pybind.cc 109.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

Y
Yi Wang 已提交
27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
29
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
30
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
31
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
32
#include "paddle/fluid/framework/io/fs.h"
33
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
34
#include "paddle/fluid/framework/ir/pass_builder.h"
35
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
36 37 38
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
39
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
42
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
43
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
44
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
45
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/selected_rows.h"
48
#include "paddle/fluid/framework/trainer.h"
49
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
50
#include "paddle/fluid/framework/version.h"
H
hong 已提交
51
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
52
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
53
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
54
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
55
#include "paddle/fluid/operators/py_func_op.h"
56
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
57
#include "paddle/fluid/platform/cpu_info.h"
58
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
59
#include "paddle/fluid/platform/enforce.h"
60
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
61
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
62 63
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
64
#include "paddle/fluid/pybind/box_helper_py.h"
65
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
67
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
69
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
70
#include "paddle/fluid/pybind/generator_py.h"
71
#include "paddle/fluid/pybind/global_value_getter_setter.h"
72
#include "paddle/fluid/pybind/gloo_context_py.h"
73
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
74
#include "paddle/fluid/pybind/heter_wrapper_py.h"
75
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
76
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
77
#include "paddle/fluid/pybind/ir.h"
78
#include "paddle/fluid/pybind/pybind_boost_headers.h"
79

80
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
81
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
82
#endif
83
#include "paddle/fluid/framework/data_type.h"
84 85
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
86
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
87
#include "paddle/fluid/pybind/tensor_py.h"
88
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
89
#ifdef PADDLE_WITH_CUDA
90
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
91
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
92
#endif
Y
Yi Wang 已提交
93 94
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
95 96
#endif

97 98 99 100
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

101 102 103 104
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

Y
Yanghello 已提交
105 106 107 108
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

M
minqiyang 已提交
109 110
#include "pybind11/stl.h"

111
DECLARE_bool(use_mkldnn);
112

Q
Qiao Longfei 已提交
113 114
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
115 116 117
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
118

119
namespace paddle {
120
namespace pybind {
121
bool IsCompiledWithCUDA() {
122
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
123 124 125 126 127 128
  return false;
#else
  return true;
#endif
}

129 130 131 132 133 134 135 136
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

137 138 139 140 141 142 143 144
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

145 146 147 148 149 150 151 152 153 154 155
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

156
bool IsCompiledWithBrpc() {
157
#ifndef PADDLE_WITH_DISTRIBUTE
158 159
  return false;
#endif
160 161 162 163 164 165

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
166 167
}

Y
update  
Yancey1989 已提交
168
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
169
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
170 171 172 173 174 175
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
176 177 178 179 180 181 182 183 184 185
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
208 209 210
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
224 225
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
226 227
    }
    vec_res.emplace_back(
228
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
229 230 231 232 233 234 235 236 237 238 239 240
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
241 242
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
243 244 245 246 247 248 249 250 251 252 253 254
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
255 256 257
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
258 259 260 261
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
262 263
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
264 265 266 267
  }
  return vec_res;
}

268 269 270 271 272 273 274 275
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
276 277
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
278 279 280 281 282 283 284 285 286 287 288 289 290
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
291 292 293
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
294 295 296 297 298
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
299 300 301 302 303
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
304 305
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
306 307 308
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
309 310 311 312 313 314 315 316 317
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
318 319
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
320 321 322 323 324
  }

  return;
}

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

349 350 351 352 353 354
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
355 356 357
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
358
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
359

360 361
  AssertStaticGraphAndDygraphGradMakerNoDiff();

362
  m.doc() = "C++ core of PaddlePaddle";
363

364 365 366 367
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

368
  BindException(&m);
Y
Yu Yang 已提交
369

370 371
  m.def("set_num_threads", &platform::SetNumThreads);

372 373 374 375
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
394 395 396 397 398 399 400 401 402
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
403
           const Scope &scope, const Executor *executor) {
H
hong 已提交
404
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
405
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
406 407 408
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

