pybind.cc 85.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
32
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
33 34 35
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
36
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/framework/op_info.h"
38
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
42
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
45
#include "paddle/fluid/framework/trainer.h"
X
Xin Pan 已提交
46
#include "paddle/fluid/framework/version.h"
H
hong 已提交
47
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
49
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
52
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
53
#include "paddle/fluid/platform/cpu_info.h"
54
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/platform/enforce.h"
56
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
57 58
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
59
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
61
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
63
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
64
#include "paddle/fluid/pybind/global_value_getter_setter.h"
65
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
66
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
67
#include "paddle/fluid/pybind/ir.h"
68

W
wopeizl 已提交
69
#ifndef _WIN32
D
dongdaxiang 已提交
70
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
71
#endif
72
#include "paddle/fluid/framework/data_type.h"
73 74
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
75
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
76
#include "paddle/fluid/pybind/tensor_py.h"
77
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
78
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
79
#ifndef _WIN32
Y
Yi Wang 已提交
80
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
81
#endif
Y
Yi Wang 已提交
82 83
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
84 85
#endif

86 87 88 89
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
90 91
#include "pybind11/stl.h"

92 93 94
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
95
DECLARE_bool(use_mkldnn);
96 97 98
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
99

Q
Qiao Longfei 已提交
100 101 102
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

103
namespace paddle {
104
namespace pybind {
105
bool IsCompiledWithCUDA() {
106
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
107 108 109 110 111 112
  return false;
#else
  return true;
#endif
}

113 114 115 116 117 118 119 120
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

121 122 123 124 125 126 127 128
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

129
bool IsCompiledWithBrpc() {
130
#ifndef PADDLE_WITH_DISTRIBUTE
131 132
  return false;
#endif
133 134 135 136 137 138

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
139 140
}

Y
update  
Yancey1989 已提交
141
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
142
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
143 144 145 146 147 148
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
149 150 151 152 153 154 155 156 157 158
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
      PADDLE_THROW("Save parameter [%s] is None", para.first);
    }
    vec_res.emplace_back(
198
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return vec_res;
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
        PADDLE_ENFORCE_NE(exe, nullptr,
                          "Parameter not Initialized, "
                          "Please set argument [executor] not None "
                          "or run startup program first");
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
        PADDLE_ENFORCE_NOT_NULL(py_var_desc);
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return;
}

285 286 287 288 289 290
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
291 292 293
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
294
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
295

296
  m.doc() = "C++ core of PaddlePaddle";
297

298 299 300 301
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

302
  BindException(&m);
Y
Yu Yang 已提交
303

304 305
  m.def("set_num_threads", &platform::SetNumThreads);

6
633WHU 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
324 325 326 327 328 329 330 331 332
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
333
           const Scope &scope, const Executor *executor) {
H
hong 已提交
334
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
335
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
336 337 338
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

339 340 341 342 343 344
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
364

365 366 367 368 369 370
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
371
  m.def(
S
sneaxiy 已提交
372
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
373 374 375 376
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
377 378 379
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
396 397 398
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
399
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
400

401
  m.def("_set_fuse_parameter_group_size",
402
        &paddle::framework::ir::SetFuseParameterGroupsSize);
403
  m.def("_set_fuse_parameter_memory_size",
404
        &paddle::framework::ir::SetFuseParameterMemorySize);
405

S
sneaxiy 已提交
406 407 408
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

409 410
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

411
  BindImperative(&m);
412

413
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
414
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
415 416
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
417
      .def("_get_dims",
418
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
419
      .def("_set_dims",
Q
qijun 已提交
420
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
421
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
422
           })
Y
yuyang18 已提交
423
      .def("_set_layout",
D
dzhwinter 已提交
424 425 426
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
427
      .def("_alloc_float",
D
dzhwinter 已提交
428
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
429
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
430
           })
Y
yuyang18 已提交
431
      .def("_alloc_float",
Y
Yu Yang 已提交
432
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
433
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
434
           })
435 436 437 438
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
439
      .def("_alloc_int",
Y
Yu Yang 已提交
440
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
441
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
442
           })
Y
yuyang18 已提交
443
      .def("_alloc_int",
D
dzhwinter 已提交
444
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
445
             self.mutable_data<int>(place);
Q
qijun 已提交
446
           })
Y
yuyang18 已提交
447
      .def("_alloc_int",
C
chengduoZH 已提交
448 449 450
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
451
      .def("_alloc_float",
C
chengduoZH 已提交
452 453 454
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
470
      .def("_clear", &Tensor::clear)
471
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
472
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
473
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
474
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
475
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
476 477
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
478 479 480 481 482 483
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.
484 485
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
499

