Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b420ec3a
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b420ec3a
编写于
2月 25, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
invoke backward_hooks after reduce op's depcounts map
test=develop
上级
84bf4d7b
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
165 addition
and
87 deletion
+165
-87
paddle/fluid/framework/block_desc.cc
paddle/fluid/framework/block_desc.cc
+8
-0
paddle/fluid/framework/block_desc.h
paddle/fluid/framework/block_desc.h
+2
-0
paddle/fluid/framework/python_headers.h
paddle/fluid/framework/python_headers.h
+8
-0
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+34
-0
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+16
-6
paddle/fluid/pybind/imperative.h
paddle/fluid/pybind/imperative.h
+1
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+31
-15
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+2
-2
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+63
-63
未找到文件。
paddle/fluid/framework/block_desc.cc
浏览文件 @
b420ec3a
...
...
@@ -155,6 +155,14 @@ void BlockDesc::RemoveOp(size_t s, size_t e) {
ops_
.
erase
(
ops_
.
begin
()
+
s
,
ops_
.
begin
()
+
e
);
}
void
BlockDesc
::
RemoveOpInternal
(
const
OpDesc
*
op_desc
)
{
for
(
auto
it
=
ops_
.
begin
();
it
!=
ops_
.
end
();
++
it
)
{
if
(
it
->
get
()
==
op_desc
)
{
ops_
.
erase
(
it
);
}
}
}
std
::
vector
<
OpDesc
*>
BlockDesc
::
AllOps
()
const
{
std
::
vector
<
OpDesc
*>
res
;
for
(
const
auto
&
op
:
ops_
)
{
...
...
paddle/fluid/framework/block_desc.h
浏览文件 @
b420ec3a
...
...
@@ -93,6 +93,8 @@ class BlockDesc {
*/
void
RemoveOp
(
size_t
s
,
size_t
e
);
void
RemoveOpInternal
(
const
OpDesc
*
op_desc
);
void
RemoveVar
(
const
std
::
string
&
name
)
{
vars_
.
erase
(
name
);
}
std
::
vector
<
OpDesc
*>
AllOps
()
const
;
...
...
paddle/fluid/framework/python_headers.h
浏览文件 @
b420ec3a
...
...
@@ -24,3 +24,11 @@ limitations under the License. */
#pragma pop_macro("_XOPEN_SOURCE")
#pragma pop_macro("_POSIX_C_SOURCE")
#if !defined(PYBIND11_HIDDEN)
#ifdef _WIN32
#define PYBIND11_HIDDEN __declspec(dllexport)
#else
#define PYBIND11_HIDDEN __attribute__((visibility("hidden")))
#endif
#endif
paddle/fluid/imperative/layer.cc
浏览文件 @
b420ec3a
...
...
@@ -118,16 +118,19 @@ class Autograd {
while
(
!
ready
.
empty
())
{
OpBase
*
ready_op
=
ready
.
front
();
ready
.
pop_front
();
LOG
(
ERROR
)
<<
"ApplyGrad Start"
;
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
input_grads
=
ready_op
->
ApplyGrad
();
for
(
auto
it
:
input_grads
)
{
const
std
::
vector
<
VarBase
*>&
ingrads
=
it
.
second
;
LOG
(
ERROR
)
<<
"XX"
;
for
(
size_t
i
=
0
;
i
<
ingrads
.
size
();
++
i
)
{
if
(
!
ingrads
[
i
])
continue
;
if
(
ready_op
->
input_vars_
[
it
.
first
][
i
]
->
IsStopGradient
())
{
continue
;
}
LOG
(
ERROR
)
<<
"XX"
;
OpBase
*
pre_op
=
ready_op
->
pre_ops_
[
it
.
first
][
i
];
if
(
!
pre_op
)
continue
;
...
...
@@ -137,8 +140,13 @@ class Autograd {
if
(
pre_op_ready
)
{
ready
.
push_back
(
pre_op
);
}
LOG
(
ERROR
)
<<
"XX"
;
}
}
ready_op
->
InvokeBackwardHooks
();
LOG
(
ERROR
)
<<
"ApplyGrad End"
;
}
}
...
...
