901
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
902 903

           Returns:
L
Leo Chen 已提交
904
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
905 906 907 908 909 910 911 912 913 914 915

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
916 917 918 919 920 921 922 923
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
924
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
925 926

           Returns:
L
Leo Chen 已提交
927
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
928 929 930 931 932 933 934 935 936 937 938

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
939 940 941 942 943 944 945
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
946
           )DOC")
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
965
#ifdef _WIN32
966
      });
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1017

Q
qijun 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1029 1030
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1031 1032
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1042
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1043
      .def("rows", [](SelectedRows &self) {
1044 1045 1046 1047 1048
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1049
      });
Q
qijun 已提交
1050

1051
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1052 1053 1054

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1055
      .def(py::init<>())
1056
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1057
      .def("set_int",
1058 1059
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1060 1061 1062 1063 1064 1065 1066
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1067
      .def("get_tensor",
1068 1069
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1070 1071
           },
           py::return_value_policy::reference)
1072 1073 1074 1075
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1076 1077 1078
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1079 1080 1081 1082 1083
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1084 1085 1086
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1087 1088 1089
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1090
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1091 1092 1093 1094 1095
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1096
#endif
Y
Refine  
Yu Yang 已提交
1097 1098
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1099 1100 1101 1102
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1103 1104
             return self.GetMutable<framework::ReaderHolder>();
           },
1105 1106 1107 1108 1109
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1110

S
sneaxiy 已提交
1111
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1112

S
sneaxiy 已提交
1113
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1127
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1128 1129 1130 1131 1132 1133
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1134 1135
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1136
      .def("var",
1137
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1138
             return self.Var(name);
Y
Yu Yang 已提交
1139
           },
S
sneaxiy 已提交
1140 1141
           py::arg("name"),
           R"DOC(
1142
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1143

1144
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1145
           current scope, the variable would be created. Otherwise,
1146
           return the existing variable.
S
sneaxiy 已提交
1147 1148

           Args:
1149 1150
               name (str): the variable name.

S
sneaxiy 已提交
1151
           Returns:
1152
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1153 1154 1155 1156
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1157
           Find variable named :code:`name` in the current scope or
1158
           its parent scope. Return None if not found. 
1159

S
sneaxiy 已提交
1160 1161
           Args:
               name (str): the variable name.
1162

S
sneaxiy 已提交
1163
           Returns:
1164
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1165
           )DOC",
1166
           py::return_value_policy::reference)
1167
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1168 1169 1170 1171 1172 1173
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1174
           py::return_value_policy::reference)
S
sneaxiy 已提交
1175 1176 1177
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1178 1179
           )DOC")
      .def("_kids", &Scope::kids);
1180

S
sneaxiy 已提交
1181 1182 1183 1184 1185 1186
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1187 1188
        R"DOC(
        Create a new scope.
1189

S
sneaxiy 已提交
1190 1191 1192
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1193 1194
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1195 1196
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1197 1198
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1199 1200 1201 1202
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1203 1204
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1205 1206
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1207 1208 1209
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1210 1211
    return ret_values;
  });
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1241 1242 1243
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1244 1245 1246 1247 1248
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1249 1250 1251
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1266
  m.def("prune", [](const ProgramDesc &origin,
1267
                    const std::set<std::string> &feeded_var_names,
1268
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1269
    ProgramDesc prog_with_targets(origin);
1270

1271
    for (const auto &t : targets) {
1272
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1273
    }
1274
    proto::ProgramDesc pruned_desc;
1275 1276 1277 1278
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1279
  });
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1297 1298 1299 1300
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1301 1302 1303
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1304 1305
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1306
  // clang-format off
Y
Yu Yang 已提交
1307
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1308 1309
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1310
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1311 1312
                    return new paddle::platform::CPUDeviceContext();
                  })
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1325
      .def_static("create",
D
dzhwinter 已提交
1326
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1327
                      -> paddle::platform::DeviceContext* {
1328
#ifndef PADDLE_WITH_CUDA
1329 1330 1331 1332
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1333
#else
Q
qijun 已提交
1334
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1335
#endif
C
chengduoZH 已提交
1336 1337 1338 1339 1340
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1341 1342 1343 1344
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1345 1346 1347 1348
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1349
// clang-format on
1350
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1351 1352
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1353
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1354 1355 1356 1357 1358

