pybind.cc 90.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/garbage_collector.h"
29
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
30
#include "paddle/fluid/framework/ir/pass_builder.h"
31
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
32 33 34
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
35
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/op_info.h"
37
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
38
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
40
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
41
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
43
#include "paddle/fluid/framework/selected_rows.h"
44
#include "paddle/fluid/framework/trainer.h"
45
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
46
#include "paddle/fluid/framework/version.h"
H
hong 已提交
47
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
49
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
52
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
53
#include "paddle/fluid/platform/cpu_info.h"
54
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/platform/enforce.h"
56
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
57 58
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
59
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
61
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
63
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
64
#include "paddle/fluid/pybind/global_value_getter_setter.h"
65
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
66
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
67
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
68
#include "paddle/fluid/pybind/ir.h"
69
#include "paddle/fluid/pybind/pybind_boost_headers.h"
70

71
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
72
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
73
#endif
74
#include "paddle/fluid/framework/data_type.h"
75 76
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
77
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
78
#include "paddle/fluid/pybind/tensor_py.h"
79
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
80
#ifdef PADDLE_WITH_CUDA
81
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
82
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
83
#endif
Y
Yi Wang 已提交
84 85
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
86 87
#endif

88 89 90 91
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
92 93
#include "pybind11/stl.h"

94 95 96
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
97
DECLARE_bool(use_mkldnn);
98 99 100
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
101

Q
Qiao Longfei 已提交
102 103 104
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

105
namespace paddle {
106
namespace pybind {
107
bool IsCompiledWithCUDA() {
108
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
109 110 111 112 113 114
  return false;
#else
  return true;
#endif
}

115 116 117 118 119 120 121 122
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

123 124 125 126 127 128 129 130
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

131
bool IsCompiledWithBrpc() {
132
#ifndef PADDLE_WITH_DISTRIBUTE
133 134
  return false;
#endif
135 136 137 138 139 140

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
141 142
}

Y
update  
Yancey1989 已提交
143
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
144
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
145 146 147 148 149 150
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
151 152 153 154 155 156 157 158 159 160
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
      PADDLE_THROW("Save parameter [%s] is None", para.first);
    }
    vec_res.emplace_back(
200
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return vec_res;
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
        PADDLE_ENFORCE_NE(exe, nullptr,
                          "Parameter not Initialized, "
                          "Please set argument [executor] not None "
                          "or run startup program first");
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
        PADDLE_ENFORCE_NOT_NULL(py_var_desc);
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return;
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

311 312 313 314 315 316
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
317 318 319
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
320
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
321

322 323
  AssertStaticGraphAndDygraphGradMakerNoDiff();

324
  m.doc() = "C++ core of PaddlePaddle";
325

326 327 328 329
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

330
  BindException(&m);
Y
Yu Yang 已提交
331

332 333
  m.def("set_num_threads", &platform::SetNumThreads);

6
633WHU 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
352 353 354 355 356 357 358 359 360
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
361
           const Scope &scope, const Executor *executor) {
H
hong 已提交
362
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
363
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
364 365 366
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

367 368 369 370 371 372
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
392

393 394 395 396 397 398
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
399
  m.def(
S
sneaxiy 已提交
400
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
401 402 403 404
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
405 406 407
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
424 425 426
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
427
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
428

429
  m.def("_set_fuse_parameter_group_size",
430
        &paddle::framework::ir::SetFuseParameterGroupsSize);
431
  m.def("_set_fuse_parameter_memory_size",
432
        &paddle::framework::ir::SetFuseParameterMemorySize);
433

S
sneaxiy 已提交
434 435 436
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

437 438
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

439
  BindImperative(&m);
440

441
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
442
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
443 444
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
445
      .def("_get_dims",
446
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
447
      .def("_set_dims",
Q
qijun 已提交
448
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
449
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
450
           })
Y
yuyang18 已提交
451
      .def("_set_layout",
D
dzhwinter 已提交
452 453 454
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
455
      .def("_alloc_float",
D
dzhwinter 已提交
456
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
457
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
458
           })
Y
yuyang18 已提交
459
      .def("_alloc_float",
Y
Yu Yang 已提交
460
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
461
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
462
           })
463 464 465 466
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
467
      .def("_alloc_int",
Y
Yu Yang 已提交
468
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
469
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
470
           })
Y
yuyang18 已提交
471
      .def("_alloc_int",
D
dzhwinter 已提交
472
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
473
             self.mutable_data<int>(place);
Q
qijun 已提交
474
           })
Y
yuyang18 已提交
475
      .def("_alloc_int",
C
chengduoZH 已提交
476 477 478
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
479
      .def("_alloc_float",
C
chengduoZH 已提交
480 481 482
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
498
      .def("_clear", &Tensor::clear)
499
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
500
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
501
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
502
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
503
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
504 505
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
506 507 508 509 510 511
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.
512 513
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
527