409 410 411 412 413 414
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
434

435 436 437 438 439 440
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
441
  m.def(
S
sneaxiy 已提交
442
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
443 444 445 446
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
447 448 449
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
466 467 468
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
469
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
470

471
  m.def("_set_fuse_parameter_group_size",
472
        &paddle::framework::ir::SetFuseParameterGroupsSize);
473
  m.def("_set_fuse_parameter_memory_size",
474
        &paddle::framework::ir::SetFuseParameterMemorySize);
475

S
sneaxiy 已提交
476 477 478
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

479 480
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

481
  BindImperative(&m);
482

483
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
484
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
485 486
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
487
      .def("_get_dims",
488
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
489
      .def("_set_dims",
Q
qijun 已提交
490
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
491
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
492
           })
Y
yuyang18 已提交
493
      .def("_set_layout",
D
dzhwinter 已提交
494 495 496
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
497
      .def("_alloc_float",
D
dzhwinter 已提交
498
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
499
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
500
           })
501 502 503 504
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
505
      .def("_alloc_float",
Y
Yu Yang 已提交
506
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
507
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
508
           })
509 510 511 512
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
513
      .def("_alloc_int",
Y
Yu Yang 已提交
514
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
515
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
516
           })
517 518 519 520
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
521
      .def("_alloc_int",
D
dzhwinter 已提交
522
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
523
             self.mutable_data<int>(place);
Q
qijun 已提交
524
           })
Y
yuyang18 已提交
525
      .def("_alloc_int",
C
chengduoZH 已提交
526 527 528
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
529
      .def("_alloc_float",
C
chengduoZH 已提交
530 531 532
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
533 534 535 536 537
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
538 539 540 541 542
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
543 544 545 546 547 548 549 550 551 552
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
553
      .def("_clear", &Tensor::clear)
554
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
555
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
556 557
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
558
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
559
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
560
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
561 562
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
563 564 565 566
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
567
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
568
          LoDTensor is to be set.
569 570
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
584

L
Leo Chen 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
624 625 626 627
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
628
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
629
      .def("_dtype", [](Tensor &self) { return self.type(); })
630
      .def("_share_data_with", &Tensor::ShareDataWith)
631 632 633 634 635 636
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
637

L
Leo Chen 已提交
638
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
639
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
714 715 716 717 718 719 720

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
721 722

        )DOC")
723
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
724 725 726 727 728 729 730 731 732
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
733 734
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
735 736 737 738
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
739 740
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
741
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
742
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
743 744
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
745 746 747
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
748
      .def("set_lod",
749
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
750
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
751
             LoD new_lod;
752 753
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
754 755
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
756 757
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
758
             self.set_lod(new_lod);
S
sneaxiy 已提交
759 760 761 762 763
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
764 765 766 767
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
768 769 770 771 772 773 774 775 776 777

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
778
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
779
           )DOC")
780 781 782 783 784 785 786 787 788 789 790
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
791 792
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
793 794 795 796 797
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
798
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
799 800
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
801
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
802

L
Leo Chen 已提交
803
           For example, if recursive_sequence_lengths=[[2, 3]], which means
804
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
805
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
806 807

           Args:
L
Leo Chen 已提交
808 809 810 811
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
812 813 814 815 816 817 818 819 820 821

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
822 823
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
824
           )DOC")
825 826 827 828 829 830 831 832
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
833 834 835 836 837
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
838 839
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
840 841 842 843 844 845 846 847 848 849
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
850
           )DOC")
G
gongweibao 已提交
851
      // Set above comments of set_lod.
852 853 854 855 856 857 858 859
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
860 861
           },
           R"DOC(
L
Leo Chen 已提交
862 863
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
864 865

           Returns:
L
Leo Chen 已提交
866
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
867 868 869 870 871 872 873 874 875 876 877

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
878 879 880 881 882 883 884 885
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
886
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
887 888

           Returns:
L
Leo Chen 已提交
889
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
890 891 892 893 894 895 896 897 898 899 900