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1359
    The memory of CUDAPlace with different dev_id is not accessible.
1360 1361 1362 1363 1364 1365 1366 1367
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1368 1369 1370 1371

    Examples:
        .. code-block:: python

1372 1373 1374 1375
          import paddle

          place = paddle.CUDAPlace(0)
          paddle.disable_static(place)
L
lujun 已提交
1376

1377
        )DOC")
S
sneaxiy 已提交
1378 1379 1380
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1405 1406
             new (&self) platform::CUDAPlace(dev_id);
#else
1407 1408 1409 1410 1411 1412 1413 1414 1415
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1416 1417
#endif
           })
1418
#ifdef PADDLE_WITH_CUDA
1419 1420
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1421 1422 1423 1424
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1425
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1426 1427
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1428 1429 1430
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1431
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1432
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1479
#ifdef PADDLE_WITH_XPU
1480 1481 1482 1483 1484 1485 1486
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1487 1488 1489
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1490
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1491 1492
      .def("__str__", string::to_string<const platform::XPUPlace &>);

1493
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1494
    CPUPlace is a descriptor of a device.
1495
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1496 1497 1498 1499

    Examples:
        .. code-block:: python

1500 1501
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1502

1503
        )DOC")
1504
      .def(py::init<>())
S
sneaxiy 已提交
1505 1506
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1507
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1508 1509 1510 1511
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1512
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1513
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1514

1515
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1516 1517 1518 1519 1520 1521
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1522 1523 1524 1525

    Examples:
        .. code-block:: python

1526 1527
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1528

1529
        )DOC")
S
sneaxiy 已提交
1530
      .def("__init__",
S
sneaxiy 已提交
1531
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1532
#ifndef PADDLE_WITH_CUDA
1533 1534 1535
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1536
#endif
S
sneaxiy 已提交
1537
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1538
           })
S
sneaxiy 已提交
1539 1540 1541 1542
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1543 1544
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1545 1546 1547 1548
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1549
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1550 1551
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1552 1553
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1554 1555 1556 1557
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1558
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1559
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1560 1561
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1562 1563
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1564 1565
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1566 1567 1568 1569
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1570 1571
      .def("gpu_device_id",
           [](platform::Place &self) {
1572
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1573
           })
1574 1575 1576 1577
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1578 1579
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1580 1581 1582 1583
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1584 1585 1586 1587
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1588
      .def("set_place",
D
dzhwinter 已提交
1589
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1590
             self = gpu_place;
C
chengduoZH 已提交
1591
           })
1592 1593 1594 1595 1596 1597 1598
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1599

Y
Yu Yang 已提交
1600
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1601 1602 1603 1604 1605
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1606 1607 1608 1609 1610 1611 1612
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1613 1614
            return OpRegistry::CreateOp(desc);
          })
1615
      .def("run",
1616
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1617
              const platform::CPUPlace &place) { self.Run(scope, place); })
1618 1619 1620
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1621 1622
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1623
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1624 1625 1626 1627 1628
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1629 1630 1631 1632 1633 1634 1635
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1636 1637
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1638
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1639
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1640 1641 1642 1643
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1644

1645 1646 1647
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1648 1649 1650 1651 1652 1653 1654 1655 1656
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1657
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1658
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1659
      .def("close", &Executor::Close)
1660 1661
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1662 1663
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1664 1665 1666 1667
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1668
             pybind11::gil_scoped_release release;
1669 1670 1671 1672 1673 1674 1675
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1676 1677 1678
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1679
              std::map<std::string, FetchType *> *fetch_targets,
1680 1681 1682 1683 1684 1685 1686 1687
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1688
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1689 1690 1691 1692 1693 1694 1695
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1706
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1707 1708
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1709
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1710 1711
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1712
      });
S
sneaxiy 已提交
1713