L
Leo Chen 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
539 540 541 542
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
543
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
544
      .def("_dtype", [](Tensor &self) { return self.type(); })
545
      .def("_share_data_with", &Tensor::ShareDataWith)
546 547 548 549 550 551
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
552

L
Leo Chen 已提交
553
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
554
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
629 630 631 632 633 634 635

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
636 637

        )DOC")
638
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
639 640 641 642 643 644 645 646 647
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
648 649
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
650 651 652
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
653
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
654
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
655 656
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
657 658 659
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
660
      .def("set_lod",
661
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
662
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
663
             LoD new_lod;
664 665
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
666 667 668
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
669
             self.set_lod(new_lod);
S
sneaxiy 已提交
670 671 672 673 674
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
675 676 677 678
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
679 680 681 682 683 684 685 686 687 688

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
689
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
690
           )DOC")
691 692 693 694 695 696 697 698 699 700 701
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
702 703
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
704 705
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
706 707
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
708
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
709

L
Leo Chen 已提交
710
           For example, if recursive_sequence_lengths=[[2, 3]], which means
711
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
712
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
713 714

           Args:
L
Leo Chen 已提交
715 716 717 718
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
719 720 721 722 723 724 725 726 727 728

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
729 730
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
731
           )DOC")
732 733 734 735 736 737 738 739
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
740 741 742 743 744
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
745 746
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
747 748 749 750 751 752 753 754 755 756
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
757
           )DOC")
G
gongweibao 已提交
758
      // Set above comments of set_lod.
759 760 761 762 763 764 765 766
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
767 768
           },
           R"DOC(
L
Leo Chen 已提交
769 770
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
771 772

           Returns:
L
Leo Chen 已提交
773
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
774 775 776 777 778 779 780 781 782 783 784

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
785 786 787 788 789 790 791 792
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
793
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
794 795

           Returns:
L
Leo Chen 已提交
796
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
797 798 799 800 801 802 803 804 805 806 807

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
808 809 810 811 812 813 814
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
815
           )DOC")
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
834
      });
D
dangqingqing 已提交
835

Q
qijun 已提交
836 837 838 839 840 841 842 843 844 845 846
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
847 848
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
849 850
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
851 852 853 854 855 856 857 858 859
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
860
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
861
      .def("rows", [](SelectedRows &self) {
862 863 864 865 866
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
867
      });
Q
qijun 已提交
868

869
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
870 871 872

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
873
      .def(py::init<>())
874
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
875
      .def("set_int",
876 877
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
878 879 880 881 882 883 884
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
885
      .def("get_tensor",
886 887
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
888 889
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
890 891 892
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
893 894 895 896 897
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
898 899 900
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
901
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
902 903 904 905 906
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
907
#endif
Y
Refine  
Yu Yang 已提交
908 909
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
910
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
911 912
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
913
           py::return_value_policy::reference);
914

S
sneaxiy 已提交
915
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
916

S
sneaxiy 已提交
917 918 919 920
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
921

S
sneaxiy 已提交
922 923
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
924
      .def("push",
S
sneaxiy 已提交
925
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
926
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
927
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
928
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
929
           })
S
sneaxiy 已提交
930 931 932
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
Z
Zeng Jinle 已提交
933
      .def("kill", &LoDTensorBlockingQueue::Kill)
S
sneaxiy 已提交
934
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
935

S
sneaxiy 已提交
936
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
937 938
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
939
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
940 941 942 943
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
944
        py::return_value_policy::copy);
S
sneaxiy 已提交
945

S
sneaxiy 已提交
946
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

960
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
961 962 963 964 965 966
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
967 968
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
969
      .def("var",
970
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
971
             return self.Var(name);
Y
Yu Yang 已提交
972
           },
S
sneaxiy 已提交
973 974
           py::arg("name"),
           R"DOC(
975
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
976

977
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
978
           current scope, the variable would be created. Otherwise,
979
           return the existing variable.
S
sneaxiy 已提交
980 981

           Args:
982 983
               name (str): the variable name.