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
901 902 903 904 905 906 907
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
908
           )DOC")
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
927
#ifdef _WIN32
928
      });
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
979

Q
qijun 已提交
980 981 982 983 984 985 986 987 988 989 990
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
991 992
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
993 994
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
995 996 997 998 999 1000 1001 1002 1003
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1004
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1005
      .def("rows", [](SelectedRows &self) {
1006 1007 1008 1009 1010
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1011
      });
Q
qijun 已提交
1012

1013
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1014 1015 1016

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1017
      .def(py::init<>())
1018
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1019
      .def("set_int",
1020 1021
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1022 1023 1024 1025 1026 1027 1028
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1029
      .def("get_tensor",
1030 1031
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1032 1033
           },
           py::return_value_policy::reference)
1034 1035 1036 1037
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1038 1039 1040
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1041 1042 1043 1044 1045
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1046 1047 1048
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1049 1050 1051
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1052
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1053 1054 1055 1056 1057
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1058
#endif
Y
Refine  
Yu Yang 已提交
1059 1060
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1061 1062 1063 1064
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1065 1066
             return self.GetMutable<framework::ReaderHolder>();
           },
1067 1068 1069 1070 1071
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1072

S
sneaxiy 已提交
1073
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1074

S
sneaxiy 已提交
1075
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1089
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1090 1091 1092 1093 1094 1095
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1096 1097
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1098
      .def("var",
1099
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1100
             return self.Var(name);
Y
Yu Yang 已提交
1101
           },
S
sneaxiy 已提交
1102 1103
           py::arg("name"),
           R"DOC(
1104
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1105

1106
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1107
           current scope, the variable would be created. Otherwise,
1108
           return the existing variable.
S
sneaxiy 已提交
1109 1110

           Args:
1111 1112
               name (str): the variable name.

S
sneaxiy 已提交
1113
           Returns:
1114
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1115 1116 1117 1118
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1119
           Find variable named :code:`name` in the current scope or
1120
           its parent scope. Return None if not found. 
1121

S
sneaxiy 已提交
1122 1123
           Args:
               name (str): the variable name.
1124

S
sneaxiy 已提交
1125
           Returns:
1126
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1127
           )DOC",
1128
           py::return_value_policy::reference)
1129
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1130 1131 1132 1133 1134 1135
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1136
           py::return_value_policy::reference)
S
sneaxiy 已提交
1137 1138 1139
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1140 1141
           )DOC")
      .def("_kids", &Scope::kids);
1142

S
sneaxiy 已提交
1143 1144 1145 1146 1147 1148
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1149 1150
        R"DOC(
        Create a new scope.
1151

S
sneaxiy 已提交
1152 1153 1154
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1155 1156
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1157 1158
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1159 1160
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1161 1162 1163 1164
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1165 1166
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1167 1168
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1169 1170 1171
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1172 1173
    return ret_values;
  });
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1203 1204 1205
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1206 1207 1208 1209 1210
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1211 1212 1213
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1228
  m.def("prune", [](const ProgramDesc &origin,
1229
                    const std::set<std::string> &feeded_var_names,
1230
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1231
    ProgramDesc prog_with_targets(origin);
1232

1233
    for (const auto &t : targets) {
1234
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1235
    }
1236
    proto::ProgramDesc pruned_desc;
1237 1238 1239 1240
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1241
  });
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1259 1260 1261 1262
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1263 1264 1265
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1266 1267
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1268
  // clang-format off
Y
Yu Yang 已提交
1269
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1270 1271
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1272
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1273 1274
                    return new paddle::platform::CPUDeviceContext();
                  })
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1287
      .def_static("create",
D
dzhwinter 已提交
1288
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1289
                      -> paddle::platform::DeviceContext* {
1290
#ifndef PADDLE_WITH_CUDA
1291 1292 1293 1294
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1295
#else
Q
qijun 已提交
1296
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1297
#endif
C
chengduoZH 已提交
1298 1299 1300 1301 1302
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1303 1304 1305 1306
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1307 1308 1309 1310
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1311
// clang-format on
1312
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1313 1314
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1315
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1316 1317 1318 1319 1320 1321 1322 1323
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1324
    The memory of CUDAPlace with different dev_id is not accessible.
1325 1326 1327 1328 1329 1330 1331 1332
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1333 1334 1335 1336