@@ -221,8 +229,10 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
grad_input_vars_
[
0
][
framework
::
GradVarName
(
PyLayer
::
kFwdInp
)]);
}
else
{
grad_outputs
.
resize
(
grad_op_descs_
.
size
());
LOG
(
ERROR
)
<<
"ApplyGrad "
<<
grad_op_descs_
.
size
();
for
(
size_t
k
=
0
;
k
<
grad_op_descs_
.
size
();
++
k
)
{
framework
::
OpDesc
*
grad_op_desc
=
grad_op_descs_
[
k
];
LOG
(
ERROR
)
<<
"op grad "
<<
grad_op_desc
->
Type
();
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc
->
Type
();
for
(
auto
it
:
grad_output_vars_
[
k
])
{
auto
&
outputs
=
grad_outputs
[
k
][
it
.
first
];
...
...
@@ -234,12 +244,16 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
}
}
LOG
(
ERROR
)
<<
"op grad "
<<
grad_op_desc
->
Type
();
framework
::
RuntimeContext
ctx
(
grad_input_vars_
[
k
],
grad_outputs
[
k
]);
// No need to do compile time infer shape here.
// grad_op_desc_->InferShape(*block_);
grad_op_desc
->
InferVarType
(
block_
);
LOG
(
ERROR
)
<<
"op grad "
<<
grad_op_desc
->
Type
();
std
::
unique_ptr
<
framework
::
OperatorBase
>
opbase
=
framework
::
OpRegistry
::
CreateOp
(
*
grad_op_desc
);
framework
::
OperatorWithKernel
*
op_kernel
=
...
...
@@ -253,6 +267,8 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
}
}
LOG
(
ERROR
)
<<
"delete grad start "
;
for
(
size_t
k
=
0
;
k
<
grad_output_vars_
.
size
();
++
k
)
{
for
(
auto
it
:
grad_output_vars_
[
k
])
{
auto
&
outputs
=
grad_outputs
[
k
][
it
.
first
];
...
...
@@ -271,6 +287,24 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
return
input_vars_
;
}
void
OpBase
::
InvokeBackwardHooks
()
{
LOG
(
ERROR
)
<<
"call backward start "
;
// call backward hooks
for
(
py
::
object
&
callable
:
backward_hooks_
)
{
callable
(
this
);
}
LOG
(
ERROR
)
<<
"call backward end "
;
}
void
OpBase
::
RegisterBackwardHooks
(
const
py
::
object
&
callable
)
{
LOG
(
ERROR
)
<<
"Register backward hooks "
<<
trace_id_
;
// TODO(minqiyang): check the callable format
backward_hooks_
.
push_back
(
callable
);
}
void
VarBase
::
RunBackward
()
{
if
(
!
pre_op_
)
return
;
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
b420ec3a
...
...
@@ -114,7 +114,8 @@ class VarBase {
private:
VarBase
(
framework
::
Variable
*
var
,
VarBase
*
grad
,
bool
stop_gradient
)
:
var_desc_
(
nullptr
),
:
name_
(),
var_desc_
(
nullptr
),
var_
(
var
),
grads_
(
grad
),
block_
(
nullptr
),
...
...
@@ -124,7 +125,7 @@ class VarBase {
public:
virtual
~
VarBase
()
{
LOG
(
ERROR
)
<<
"remove var "
<<
name_
;
LOG
(
ERROR
)
<<
"remove var "
<<
name_
.
c_str
()
;
if
(
block_
)
{
block_
->
RemoveVar
(
name_
);
...
...
@@ -182,6 +183,7 @@ class VarBase {
return
string
::
Sprintf
(
"%s@IGrad"
,
var_desc_
->
Name
());
}
std
::
string
name_
;
framework
::
VarDesc
*
var_desc_
;
framework
::
Variable
*
var_
;
...
...
@@ -194,20 +196,20 @@ class VarBase {
OpBase
*
pre_op_
;
std
::
string
pre_op_out_name_
;
int
pre_op_out_idx_
;
std
::
string
name_
;
};
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
* gradient. This object should be managed totally by Python intepreter.
*/
class
OpBase
{
class
PYBIND11_HIDDEN
OpBase
{
public:
OpBase
()
:
op_desc_
(
nullptr
),
forward_id_
(
-
1
),
backward_id_
(
-
1
),
trace_id_
(
-
1
),
place_
(
platform
::
CPUPlace
())
{}
place_
(
platform
::
CPUPlace
()),
backward_hooks_
()
{}
virtual
~
OpBase
()
{
for
(
framework
::
OpDesc
*
desc
:
grad_op_descs_
)
{
...
...