S
sneaxiy 已提交
984
           Returns:
985
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
986 987 988 989
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
990
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
991
           its parent scope. Return None if not found.
992

S
sneaxiy 已提交
993 994
           Args:
               name (str): the variable name.
995

S
sneaxiy 已提交
996
           Returns:
997
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
998
           )DOC",
999
           py::return_value_policy::reference)
1000
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1001 1002 1003 1004 1005 1006
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1007
           py::return_value_policy::reference)
S
sneaxiy 已提交
1008 1009 1010
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1011 1012
           )DOC")
      .def("_kids", &Scope::kids);
1013

S
sneaxiy 已提交
1014 1015 1016 1017 1018 1019
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1020 1021
        R"DOC(
        Create a new scope.
1022

S
sneaxiy 已提交
1023 1024 1025
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1026 1027
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1028 1029
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1030 1031
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1032 1033 1034 1035
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1036 1037
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1038 1039 1040 1041
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1042 1043
    return ret_values;
  });
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1060 1061 1062 1063 1064 1065 1066
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });

Y
Yu Yang 已提交
1067
  m.def("prune", [](const ProgramDesc &origin,
1068
                    const std::set<std::string> &feeded_var_names,
1069
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1070
    ProgramDesc prog_with_targets(origin);
1071

1072
    for (const auto &t : targets) {
1073
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1074
    }
1075
    proto::ProgramDesc pruned_desc;
1076
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
1077
    return new ProgramDesc(pruned_desc);
1078
  });
1079 1080 1081
  m.def("prune_backward", [](const framework::ProgramDesc &program) {
    return PruneBackward(program);
  });
1082 1083 1084 1085
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1086 1087 1088
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1089 1090
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1091
  // clang-format off
Y
Yu Yang 已提交
1092
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1093 1094
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1095
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1096 1097 1098
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1099
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1100
                      -> paddle::platform::DeviceContext* {
1101
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
1102
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
1103
#else
Q
qijun 已提交
1104
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1105
#endif
C
chengduoZH 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1117
// clang-format on
P
peizhilin 已提交
1118
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
1119 1120
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1121
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1122 1123 1124 1125 1126 1127 1128 1129
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1130
    The memory of CUDAPlace with different dev_id is not accessible.
1131 1132 1133 1134 1135 1136 1137 1138
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1139 1140 1141 1142

    Examples:
        .. code-block:: python

1143
          import paddle.fluid as fluid
L
lujun 已提交
1144 1145
          gpu_place = fluid.CUDAPlace(0)

1146
        )DOC")
S
sneaxiy 已提交
1147 1148 1149
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1174 1175
             new (&self) platform::CUDAPlace(dev_id);
#else
1176 1177 1178 1179 1180 1181 1182 1183 1184
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1185 1186
#endif
           })
S
sneaxiy 已提交
1187 1188 1189 1190 1191 1192
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
1193
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1194

1195
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1196 1197
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1198 1199 1200 1201

    Examples:
        .. code-block:: python

1202
          import paddle.fluid as fluid
1203
          cpu_place = fluid.CPUPlace()to be allocated
L
lujun 已提交
1204

1205
        )DOC")
1206
      .def(py::init<>())
S
sneaxiy 已提交
1207 1208 1209 1210 1211 1212
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1213
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1214

1215
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1216 1217 1218 1219 1220 1221
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1222 1223 1224 1225

    Examples:
        .. code-block:: python

1226
          import paddle.fluid as fluid
L
lujun 已提交
1227 1228
          place = fluid.CUDAPinnedPlace()

1229
        )DOC")
S
sneaxiy 已提交
1230
      .def("__init__",
S
sneaxiy 已提交
1231
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1232 1233 1234
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
1235
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1236
           })
S
sneaxiy 已提交
1237 1238 1239 1240 1241 1242 1243 1244
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1245 1246
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1247 1248
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1249 1250 1251 1252 1253
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1254 1255
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1256 1257 1258 1259 1260 1261
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1262 1263 1264 1265
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
1266 1267
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1268 1269 1270 1271 1272
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1273
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1274
             self = gpu_place;
C
chengduoZH 已提交
1275 1276
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1277 1278
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1279
      });
Y
Yu Yang 已提交
1280