D
dzhwinter 已提交
1714
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1715
  m.def("init_glog", framework::InitGLOG);
1716
  m.def("load_op_library", framework::LoadOpLib);
1717
  m.def("init_devices", []() { framework::InitDevices(); });
1718

1719
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1720
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1721
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1722
  m.def("supports_bfloat16", SupportsBfloat16);
1723
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1724
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1725 1726 1727
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1747 1748 1749 1750 1751 1752 1753
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1763 1764 1765 1766 1767 1768
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1769

1770
  m.def("set_feed_variable", framework::SetFeedVariable);
1771 1772 1773 1774 1775
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1776
            return py::cast(BOOST_GET(LoDTensor, var));
1777
          } else {
1778
            return py::cast(BOOST_GET(LoDTensorArray, var));
1779 1780
          }
        });
1781
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1782

X
Xin Pan 已提交
1783 1784
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1785 1786 1787 1788 1789
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1790
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1791

Y
Yu Yang 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1801
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1802
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1803 1804 1805

    Examples:
        .. code-block:: python
1806

Z
Zeng Jinle 已提交
1807 1808 1809 1810
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1811 1812
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1813 1814 1815 1816 1817 1818
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1819 1820 1821 1822
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1823 1824 1825
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1826 1827 1828 1829 1830 1831
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1832 1833
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1834 1835 1836 1837 1838 1839
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1862

1863 1864 1865 1866 1867 1868 1869 1870
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1871
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1872 1873
                 res[i] = py::cast(std::move(data));
               } else {
1874
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1890
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1891 1892 1893 1894 1895 1896 1897 1898
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1899
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1900 1901 1902 1903 1904 1905 1906 1907 1908
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1909 1910
        )DOC")
      .def("_move_to_list",
1911
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1912 1913 1914 1915
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1916
                 if (data_is_lod_tensor(self[i][j])) {
1917
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1918 1919
                   tmp[j] = py::cast(std::move(var));
                 } else {
1920
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1921 1922 1923 1924 1925 1926
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1936
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1937
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1938
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1939

P
peizhilin 已提交
1940
#ifndef _WIN32
D
dangqingqing 已提交
1941 1942 1943
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1944
#endif
P
peizhilin 已提交
1945
#endif
Y
Yu Yang 已提交
1946

1947 1948 1949 1950 1951 1952
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1953 1954 1955 1956
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1957
      .value("kAll", platform::ProfilerState::kAll)
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1969
  m.def("set_tracer_option", platform::SetTracerOption);
1970 1971
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1972
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1973
  m.def("reset_profiler", platform::ResetProfiler);
1974
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1975 1976 1977
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1978

1979 1980
  m.def("size_of_dtype", framework::SizeOfType);

1981 1982 1983
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1984 1985
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1986
      .def("has", &ir::Pass::Has)
1987 1988 1989
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1990
           })
1991
      .def(
1992
          "set",
1993 1994 1995
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1996 1997
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1998 1999
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2014 2015
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2016
        self.Apply(graph.get());
F
flame 已提交
2017
      });
2018

X
fix  
Xin Pan 已提交
2019 2020
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2035
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2036

Y
yuyang18 已提交
2037
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2038 2039 2040 2041
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2042 2043 2044
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2045 2046 2047
    Examples:
        .. code-block:: python

2048 2049 2050 2051 2052 2053 2054 2055 2056
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2057

2058 2059
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2060

2061
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2062 2063
          sgd_optimizer.minimize(avg_loss)

2064
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2065 2066
          exec_strategy.num_threads = 4

2067 2068 2069
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2070 2071
        )DOC");

Y
yuyang18 已提交
2072
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2073 2074 2075 2076 2077
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2078
          },
2079 2080
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2081 2082 2083 2084 2085 2086 2087
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2101
      .def_property(
2102 2103 2104 2105
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
2106 2107 2108 2109
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
2110 2111 2112 2113 2114
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2115 2116 2117
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2118 2119
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2120 2121 2122 2123 2124 2125 2126
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2127 2128 2129 2130
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2131
                because the temp variable's shape maybe the same between two iterations.
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2142