    Examples:
        .. code-block:: python

1337
          import paddle.fluid as fluid
L
lujun 已提交
1338 1339
          gpu_place = fluid.CUDAPlace(0)

1340
        )DOC")
S
sneaxiy 已提交
1341 1342 1343
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1368 1369
             new (&self) platform::CUDAPlace(dev_id);
#else
1370 1371 1372 1373 1374 1375 1376 1377 1378
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1379 1380
#endif
           })
1381
#ifdef PADDLE_WITH_CUDA
1382 1383
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1384 1385 1386 1387
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1388
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1389 1390
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1391 1392 1393
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
D
dzhwinter 已提交
1394
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1395

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
      .def("__str__", string::to_string<const platform::XPUPlace &>);

1450
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1451
    CPUPlace is a descriptor of a device.
1452
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1453 1454 1455 1456

    Examples:
        .. code-block:: python

1457 1458
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1459

1460
        )DOC")
1461
      .def(py::init<>())
S
sneaxiy 已提交
1462 1463
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1464
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1465 1466 1467 1468
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1469
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1470

1471
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1472 1473 1474 1475 1476 1477
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1478 1479 1480 1481

    Examples:
        .. code-block:: python

1482 1483
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1484

1485
        )DOC")
S
sneaxiy 已提交
1486
      .def("__init__",
S
sneaxiy 已提交
1487
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1488
#ifndef PADDLE_WITH_CUDA
1489 1490 1491
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1492
#endif
S
sneaxiy 已提交
1493
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1494
           })
S
sneaxiy 已提交
1495 1496 1497 1498
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1499 1500
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1501 1502 1503 1504
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1505 1506
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1507 1508
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1509 1510 1511 1512
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1513
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1514
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1515 1516
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1517 1518
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1519 1520
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1521 1522 1523 1524
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1525 1526
      .def("gpu_device_id",
           [](platform::Place &self) {
1527
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1528
           })
1529 1530 1531 1532
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1533 1534
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1535 1536 1537 1538
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1539 1540 1541 1542
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1543
      .def("set_place",
D
dzhwinter 已提交
1544
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1545
             self = gpu_place;
C
chengduoZH 已提交
1546 1547
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1548 1549
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1550
      });
Y
Yu Yang 已提交
1551

Y
Yu Yang 已提交
1552
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1553 1554 1555 1556 1557
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1558 1559 1560 1561 1562 1563 1564
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1565 1566
            return OpRegistry::CreateOp(desc);
          })
1567
      .def("run",
1568
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1569
              const platform::CPUPlace &place) { self.Run(scope, place); })
1570 1571 1572
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1573 1574
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1575
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1576 1577 1578 1579 1580
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1581 1582 1583 1584 1585 1586 1587
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1588 1589
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1590
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1591
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1592 1593 1594 1595
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1596

1597 1598 1599
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1600 1601 1602 1603 1604 1605 1606 1607 1608
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1609
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1610
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1611
      .def("close", &Executor::Close)
1612 1613
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1614 1615
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1616 1617 1618 1619
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1620
             pybind11::gil_scoped_release release;
1621 1622 1623 1624 1625 1626 1627
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1628 1629 1630
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1631
              std::map<std::string, FetchType *> *fetch_targets,
1632 1633 1634 1635 1636 1637 1638 1639
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1640
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1641 1642 1643 1644 1645 1646 1647
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1658
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1659 1660
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1661
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1662 1663
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1664
      });
S
sneaxiy 已提交
1665

D
dzhwinter 已提交
1666
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1667
  m.def("init_glog", framework::InitGLOG);
1668
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1669 1670
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1671