Y
Yu Yang 已提交
1281
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
1293
      .def("run",
1294
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1295 1296 1297
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1298
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1299 1300 1301 1302 1303
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1304 1305 1306 1307 1308 1309 1310
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1311 1312
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1313
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1314
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1315 1316 1317 1318
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1319

1320 1321 1322
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1323 1324 1325 1326 1327 1328 1329 1330 1331
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1332
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1333
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1334
      .def("close", &Executor::Close)
1335 1336
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1337 1338
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1339 1340 1341 1342
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1343
             pybind11::gil_scoped_release release;
1344 1345 1346 1347 1348 1349 1350
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1363
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1364 1365 1366 1367 1368 1369 1370
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1381
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1382 1383
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1384
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1385 1386
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1387
      });
S
sneaxiy 已提交
1388

D
dzhwinter 已提交
1389
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1390
  m.def("init_glog", framework::InitGLOG);
1391
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1392 1393
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1394

1395
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1396
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1397
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1398
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1399
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1400 1401 1402 1403 1404 1405
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1406

1407
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1408
  m.def("get_fetch_variable", framework::GetFetchVariable);
1409
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1410

X
Xin Pan 已提交
1411 1412
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1413 1414 1415 1416 1417
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1418
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1419

Y
Yu Yang 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1429
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1430
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1431 1432 1433

    Examples:
        .. code-block:: python
1434

Z
Zeng Jinle 已提交
1435 1436 1437 1438
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1439 1440
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1451 1452 1453 1454 1455 1456
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1457 1458
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1459 1460 1461 1462 1463 1464
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1487

Y
Yu Yang 已提交
1488
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1489
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1490
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1491

P
peizhilin 已提交
1492
#ifndef _WIN32
D
dangqingqing 已提交
1493 1494 1495
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1496
#endif
P
peizhilin 已提交
1497
#endif
Y
Yu Yang 已提交
1498

1499 1500 1501 1502
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1503
      .value("kAll", platform::ProfilerState::kAll)
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1517
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1518
  m.def("reset_profiler", platform::ResetProfiler);
1519
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1520 1521 1522
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1523

1524 1525
  m.def("size_of_dtype", framework::SizeOfType);

1526 1527 1528
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1529 1530
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1531
      .def("has", &ir::Pass::Has)
1532 1533 1534
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1535
           })
1536
      .def(
1537
          "set",
1538 1539 1540
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1541 1542
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1557 1558
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1559
        self.Apply(graph.get());
F
flame 已提交
1560
      });
1561

X
fix  
Xin Pan 已提交
1562 1563
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1578
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1579

Y
yuyang18 已提交
1580
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1581 1582 1583 1584
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1585 1586 1587
    Examples:
        .. code-block:: python

1588
          import paddle.fluid as fluid
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1599 1600 1601
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1602 1603
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1604 1605
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1606 1607
        )DOC");

Y
yuyang18 已提交
1608
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1609 1610 1611 1612 1613
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1624
      .def_property(
1625 1626 1627 1628
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1629 1630 1631 1632
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1633 1634 1635 1636 1637
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1638 1639 1640
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1641 1642
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1643 1644 1645 1646 1647 1648 1649
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1650 1651 1652 1653
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1654 1655
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1656 1657 1658 1659 1660 1661

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1662
              )DOC")
Q
Qiao Longfei 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
1672
                user call exe.run() in python
Q
Qiao Longfei 已提交
1673
              )DOC")
1674 1675 1676 1677 1678
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1679

Y
yuyang18 已提交
1680
  exec_strategy.def_property(
Y
yuyang18 已提交
1681 1682 1683 1684 1685 1686 1687
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1688 1689
      });

C
chengduo 已提交
1690 1691 1692 1693
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1694 1695 1696
    Examples:
        .. code-block:: python

1697 1698
            import os
            import numpy as np
F
flame 已提交
1699
            import paddle.fluid as fluid
1700 1701 1702 1703 1704 1705 1706 1707 1708

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
1709
            build_strategy = fluid.BuildStrategy()
1710 1711
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
1712
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
1713 1714 1715 1716
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
1717
)DOC");
Y
yuyang18 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1734 1735
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1736
            self.reduce_ = strategy;
C
chengduo 已提交
1737
          },
1738
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
1739 1740
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
1741
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
1742 1743
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
1744
                Default is 'AllReduce'.
F
flame 已提交
1745 1746 1747 1748 1749 1750 1751 1752