2143 2144 2145 2146 2147 2148 2149
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2150
              )DOC")
Q
Qiao Longfei 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2172
              )DOC")
2173 2174 2175 2176 2177 2178 2179 2180
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2181 2182 2183 2184 2185
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2186

Y
yuyang18 已提交
2187
  exec_strategy.def_property(
Y
yuyang18 已提交
2188 2189 2190 2191 2192 2193 2194
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2195 2196
      });

C
chengduo 已提交
2197 2198 2199 2200
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2201 2202 2203
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2204 2205 2206
    Examples:
        .. code-block:: python

2207
            import os
2208 2209 2210 2211
            import paddle
            import paddle.static as static

            paddle.enable_static()
2212

2213 2214
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2215

2216 2217 2218 2219
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2220

2221
            build_strategy = static.BuildStrategy()
2222 2223
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2224 2225
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2226
            program = program.with_data_parallel(loss_name=loss.name,
2227 2228
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2229
)DOC");
Y
yuyang18 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2246 2247 2248 2249
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2250
            self.reduce_ = strategy;
C
chengduo 已提交
2251
          },
2252
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2253 2254
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2255
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2256 2257
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2258
                Default is 'AllReduce'.
F
flame 已提交
2259 2260 2261 2262

                Examples:
                    .. code-block:: python

2263 2264 2265 2266 2267 2268 2269
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2270
                  )DOC")
Y
yuyang18 已提交
2271 2272 2273 2274 2275
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2276 2277 2278 2279
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2280
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2281
          },
2282
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2283
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2284 2285
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2286
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2287 2288 2289 2290

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2291 2292
                        import numpy
                        import os
2293 2294 2295 2296
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2297 2298

                        use_cuda = True
2299 2300
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2301 2302

                        # NOTE: If you use CPU to run the program, you need
2303
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2304 2305 2306 2307 2308 2309
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2310
                            places = static.cpu_places()
C
chengduo 已提交
2311
                        else:
2312
                            places = static.cuda_places()
C
chengduo 已提交
2313

2314 2315 2316 2317
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2318

2319
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2320

2321
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2322
                        build_strategy.gradient_scale_strategy = \
2323 2324 2325
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2326
                                          loss_name=loss.name, build_strategy=build_strategy,
2327
                                          places=places)
C
chengduo 已提交
2328 2329 2330 2331 2332 2333

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2334 2335
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2336
                   )DOC")
Y
yuyang18 已提交
2337 2338 2339 2340
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2341 2342 2343 2344
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2345
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2346
          },
2347
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2348
                writing the SSA Graph to file in the form of graphviz.
2349
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2350 2351 2352 2353

                Examples:
                    .. code-block:: python

2354 2355 2356 2357
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2358

2359 2360
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2361
                    )DOC")
S
sneaxiy 已提交
2362 2363 2364 2365 2366 2367
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2368 2369 2370 2371
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2372 2373
            self.enable_sequential_execution_ = b;
          },
2374 2375
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2376 2377 2378 2379

                Examples:
                    .. code-block:: python

2380 2381 2382 2383 2384 2385
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2386 2387
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2388 2389 2390 2391 2392 2393
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2394 2395 2396 2397
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2398 2399
            self.remove_unnecessary_lock_ = b;
          },
2400 2401
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2402 2403 2404 2405

                Examples:
                    .. code-block:: python

2406 2407 2408 2409 2410 2411
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2412 2413
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2414 2415 2416 2417
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2418
#ifdef WIN32
2419
            PADDLE_THROW(platform::errors::Unavailable(
2420
                "Distribution mode is not supported on Windows platform."));
2421
#endif
2422 2423
            self.num_trainers_ = num_trainers;
          })
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2436 2437 2438 2439 2440 2441
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2442
      .def_property("use_hierarchical_allreduce",
2443 2444 2445 2446 2447 2448
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2449
      .def_property("hierarchical_allreduce_inter_nranks",
2450 2451 2452 2453 2454 2455 2456
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2457 2458 2459 2460 2461 2462
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2463 2464 2465 2466
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2467 2468
            self.fuse_elewise_add_act_ops_ = b;
          },
2469
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2470
                to fuse elementwise_add_op and activation_op,
2471
                it may make the execution faster. Default is False.
F
flame 已提交
2472 2473 2474 2475

