pybind.cc 93.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
Y
Yi Wang 已提交
25 26 27
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
28
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
29
#include "paddle/fluid/framework/io/fs.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
32
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
33 34 35
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
36
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/framework/op_info.h"
38
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
42
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
45
#include "paddle/fluid/framework/trainer.h"
46
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
47
#include "paddle/fluid/framework/version.h"
H
hong 已提交
48
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
49
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
50
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
51
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
54
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/platform/cpu_info.h"
56
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/platform/enforce.h"
58
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
59 60
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
61
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
63
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
64
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
65
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
66
#include "paddle/fluid/pybind/global_value_getter_setter.h"
67
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
68
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
69
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
70
#include "paddle/fluid/pybind/ir.h"
71
#include "paddle/fluid/pybind/pybind_boost_headers.h"
72

73
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
74
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
75
#endif
76
#include "paddle/fluid/framework/data_type.h"
77 78
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
79
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
80
#include "paddle/fluid/pybind/tensor_py.h"
81
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
82
#ifdef PADDLE_WITH_CUDA
83
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
84
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
85
#endif
Y
Yi Wang 已提交
86 87
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
88 89
#endif

90 91 92 93
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
94 95
#include "pybind11/stl.h"

96 97 98
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
99
DECLARE_bool(use_mkldnn);
100 101 102
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
103

Q
Qiao Longfei 已提交
104 105 106
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

107
namespace paddle {
108
namespace pybind {
109
bool IsCompiledWithCUDA() {
110
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
111 112 113 114 115 116
  return false;
#else
  return true;
#endif
}

117 118 119 120 121 122 123 124
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

125 126 127 128 129 130 131 132
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

133
bool IsCompiledWithBrpc() {
134
#ifndef PADDLE_WITH_DISTRIBUTE
135 136
  return false;
#endif
137 138 139 140 141 142

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
143 144
}

Y
update  
Yancey1989 已提交
145
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
146
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
147 148 149 150 151 152
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
153 154 155 156 157 158 159 160 161 162
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
      PADDLE_THROW("Save parameter [%s] is None", para.first);
    }
    vec_res.emplace_back(
202
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return vec_res;
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
        PADDLE_ENFORCE_NE(exe, nullptr,
                          "Parameter not Initialized, "
                          "Please set argument [executor] not None "
                          "or run startup program first");
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
        PADDLE_ENFORCE_NOT_NULL(py_var_desc);
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return;
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

313 314 315 316 317 318
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
319 320 321
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
322
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
323

324 325
  AssertStaticGraphAndDygraphGradMakerNoDiff();

326
  m.doc() = "C++ core of PaddlePaddle";
327

328 329 330 331
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

332
  BindException(&m);
Y
Yu Yang 已提交
333

334 335
  m.def("set_num_threads", &platform::SetNumThreads);

6
633WHU 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
354 355 356 357 358 359 360 361 362
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
363
           const Scope &scope, const Executor *executor) {
H
hong 已提交
364
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
365
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
366 367 368
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

369 370 371 372 373 374
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
394

395 396 397 398 399 400
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
401
  m.def(
S
sneaxiy 已提交
402
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
403 404 405 406
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
407 408 409
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
426 427 428
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
429
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
430

431
  m.def("_set_fuse_parameter_group_size",
432
        &paddle::framework::ir::SetFuseParameterGroupsSize);
433
  m.def("_set_fuse_parameter_memory_size",
434
        &paddle::framework::ir::SetFuseParameterMemorySize);
435

S
sneaxiy 已提交
436 437 438
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

439 440
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

441
  BindImperative(&m);
442

443
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
444
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
445 446
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
447
      .def("_get_dims",
448
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
449
      .def("_set_dims",
Q
qijun 已提交
450
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
451
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
452
           })
Y
yuyang18 已提交
453
      .def("_set_layout",
D
dzhwinter 已提交
454 455 456
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
457
      .def("_alloc_float",
D
dzhwinter 已提交
458
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
459
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
460
           })
Y
yuyang18 已提交
461
      .def("_alloc_float",
Y
Yu Yang 已提交
462
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
463
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
464
           })
465 466 467 468
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
469
      .def("_alloc_int",
Y
Yu Yang 已提交
470
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
471
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
472
           })
Y
yuyang18 已提交
473
      .def("_alloc_int",
D
dzhwinter 已提交
474
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
475
             self.mutable_data<int>(place);
Q
qijun 已提交
476
           })
Y
yuyang18 已提交
477
      .def("_alloc_int",
C
chengduoZH 已提交
478 479 480
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
481
      .def("_alloc_float",
C
chengduoZH 已提交
482 483 484
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
500
      .def("_clear", &Tensor::clear)
501
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
502
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
503
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
504
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
505
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
506 507
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
508 509 510 511 512 513
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.
514 515
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
529