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1753 1754 1755 1756 1757
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1758 1759
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1760
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1761
          },
1762 1763
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
1764 1765
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
1766
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
1767 1768 1769 1770 1771

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1800
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1815
                   )DOC")
Y
yuyang18 已提交
1816 1817 1818 1819
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1820 1821
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1822
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1823
          },
1824
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
1825
                writing the SSA Graph to file in the form of graphviz.
1826
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
1827 1828 1829 1830 1831 1832

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1833 1834
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1835
                    )DOC")
S
sneaxiy 已提交
1836 1837 1838 1839 1840 1841
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1842 1843
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1844 1845
            self.enable_sequential_execution_ = b;
          },
1846 1847
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
1848 1849 1850 1851 1852 1853 1854 1855

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1856 1857 1858 1859 1860 1861
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1862 1863
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1864 1865
            self.remove_unnecessary_lock_ = b;
          },
1866 1867
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
1868 1869 1870 1871 1872 1873 1874 1875

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1876 1877 1878 1879
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1880 1881 1882
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1883 1884
            self.num_trainers_ = num_trainers;
          })
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1897 1898 1899 1900 1901 1902
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1903
      .def_property("use_hierarchical_allreduce",
1904 1905 1906 1907 1908 1909
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1910
      .def_property("hierarchical_allreduce_inter_nranks",
1911 1912 1913 1914 1915 1916 1917
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1918 1919 1920 1921 1922 1923
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1924 1925
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
1926 1927
            self.fuse_elewise_add_act_ops_ = b;
          },
1928
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1929
                to fuse elementwise_add_op and activation_op,
1930
                it may make the execution faster. Default is False.
F
flame 已提交
1931 1932 1933 1934 1935 1936 1937 1938

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1939 1940 1941 1942 1943 1944
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1945 1946
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
1947 1948
            self.fuse_relu_depthwise_conv_ = b;
          },
1949
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1950 1951 1952
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
1953
                Default is False.
F
flame 已提交
1954 1955 1956 1957 1958 1959 1960 1961

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
1972
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
1973 1974 1975 1976
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
1977 1978 1979 1980 1981 1982 1983 1984 1985
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
1986 1987
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
1988 1989
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
1990 1991
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1992 1993
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
1994 1995
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1996 1997 1998 1999
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2000 2001
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
2002 2003
            self.sync_batch_norm_ = b;
          },
2004
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2005 2006 2007
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2008 2009
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2010 2011 2012 2013 2014 2015 2016 2017

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2018 2019
      .def_property(
          "memory_optimize",
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
H
hong 已提交
2035 2036
                  "BuildStrategy.memory_optimize must be None, False or "
                  "True");
2037 2038
            }
          },
2039
          R"DOC((bool, optional): memory opitimize aims to save total memory
2040
                consumption, set to True to enable it.
2041

2042 2043 2044
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2045
                True means enabling and False means disabling. Default is None.)DOC")
2046 2047 2048
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2049 2050 2051 2052 2053 2054 2055 2056 2057
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2058 2059 2060
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2061
      .def_property(
D
dzhwinter 已提交
2062 2063 2064
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
2065 2066
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2067 2068 2069 2070
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2071
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2072 2073 2074 2075 2076 2077 2078
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2079 2080 2081 2082
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2083 2084 2085 2086 2087 2088 2089 2090 2091
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2092
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2093
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2094 2095 2096 2097 2098
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2099 2100

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2101
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2102
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2103
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2104 2105 2106 2107
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2108 2109 2110 2111 2112
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2113 2114 2115
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2116 2117 2118 2119
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
2120
      .def("run", [](ParallelExecutor &self,
2121
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
2122
        pybind11::gil_scoped_release release;
2123
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
2124
      });
Y
Yu Yang 已提交
2125

D
dongdaxiang 已提交
2126
  BindFleetWrapper(&m);
H
hutuxian 已提交
2127
  BindBoxHelper(&m);
W
wopeizl 已提交
2128
#ifndef _WIN32
D
dongdaxiang 已提交
2129
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2130
#endif
F
flame 已提交
2131 2132
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2133
  BindInferenceApi(&m);
2134
  BindDataset(&m);
2135 2136 2137
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
2138
}
2139
}  // namespace pybind
2140
}  // namespace paddle