                Examples:
                    .. code-block:: python

2476 2477 2478 2479 2480 2481
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2482 2483
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2484 2485 2486 2487
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2488
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2489
                              platform::errors::PreconditionNotMet(
2490 2491
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2501 2502 2503 2504 2505 2506
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2507 2508
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2534 2535 2536 2537
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2538
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2539
                              platform::errors::PreconditionNotMet(
2540 2541
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2552 2553 2554 2555 2556 2557
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2558 2559
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2560 2561 2562 2563 2564 2565
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2566 2567 2568 2569
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2570 2571
            self.fuse_relu_depthwise_conv_ = b;
          },
2572
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2573 2574 2575
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2576
                Default is False.
F
flame 已提交
2577 2578 2579 2580

                Examples:
                    .. code-block:: python

2581 2582 2583 2584 2585 2586
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2587 2588
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2589 2590 2591 2592 2593 2594
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2595 2596 2597 2598
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2599 2600
                      self.fuse_broadcast_ops_ = b;
                    },
2601
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2602 2603 2604 2605
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2606 2607 2608 2609 2610
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2611 2612 2613 2614 2615 2616
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2617 2618
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2619 2620
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2621 2622
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2623 2624
                    },
                    [](BuildStrategy &self, bool b) {
2625 2626 2627 2628
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2629 2630
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2631 2632 2633 2634
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2635 2636 2637 2638
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2639 2640
            self.sync_batch_norm_ = b;
          },
2641
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2642 2643 2644
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2645 2646
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2647 2648 2649 2650

                Examples:
                    .. code-block:: python

2651 2652 2653 2654 2655 2656
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2657 2658
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2659 2660
      .def_property(
          "memory_optimize",
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2675 2676 2677
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2678 2679
            }
          },
2680
          R"DOC((bool, optional): memory opitimize aims to save total memory
2681
                consumption, set to True to enable it.
2682

2683 2684 2685
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2700 2701 2702
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2703 2704 2705
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2706
              PADDLE_THROW(platform::errors::Unavailable(
2707
                  "Distribution mode is not supported on Windows platform."));
2708 2709 2710 2711 2712
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2713 2714 2715
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2716
      .def_property(
D
dzhwinter 已提交
2717 2718 2719
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2720 2721 2722 2723
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2724 2725
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2726 2727 2728 2729
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2730
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2731 2732 2733 2734 2735 2736 2737
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2738 2739 2740 2741
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2742 2743 2744 2745 2746 2747 2748 2749 2750
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2751
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2752
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2753 2754 2755 2756 2757
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2758 2759

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2760
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2761
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2762
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2763 2764 2765 2766
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2767 2768 2769 2770 2771
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2772 2773 2774
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2775 2776 2777 2778
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2779 2780
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2781 2782 2783 2784 2785 2786 2787 2788
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2789
               return py::cast(
2790
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2791 2792
             } else {
               return py::cast(std::move(
2793
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2794
             }
2795 2796
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2797

D
dongdaxiang 已提交
2798
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2799 2800 2801
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
#endif
2802
  BindGlooWrapper(&m);
H
hutuxian 已提交
2803
  BindBoxHelper(&m);
H
hutuxian 已提交
2804 2805 2806
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2807
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2808
  BindNCCLWrapper(&m);
2809 2810 2811
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2812
#endif
F
flame 已提交
2813 2814
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2815
  BindInferenceApi(&m);
2816
  BindCompatible(&m);
2817
  BindDataset(&m);
Y
yaoxuefeng 已提交
2818
  BindGenerator(&m);
Y
Yanghello 已提交
2819 2820 2821
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
2822 2823
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
2824 2825
  BindCommunicatorContext(&m);
  BindLargeScaleKV(&m);
2826
#endif
L
Luo Tao 已提交
2827
}
2828
}  // namespace pybind
2829
}  // namespace paddle