1672
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1673
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1674
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1675
  m.def("supports_bfloat16", SupportsBfloat16);
1676
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1677
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1678 1679 1680
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1700 1701 1702 1703 1704 1705 1706
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1716 1717 1718 1719 1720 1721
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1722

1723
  m.def("set_feed_variable", framework::SetFeedVariable);
1724 1725 1726 1727 1728
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1729
            return py::cast(BOOST_GET(LoDTensor, var));
1730
          } else {
1731
            return py::cast(BOOST_GET(LoDTensorArray, var));
1732 1733
          }
        });
1734
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1735

X
Xin Pan 已提交
1736 1737
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1738 1739 1740 1741 1742
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1743
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1744

Y
Yu Yang 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1754
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1755
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1756 1757 1758

    Examples:
        .. code-block:: python
1759

Z
Zeng Jinle 已提交
1760 1761 1762 1763
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1764 1765
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1766 1767 1768 1769 1770 1771
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1772 1773 1774 1775
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1776 1777 1778
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1779 1780 1781 1782 1783 1784
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1785 1786
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1787 1788 1789 1790 1791 1792
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1815

1816 1817 1818 1819 1820 1821 1822 1823
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1824
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1825 1826
                 res[i] = py::cast(std::move(data));
               } else {
1827
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1843
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1844 1845 1846 1847 1848 1849 1850 1851
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1852
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1853 1854 1855 1856 1857 1858 1859 1860 1861
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1862 1863
        )DOC")
      .def("_move_to_list",
1864
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1865 1866 1867 1868
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1869
                 if (data_is_lod_tensor(self[i][j])) {
1870
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1871 1872
                   tmp[j] = py::cast(std::move(var));
                 } else {
1873
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1874 1875 1876 1877 1878 1879
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1889
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1890
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1891
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1892

P
peizhilin 已提交
1893
#ifndef _WIN32
D
dangqingqing 已提交
1894 1895 1896
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1897
#endif
P
peizhilin 已提交
1898
#endif
Y
Yu Yang 已提交
1899

1900 1901 1902 1903 1904 1905
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1906 1907 1908 1909
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1910
      .value("kAll", platform::ProfilerState::kAll)
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1922
  m.def("set_tracer_option", platform::SetTracerOption);
1923 1924
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1925
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1926
  m.def("reset_profiler", platform::ResetProfiler);
1927
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1928 1929 1930
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1931

1932 1933
  m.def("size_of_dtype", framework::SizeOfType);

1934 1935 1936
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1937 1938
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1939
      .def("has", &ir::Pass::Has)
1940 1941 1942
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1943
           })
1944
      .def(
1945
          "set",
1946 1947 1948
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1949 1950
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1951 1952
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1967 1968
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1969
        self.Apply(graph.get());
F
flame 已提交
1970
      });
1971

X
fix  
Xin Pan 已提交
1972 1973
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1988
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1989

Y
yuyang18 已提交
1990
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1991 1992 1993 1994
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

1995 1996 1997
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
1998 1999 2000
    Examples:
        .. code-block:: python

2001 2002 2003 2004 2005 2006 2007 2008 2009
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2010

2011 2012
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2013

2014
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2015 2016
          sgd_optimizer.minimize(avg_loss)

2017
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2018 2019
          exec_strategy.num_threads = 4

2020 2021 2022
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2023 2024
        )DOC");

Y
yuyang18 已提交
2025
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2026 2027 2028 2029 2030
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2031
          },
2032 2033
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2034 2035 2036 2037 2038 2039 2040
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2054
      .def_property(
2055 2056 2057 2058
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
2059 2060 2061 2062
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
2063 2064 2065 2066 2067
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2068 2069 2070
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2071 2072
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2073 2074 2075 2076 2077 2078 2079
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2080 2081 2082 2083
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2084
                because the temp variable's shape maybe the same between two iterations.
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2095

2096 2097 2098 2099 2100 2101 2102
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2103
              )DOC")
Q
Qiao Longfei 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2125
              )DOC")
2126 2127 2128 2129 2130 2131 2132 2133
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2134 2135 2136 2137 2138
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2139