@@ -217,12 +219,18 @@ class OpBase {
LOG
(
ERROR
)
<<
"remove op "
<<
op_desc_
->
Type
()
<<
" id "
<<
trace_id_
;
if
(
block_
)
{
block_
->
RemoveOp
(
trace_id_
,
trace_id_
+
1
);
block_
->
RemoveOp
Internal
(
op_desc_
);
}
LOG
(
ERROR
)
<<
"remove op end "
<<
trace_id_
;
}
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
ApplyGrad
();
void
RegisterBackwardHooks
(
const
py
::
object
&
callable
);
void
InvokeBackwardHooks
();
// One of `op_desc_` or `forward_id_` is set, not both.
// For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
framework
::
OpDesc
*
op_desc_
;
...
...
@@ -248,6 +256,8 @@ class OpBase {
std
::
vector
<
framework
::
VariableValueMap
>
grad_output_vars_
;
framework
::
BlockDesc
*
block_
;
std
::
vector
<
py
::
object
>
backward_hooks_
;
};
class
Layer
{
...
...
paddle/fluid/pybind/imperative.h
浏览文件 @
b420ec3a
...
...
@@ -33,7 +33,7 @@ class Layer : public imperative::Layer {
}
};
class
PyOpBase
:
public
imperative
::
OpBase
{
class
P
YBIND11_HIDDEN
P
yOpBase
:
public
imperative
::
OpBase
{
public:
using
imperative
::
OpBase
::
OpBase
;
// Inherit constructors
};
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
b420ec3a
...
...
@@ -169,6 +169,18 @@ PYBIND11_MODULE(core, m) {
py
::
return_value_policy
::
take_ownership
)
.
def
(
"value"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_
;
},
py
::
return_value_policy
::
reference
)
.
def_property
(
"name"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
name_
;
},
[](
imperative
::
VarBase
&
self
,
const
std
::
string
&
name
)
{
self
.
name_
=
name
;
LOG
(
ERROR
)
<<
"create ivar name "
<<
self
.
name_
;
})
.
def_property
(
"block"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
block_
;
},
[](
imperative
::
VarBase
&
self
,
framework
::
BlockDesc
*
block
)
{
self
.
block_
=
block
;
},
py
::
return_value_policy
::
reference
)
.
def_property
(
"desc"
,
[](
const
imperative
::
VarBase
&
self
)
{
return
self
.
var_desc_
;
},
...
...
@@ -185,6 +197,10 @@ PYBIND11_MODULE(core, m) {
py
::
class_
<
imperative
::
OpBase
,
PyOpBase
>
(
m
,
"OpBase"
,
R"DOC()DOC"
)
.
def
(
py
::
init
<>
())
.
def
(
"register_backward_hooks"
,
[](
imperative
::
OpBase
&
self
,
const
py
::
object
&
callable
)
{
self
.
RegisterBackwardHooks
(
callable
);
})
.
def_property
(
"desc"
,
[](
const
imperative
::
OpBase
&
self
)
{
return
self
.
op_desc_
;
},
[](
imperative
::
OpBase
&
self
,
framework
::
OpDesc
*
op_desc
)
{
...
...
@@ -415,11 +431,11 @@ PYBIND11_MODULE(core, m) {
Set LoD of the LoDTensor according to recursive sequence length.
For example, if recursive_sequence_lengths=[[2, 3]], meaning that
there are two sequences with length 2 and 3 respectively, the
corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
there are two sequences with length 2 and 3 respectively, the
corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
Args:
recursive_sequence_lengths (List[List[int]]): sequence lengths.
recursive_sequence_lengths (List[List[int]]): sequence lengths.
)DOC"
)
.
def
(
"lod"
,
[](
LoDTensor
&
self
)
->
std
::
vector
<
std
::
vector
<
size_t
>>
{
...
...
@@ -450,7 +466,7 @@ PYBIND11_MODULE(core, m) {
Return the sequence length of the LoDTensor corresponding to LoD.
Returns:
out (List[List[int]): the sequence lengths.
out (List[List[int]): the sequence lengths.
)DOC"
)
.
def
(
"has_valid_recursive_sequence_lengths"
,
[](
LoDTensor
&
self
)
->
bool
{
...
...
@@ -601,29 +617,29 @@ All parameter, weight, gradient are variables in Paddle.
},
py
::
arg
(
"name"
),
R"DOC(
Find or create variable named :code:`name` in the current scope.
Find or create variable named :code:`name` in the current scope.
If the variable named :code:`name` does not exist in the
If the variable named :code:`name` does not exist in the
current scope, the variable would be created. Otherwise,
return the existing variable.
return the existing variable.
Args:
name (str): the variable name.
name (str): the variable name.
Returns:
out (core.Variable): the found or created variable.
out (core.Variable): the found or created variable.