L
Leo Chen 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
567 568 569 570
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
571
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
572
      .def("_dtype", [](Tensor &self) { return self.type(); })
573
      .def("_share_data_with", &Tensor::ShareDataWith)
574 575 576 577 578 579
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
580

L
Leo Chen 已提交
581
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
582
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
657 658 659 660 661 662 663

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
664 665

        )DOC")
666
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
667 668 669 670 671 672 673 674 675
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
676 677
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
678 679 680
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
681
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
682
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
683 684
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
685 686 687
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
688
      .def("set_lod",
689
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
690
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
691
             LoD new_lod;
692 693
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
694 695 696
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
697
             self.set_lod(new_lod);
S
sneaxiy 已提交
698 699 700 701 702
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
703 704 705 706
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
707 708 709 710 711 712 713 714 715 716

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
717
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
718
           )DOC")
719 720 721 722 723 724 725 726 727 728 729
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
730 731
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
732 733
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
734 735
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
736
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
737

L
Leo Chen 已提交
738
           For example, if recursive_sequence_lengths=[[2, 3]], which means
739
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
740
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
741 742

           Args:
L
Leo Chen 已提交
743 744 745 746
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
747 748 749 750 751 752 753 754 755 756

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
757 758
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
759
           )DOC")
760 761 762 763 764 765 766 767
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
768 769 770 771 772
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
773 774
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
775 776 777 778 779 780 781 782 783 784
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
785
           )DOC")
G
gongweibao 已提交
786
      // Set above comments of set_lod.
787 788 789 790 791 792 793 794
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
795 796
           },
           R"DOC(
L
Leo Chen 已提交
797 798
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
799 800

           Returns:
L
Leo Chen 已提交
801
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
802 803 804 805 806 807 808 809 810 811 812

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
813 814 815 816 817 818 819 820
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
821
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
822 823

           Returns:
L
Leo Chen 已提交
824
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
825 826 827 828 829 830 831 832 833 834 835

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
836 837 838 839 840 841 842
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
843
           )DOC")
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
862
      });
D
dangqingqing 已提交
863

Q
qijun 已提交
864 865 866 867 868 869 870 871 872 873 874
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
875 876
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
877 878
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
879 880 881 882 883 884 885 886 887
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
888
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
889
      .def("rows", [](SelectedRows &self) {
890 891 892 893 894
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
895
      });
Q
qijun 已提交
896

897
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
898 899 900

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
901
      .def(py::init<>())
902
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
903
      .def("set_int",
904 905
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
906 907 908 909 910 911 912
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
913
      .def("get_tensor",
914 915
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
916 917
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
918 919 920
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
921 922 923 924 925
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
926 927 928
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
929
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
930 931 932 933 934
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
935
#endif
Y
Refine  
Yu Yang 已提交
936 937
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
938
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
939 940
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
941
           py::return_value_policy::reference);
942

S
sneaxiy 已提交
943
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
944

S
sneaxiy 已提交
945 946 947 948
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
949

S
sneaxiy 已提交
950 951
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
952
      .def("push",
S
sneaxiy 已提交
953
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
954
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
955
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
956
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
957
           })
S
sneaxiy 已提交
958 959 960
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
Z
Zeng Jinle 已提交
961
      .def("kill", &LoDTensorBlockingQueue::Kill)
S
sneaxiy 已提交
962
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
963

S
sneaxiy 已提交
964
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
965 966
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
967
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
968 969 970 971
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
972
        py::return_value_policy::copy);
S
sneaxiy 已提交
973

S
sneaxiy 已提交
974
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

988
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
989 990 991 992 993 994
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
995 996
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
997
      .def("var",
998
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
999
             return self.Var(name);
Y
Yu Yang 已提交
1000
           },
S
sneaxiy 已提交
1001 1002
           py::arg("name"),
           R"DOC(
1003
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1004

1005
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1006
           current scope, the variable would be created. Otherwise,
1007
           return the existing variable.
S
sneaxiy 已提交
1008 1009

           Args:
1010 1011
               name (str): the variable name.