Y
yuyang18 已提交
2140
  exec_strategy.def_property(
Y
yuyang18 已提交
2141 2142 2143 2144 2145 2146 2147
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2148 2149
      });

C
chengduo 已提交
2150 2151 2152 2153
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2154 2155 2156
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2157 2158 2159
    Examples:
        .. code-block:: python

2160
            import os
2161 2162 2163 2164
            import paddle
            import paddle.static as static

            paddle.enable_static()
2165

2166 2167
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2168

2169 2170 2171 2172
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2173

2174
            build_strategy = static.BuildStrategy()
2175 2176
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2177 2178
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2179
            program = program.with_data_parallel(loss_name=loss.name,
2180 2181
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2182
)DOC");
Y
yuyang18 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2199 2200 2201 2202
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2203
            self.reduce_ = strategy;
C
chengduo 已提交
2204
          },
2205
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2206 2207
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2208
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2209 2210
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2211
                Default is 'AllReduce'.
F
flame 已提交
2212 2213 2214 2215

                Examples:
                    .. code-block:: python

2216 2217 2218 2219 2220 2221 2222
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2223
                  )DOC")
Y
yuyang18 已提交
2224 2225 2226 2227 2228
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2229 2230 2231 2232
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2233
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2234
          },
2235 2236
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2237 2238
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2239
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2240 2241 2242 2243

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2244 2245
                        import numpy
                        import os
2246 2247 2248 2249
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2250 2251

                        use_cuda = True
2252 2253
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2254 2255

                        # NOTE: If you use CPU to run the program, you need
2256
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2257 2258 2259 2260 2261 2262
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2263
                            places = static.cpu_places()
C
chengduo 已提交
2264
                        else:
2265
                            places = static.cuda_places()
C
chengduo 已提交
2266

2267 2268 2269 2270
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2271

2272
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2273

2274
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2275
                        build_strategy.gradient_scale_strategy = \
2276 2277 2278
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2279
                                          loss_name=loss.name, build_strategy=build_strategy,
2280
                                          places=places)
C
chengduo 已提交
2281 2282 2283 2284 2285 2286

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2287 2288
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2289
                   )DOC")
Y
yuyang18 已提交
2290 2291 2292 2293
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2294 2295 2296 2297
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2298
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2299
          },
2300
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2301
                writing the SSA Graph to file in the form of graphviz.
2302
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2303 2304 2305 2306

                Examples:
                    .. code-block:: python

2307 2308 2309 2310
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2311

2312 2313
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2314
                    )DOC")
S
sneaxiy 已提交
2315 2316 2317 2318 2319 2320
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2321 2322 2323 2324
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2325 2326
            self.enable_sequential_execution_ = b;
          },
2327 2328
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2329 2330 2331 2332

                Examples:
                    .. code-block:: python

2333 2334 2335 2336 2337 2338
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2339 2340
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2341 2342 2343 2344 2345 2346
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2347 2348 2349 2350
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2351 2352
            self.remove_unnecessary_lock_ = b;
          },
2353 2354
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2355 2356 2357 2358

                Examples:
                    .. code-block:: python

2359 2360 2361 2362 2363 2364
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2365 2366
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2367 2368 2369 2370
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2371
#ifdef WIN32
2372
            PADDLE_THROW(platform::errors::Unavailable(
2373
                "Distribution mode is not supported on Windows platform."));
2374
#endif
2375 2376
            self.num_trainers_ = num_trainers;
          })
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2389 2390 2391 2392 2393 2394
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2395
      .def_property("use_hierarchical_allreduce",
2396 2397 2398 2399 2400 2401
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2402
      .def_property("hierarchical_allreduce_inter_nranks",
2403 2404 2405 2406 2407 2408 2409
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2410 2411 2412 2413 2414 2415
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2416 2417 2418 2419
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2420 2421
            self.fuse_elewise_add_act_ops_ = b;
          },
2422
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2423
                to fuse elementwise_add_op and activation_op,
2424
                it may make the execution faster. Default is False.
F
flame 已提交
2425 2426 2427 2428