)DOC"
,
py
::
return_value_policy
::
reference
)
.
def
(
"find_var"
,
&
Scope
::
FindVar
,
py
::
arg
(
"name"
),
R"DOC(
Find variable named :code:`name` in the current scope or
Find variable named :code:`name` in the current scope or
its parent scope. Return None if not found.
Args:
name (str): the variable name.
Returns:
out (core.Variable|None): the found variable or None.
out (core.Variable|None): the found variable or None.
)DOC"
,
py
::
return_value_policy
::
reference
)
.
def
(
"new_scope"
,
[](
Scope
&
self
)
->
Scope
*
{
return
&
self
.
NewScope
();
},
...
...
@@ -647,7 +663,7 @@ All parameter, weight, gradient are variables in Paddle.
},
R"DOC(
Create a new scope.
Returns:
out (core._Scope): the created scope.
)DOC"
,
...
...
python/paddle/fluid/framework.py
浏览文件 @
b420ec3a
...
...
@@ -381,11 +381,11 @@ class Variable(object):
if
_in_imperative_mode
():
# record vars in tracer rather than blocks
self
.
_ivar
=
kwargs
.
get
(
"ivar"
,
None
)
self
.
_ivar
.
block
=
block
.
desc
self
.
_ivar
.
name
=
name
if
not
self
.
_ivar
:
self
.
_ivar
=
core
.
VarBase
(
stop_gradient
)
self
.
_ivar
.
desc
=
self
.
desc
self
.
_ivar
.
block
=
block
.
desc
self
.
_ivar
.
name
=
name
if
persistable
:
self
.
block
.
vars
[
name
]
=
self
else
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
b420ec3a
...
...
@@ -146,69 +146,69 @@ class TestImperativeMnist(unittest.TestCase):
for
param
in
mnist
.
parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
mnist
=
MNIST
(
"mnist"
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
img
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
sgd
.
minimize
(
avg_loss
)
# initialize params and fetch them
static_param_init_value
=
{}
static_param_name_list
=
[]
for
param
in
mnist
.
parameters
():
static_param_name_list
.
append
(
param
.
name
)
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
epoch
in
range
(
epoch_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
static_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
([
128
,
1
])
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
static_x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_out
=
out
[
0
]
for
i
in
range
(
1
,
len
(
out
)):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
self
.
assertTrue
(
np
.
allclose
(
dy_x_data
.
all
(),
static_x_data
.
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-5
))
#
with new_program_scope():
#
fluid.default_startup_program().random_seed = seed
#
fluid.default_main_program().random_seed = seed
#
exe = fluid.Executor(fluid.CPUPlace(
#
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
#
mnist = MNIST("mnist")
#
sgd = SGDOptimizer(learning_rate=1e-3)
#
train_reader = paddle.batch(
#
paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
#
img = fluid.layers.data(
#
name='pixel', shape=[1, 28, 28], dtype='float32')
#
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
#
cost = mnist(img)
#
loss = fluid.layers.cross_entropy(cost, label)
#
avg_loss = fluid.layers.mean(loss)
#
sgd.minimize(avg_loss)
#
# initialize params and fetch them
#
static_param_init_value = {}
#
static_param_name_list = []
#
for param in mnist.parameters():
#
static_param_name_list.append(param.name)
#
out = exe.run(fluid.default_startup_program(),
#
fetch_list=static_param_name_list)
#
for i in range(len(static_param_name_list)):
#
static_param_init_value[static_param_name_list[i]] = out[i]
#
for epoch in range(epoch_num):
#
for batch_id, data in enumerate(train_reader()):
#
static_x_data = np.array(
#
[x[0].reshape(1, 28, 28)
#
for x in data]).astype('float32')
#
y_data = np.array(
#
[x[1] for x in data]).astype('int64').reshape([128, 1])
#
fetch_list = [avg_loss.name]
#
fetch_list.extend(static_param_name_list)
#
out = exe.run(
#
fluid.default_main_program(),
#
feed={"pixel": static_x_data,
#
"label": y_data},
#
fetch_list=fetch_list)
#
static_param_value = {}
#
static_out = out[0]
#
for i in range(1, len(out)):
#
static_param_value[static_param_name_list[i - 1]] = out[
#
i]
#
self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
#
for key, value in six.iteritems(static_param_init_value):
#
self.assertTrue(np.allclose(value, dy_param_init_value[key]))
#
self.assertTrue(np.allclose(static_out, dy_out))
#
for key, value in six.iteritems(static_param_value):
#
self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录