S
sneaxiy 已提交
1012
           Returns:
1013
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1014 1015 1016 1017
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1018
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
1019
           its parent scope. Return None if not found.
1020

S
sneaxiy 已提交
1021 1022
           Args:
               name (str): the variable name.
1023

S
sneaxiy 已提交
1024
           Returns:
1025
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1026
           )DOC",
1027
           py::return_value_policy::reference)
1028
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1029 1030 1031 1032 1033 1034
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1035
           py::return_value_policy::reference)
S
sneaxiy 已提交
1036 1037 1038
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1039 1040
           )DOC")
      .def("_kids", &Scope::kids);
1041

S
sneaxiy 已提交
1042 1043 1044 1045 1046 1047
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1048 1049
        R"DOC(
        Create a new scope.
1050

S
sneaxiy 已提交
1051 1052 1053
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1054 1055
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1056 1057
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1058 1059
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1060 1061 1062 1063
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1064 1065
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1066 1067 1068 1069
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1070 1071
    return ret_values;
  });
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1101 1102 1103
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1104 1105 1106 1107 1108
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1109 1110 1111
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1126
  m.def("prune", [](const ProgramDesc &origin,
1127
                    const std::set<std::string> &feeded_var_names,
1128
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1129
    ProgramDesc prog_with_targets(origin);
1130

1131
    for (const auto &t : targets) {
1132
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1133
    }
1134
    proto::ProgramDesc pruned_desc;
1135
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
1136
    return new ProgramDesc(pruned_desc);
1137
  });
1138 1139 1140
  m.def("prune_backward", [](const framework::ProgramDesc &program) {
    return PruneBackward(program);
  });
1141 1142 1143 1144
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1145 1146 1147
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1148 1149
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1150
  // clang-format off
Y
Yu Yang 已提交
1151
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1152 1153
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1154
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1155 1156 1157
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1158
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1159
                      -> paddle::platform::DeviceContext* {
1160
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
1161
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
1162
#else
Q
qijun 已提交
1163
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1164
#endif
C
chengduoZH 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1176
// clang-format on
1177
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1178 1179
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1180
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1181 1182 1183 1184 1185 1186 1187 1188
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1189
    The memory of CUDAPlace with different dev_id is not accessible.
1190 1191 1192 1193 1194 1195 1196 1197
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1198 1199 1200 1201

    Examples:
        .. code-block:: python

1202
          import paddle.fluid as fluid
L
lujun 已提交
1203 1204
          gpu_place = fluid.CUDAPlace(0)

1205
        )DOC")
S
sneaxiy 已提交
1206 1207 1208
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1233 1234
             new (&self) platform::CUDAPlace(dev_id);
#else
1235 1236 1237 1238 1239 1240 1241 1242 1243
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1244 1245
#endif
           })
S
sneaxiy 已提交
1246 1247 1248 1249 1250 1251
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
1252
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1253

1254
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1255 1256
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1257 1258 1259 1260

    Examples:
        .. code-block:: python

1261
          import paddle.fluid as fluid
1262
          cpu_place = fluid.CPUPlace()to be allocated
L
lujun 已提交
1263

1264
        )DOC")
1265
      .def(py::init<>())
S
sneaxiy 已提交
1266 1267 1268 1269 1270 1271
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1272
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1273

1274
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1275 1276 1277 1278 1279 1280
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1281 1282 1283 1284

    Examples:
        .. code-block:: python

1285
          import paddle.fluid as fluid
L
lujun 已提交
1286 1287
          place = fluid.CUDAPinnedPlace()

1288
        )DOC")
S
sneaxiy 已提交
1289
      .def("__init__",
S
sneaxiy 已提交
1290
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1291 1292 1293
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
1294
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1295
           })
S
sneaxiy 已提交
1296 1297 1298 1299 1300 1301 1302 1303
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1304 1305
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1306 1307
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1308 1309 1310 1311 1312
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1313 1314
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1315 1316 1317 1318 1319 1320
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1321 1322 1323 1324
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
1325 1326
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1327 1328 1329 1330 1331
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1332
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1333
             self = gpu_place;
C
chengduoZH 已提交
1334 1335
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1336 1337
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1338
      });
Y
Yu Yang 已提交
1339