                Examples:
                    .. code-block:: python

2429 2430 2431 2432 2433 2434
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2435 2436
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2437 2438 2439 2440
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2441
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2442
                              platform::errors::PreconditionNotMet(
2443 2444
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2454 2455 2456 2457 2458 2459
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2460 2461
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2462 2463 2464 2465
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2466
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2467
                              platform::errors::PreconditionNotMet(
2468 2469
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2480 2481 2482 2483 2484 2485
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2486 2487
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2488 2489 2490 2491 2492 2493
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2494 2495 2496 2497
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2498 2499
            self.fuse_relu_depthwise_conv_ = b;
          },
2500
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2501 2502 2503
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2504
                Default is False.
F
flame 已提交
2505 2506 2507 2508

                Examples:
                    .. code-block:: python

2509 2510 2511 2512 2513 2514
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2515 2516
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2517 2518 2519 2520 2521 2522
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2523 2524 2525 2526
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2527 2528
                      self.fuse_broadcast_ops_ = b;
                    },
2529
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2530 2531 2532 2533
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2534 2535 2536 2537 2538
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2539 2540 2541 2542 2543 2544
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2545 2546
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2547 2548
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2549 2550
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2551 2552
                    },
                    [](BuildStrategy &self, bool b) {
2553 2554 2555 2556
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2557 2558
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2559 2560 2561 2562
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2563 2564 2565 2566
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2567 2568
            self.sync_batch_norm_ = b;
          },
2569
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2570 2571 2572
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2573 2574
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2575 2576 2577 2578

                Examples:
                    .. code-block:: python

2579 2580 2581 2582 2583 2584
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2585 2586
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2587 2588
      .def_property(
          "memory_optimize",
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2603 2604 2605
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2606 2607
            }
          },
2608
          R"DOC((bool, optional): memory opitimize aims to save total memory
2609
                consumption, set to True to enable it.
2610

2611 2612 2613
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2628 2629 2630
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2631 2632 2633
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2634
              PADDLE_THROW(platform::errors::Unavailable(
2635
                  "Distribution mode is not supported on Windows platform."));
2636 2637 2638 2639 2640
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2641 2642 2643
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2644
      .def_property(
D
dzhwinter 已提交
2645 2646 2647
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2648 2649 2650 2651
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2652 2653
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2654 2655 2656 2657
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2658
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2659 2660 2661 2662 2663 2664 2665
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2666 2667 2668 2669
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2670 2671 2672 2673 2674 2675 2676 2677 2678
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2679
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2680
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2681 2682 2683 2684 2685
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2686 2687

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2688
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2689
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2690
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2691 2692 2693 2694
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2695 2696 2697 2698 2699
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2700 2701 2702
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2703 2704 2705 2706
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2707 2708
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2709 2710 2711 2712 2713 2714 2715 2716
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2717
               return py::cast(
2718
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2719 2720
             } else {
               return py::cast(std::move(
2721
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2722
             }
2723 2724
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2725

D
dongdaxiang 已提交
2726
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2727 2728 2729
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
#endif
2730
  BindGlooWrapper(&m);
H
hutuxian 已提交
2731
  BindBoxHelper(&m);
H
hutuxian 已提交
2732 2733 2734
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2735
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2736
  BindNCCLWrapper(&m);
2737 2738 2739
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2740
#endif
F
flame 已提交
2741 2742
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2743
  BindInferenceApi(&m);
2744
  BindCompatible(&m);
2745
  BindDataset(&m);
Y
yaoxuefeng 已提交
2746
  BindGenerator(&m);
Y
Yanghello 已提交
2747 2748 2749
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
2750 2751
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
2752 2753
  BindCommunicatorContext(&m);
  BindLargeScaleKV(&m);
2754
#endif
L
Luo Tao 已提交
2755
}
2756
}  // namespace pybind
2757
}  // namespace paddle