Y
Yu Yang 已提交
1340
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
1352
      .def("run",
1353
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1354 1355 1356
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1357
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1358 1359 1360 1361 1362
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1363 1364 1365 1366 1367 1368 1369
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1370 1371
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1372
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1373
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1374 1375 1376 1377
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1378

1379 1380 1381
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1382 1383 1384 1385 1386 1387 1388 1389 1390
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1391
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1392
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1393
      .def("close", &Executor::Close)
1394 1395
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1396 1397
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1398 1399 1400 1401
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1402
             pybind11::gil_scoped_release release;
1403 1404 1405 1406 1407 1408 1409
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1422
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1423 1424 1425 1426 1427 1428 1429
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1440
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1441 1442
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1443
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1444 1445
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1446
      });
S
sneaxiy 已提交
1447

D
dzhwinter 已提交
1448
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1449
  m.def("init_glog", framework::InitGLOG);
1450
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1451 1452
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1453

1454
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1455
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1456
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1457
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1458
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1459 1460 1461 1462 1463 1464
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1465

1466
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1467
  m.def("get_fetch_variable", framework::GetFetchVariable);
1468
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1469

X
Xin Pan 已提交
1470 1471
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1472 1473 1474 1475 1476
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1477
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1478

Y
Yu Yang 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1488
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1489
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1490 1491 1492

    Examples:
        .. code-block:: python
1493

Z
Zeng Jinle 已提交
1494 1495 1496 1497
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1498 1499
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1510 1511 1512 1513 1514 1515
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1516 1517
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1518 1519 1520 1521 1522 1523
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1546

Y
Yu Yang 已提交
1547
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1548
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1549
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1550

P
peizhilin 已提交
1551
#ifndef _WIN32
D
dangqingqing 已提交
1552 1553 1554
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1555
#endif
P
peizhilin 已提交
1556
#endif
Y
Yu Yang 已提交
1557

1558 1559 1560 1561 1562 1563
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1564 1565 1566 1567
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1568
      .value("kAll", platform::ProfilerState::kAll)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1580
  m.def("set_tracer_option", platform::SetTracerOption);
1581 1582
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1583
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1584
  m.def("reset_profiler", platform::ResetProfiler);
1585
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1586 1587 1588
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1589

1590 1591
  m.def("size_of_dtype", framework::SizeOfType);

1592 1593 1594
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1595 1596
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1597
      .def("has", &ir::Pass::Has)
1598 1599 1600
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1601
           })
1602
      .def(
1603
          "set",
1604 1605 1606
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1607 1608
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1609 1610
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1625 1626
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1627
        self.Apply(graph.get());
F
flame 已提交
1628
      });
1629

X
fix  
Xin Pan 已提交
1630 1631
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1646
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1647

Y
yuyang18 已提交
1648
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1649 1650 1651 1652
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1653 1654 1655
    Examples:
        .. code-block:: python

1656
          import paddle.fluid as fluid
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1667 1668 1669
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1670 1671
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1672 1673
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1674 1675
        )DOC");

Y
yuyang18 已提交
1676
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1677 1678 1679 1680 1681
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1692
      .def_property(
1693 1694 1695 1696
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1697 1698 1699 1700
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1701 1702 1703 1704 1705
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1706 1707 1708
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1709 1710
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1711 1712 1713 1714 1715 1716 1717
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1718 1719 1720 1721
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1722 1723
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1724 1725 1726 1727 1728 1729

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1730
              )DOC")
Q
Qiao Longfei 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
1740
                user call exe.run() in python
Q
Qiao Longfei 已提交
1741
              )DOC")
1742 1743 1744 1745 1746 1747 1748 1749
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
1750 1751 1752 1753 1754
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1755

Y
yuyang18 已提交
1756
  exec_strategy.def_property(
Y
yuyang18 已提交
1757 1758 1759 1760 1761 1762 1763
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1764 1765
      });

C
chengduo 已提交
1766 1767 1768 1769
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1770 1771 1772
    Examples:
        .. code-block:: python

1773 1774
            import os
            import numpy as np
F
flame 已提交
1775
            import paddle.fluid as fluid
1776 1777 1778 1779 1780 1781 1782 1783 1784

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
1785
            build_strategy = fluid.BuildStrategy()
1786 1787
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
1788
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
1789 1790 1791 1792
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
1793
)DOC");
Y
yuyang18 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1810 1811
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1812
            self.reduce_ = strategy;
C
chengduo 已提交
1813
          },
1814
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
1815 1816
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
1817
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
1818 1819
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
1820
                Default is 'AllReduce'.
F
flame 已提交
1821 1822 1823 1824 1825 1826 1827 1828

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1829 1830 1831 1832 1833
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1834 1835
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1836
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1837
          },
1838 1839
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
1840 1841
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
1842
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
1843 1844 1845 1846 1847

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1876
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1891
                   )DOC")
Y
yuyang18 已提交
1892 1893 1894 1895
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1896 1897
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1898
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1899
          },
1900
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
1901
                writing the SSA Graph to file in the form of graphviz.
1902
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
1903 1904 1905 1906 1907 1908

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1909 1910
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1911
                    )DOC")
S
sneaxiy 已提交
1912 1913 1914 1915 1916 1917
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1918 1919
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1920 1921
            self.enable_sequential_execution_ = b;
          },
1922 1923
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
1924 1925 1926 1927 1928 1929 1930 1931

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1932 1933 1934 1935 1936 1937
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1938 1939
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1940 1941
            self.remove_unnecessary_lock_ = b;
          },
1942 1943
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
1944 1945 1946 1947 1948 1949 1950 1951

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1952 1953 1954 1955
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1956 1957 1958
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1959 1960
            self.num_trainers_ = num_trainers;
          })
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1973 1974 1975 1976 1977 1978
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1979
      .def_property("use_hierarchical_allreduce",
1980 1981 1982 1983 1984 1985
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1986
      .def_property("hierarchical_allreduce_inter_nranks",
1987 1988 1989 1990 1991 1992 1993
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1994 1995 1996 1997 1998 1999
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2000 2001
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
2002 2003
            self.fuse_elewise_add_act_ops_ = b;
          },
2004
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2005
                to fuse elementwise_add_op and activation_op,
2006
                it may make the execution faster. Default is False.
F
flame 已提交
2007 2008 2009 2010 2011 2012 2013 2014

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy is finlaized."));
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy is finlaized."));
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2056 2057 2058 2059 2060 2061
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2062 2063
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
2064 2065
            self.fuse_relu_depthwise_conv_ = b;
          },
2066
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2067 2068 2069
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2070
                Default is False.
F
flame 已提交
2071 2072 2073 2074 2075 2076 2077 2078

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
2089
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2090 2091 2092 2093
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2094 2095 2096 2097 2098 2099 2100 2101 2102
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2103 2104
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2105 2106
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2107 2108
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2109 2110
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
2111 2112
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2113 2114 2115 2116
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2117 2118
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
2119 2120
            self.sync_batch_norm_ = b;
          },
2121
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2122 2123 2124
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2125 2126
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2127 2128 2129 2130 2131 2132 2133 2134

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2135 2136
      .def_property(
          "memory_optimize",
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
H
hong 已提交
2152 2153
                  "BuildStrategy.memory_optimize must be None, False or "
                  "True");
2154 2155
            }
          },
2156
          R"DOC((bool, optional): memory opitimize aims to save total memory
2157
                consumption, set to True to enable it.
2158

2159 2160 2161
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2162
                True means enabling and False means disabling. Default is None.)DOC")
2163 2164 2165
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2166 2167 2168 2169 2170 2171 2172 2173 2174
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2175 2176 2177
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2178
      .def_property(
D
dzhwinter 已提交
2179 2180 2181
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
2182 2183
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2184 2185 2186 2187
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2188
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2189 2190 2191 2192 2193 2194 2195
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2196 2197 2198 2199
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2200 2201 2202 2203 2204 2205 2206 2207 2208
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2209
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2210
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2211 2212 2213 2214 2215
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2216 2217

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2218
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2219
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2220
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2221 2222 2223 2224
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2225 2226 2227 2228 2229
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2230 2231 2232
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2233 2234 2235 2236
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2237 2238 2239 2240 2241 2242 2243
      .def("run",
           [](ParallelExecutor &self,
              const std::vector<std::string> &fetch_tensors) {
             pybind11::gil_scoped_release release;
             return self.Run(fetch_tensors);
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2244

D
dongdaxiang 已提交
2245
  BindFleetWrapper(&m);
2246
  BindGlooWrapper(&m);
H
hutuxian 已提交
2247
  BindBoxHelper(&m);
2248
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2249
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2250
#endif
F
flame 已提交
2251 2252
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2253
  BindInferenceApi(&m);
2254
  BindDataset(&m);
2255 2256 2257
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
2258
}
2259
}  // namespace pybind
2260
}  // namespace paddle