L
Leo Chen 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
569 570 571 572
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
573
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
574
      .def("_dtype", [](Tensor &self) { return self.type(); })
575
      .def("_share_data_with", &Tensor::ShareDataWith)
576 577 578 579 580 581
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
582

L
Leo Chen 已提交
583
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
584
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
659 660 661 662 663 664 665

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
666 667

        )DOC")
668
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
669 670 671 672 673 674 675 676 677
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
678 679
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
680 681 682
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
683
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
684
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
685 686
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
687 688 689
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
690
      .def("set_lod",
691
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
692
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
693
             LoD new_lod;
694 695
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
696 697 698
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
699
             self.set_lod(new_lod);
S
sneaxiy 已提交
700 701 702 703 704
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
705 706 707 708
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
709 710 711 712 713 714 715 716 717 718

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
719
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
720
           )DOC")
721 722 723 724 725 726 727 728 729 730 731
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
732 733
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
734 735
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
736 737
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
738
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
739

L
Leo Chen 已提交
740
           For example, if recursive_sequence_lengths=[[2, 3]], which means
741
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
742
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
743 744

           Args:
L
Leo Chen 已提交
745 746 747 748
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
749 750 751 752 753 754 755 756 757 758

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
759 760
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
761
           )DOC")
762 763 764 765 766 767 768 769
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
770 771 772 773 774
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
775 776
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
777 778 779 780 781 782 783 784 785 786
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
787
           )DOC")
G
gongweibao 已提交
788
      // Set above comments of set_lod.
789 790 791 792 793 794 795 796
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
797 798
           },
           R"DOC(
L
Leo Chen 已提交
799 800
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
801 802

           Returns:
L
Leo Chen 已提交
803
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
804 805 806 807 808 809 810 811 812 813 814

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
815 816 817 818 819 820 821 822
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
823
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
824 825

           Returns:
L
Leo Chen 已提交
826
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
827 828 829 830 831 832 833 834 835 836 837

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
838 839 840 841 842 843 844
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
845
           )DOC")
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
864
#ifdef _WIN32
865
      });
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
916

Q
qijun 已提交
917 918 919 920 921 922 923 924 925 926 927
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
928 929
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
930 931
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
932 933 934 935 936 937 938 939 940
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
941
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
942
      .def("rows", [](SelectedRows &self) {
943 944 945 946 947
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
948
      });
Q
qijun 已提交
949

950
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
951 952 953

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
954
      .def(py::init<>())
955
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
956
      .def("set_int",
957 958
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
959 960 961 962 963 964 965
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
966
      .def("get_tensor",
967 968
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
969 970
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
971 972 973
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
974 975 976 977 978
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
979 980 981
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
982
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
983 984 985 986 987
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
988
#endif
Y
Refine  
Yu Yang 已提交
989 990
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
991
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
992 993
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
994
           py::return_value_policy::reference);
995

S
sneaxiy 已提交
996
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
997

S
sneaxiy 已提交
998 999 1000 1001
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
1002

S
sneaxiy 已提交
1003 1004
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
1005
      .def("push",
S
sneaxiy 已提交
1006
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
1007
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
1008
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1009
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
1010
           })
S
sneaxiy 已提交
1011 1012 1013
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
Z
Zeng Jinle 已提交
1014
      .def("kill", &LoDTensorBlockingQueue::Kill)
S
sneaxiy 已提交
1015
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
1016

S
sneaxiy 已提交
1017
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
1018 1019
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
1020
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
1021 1022 1023 1024
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
1025
        py::return_value_policy::copy);
S
sneaxiy 已提交
1026

S
sneaxiy 已提交
1027
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1041
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1042 1043 1044 1045 1046 1047
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1048 1049
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1050
      .def("var",
1051
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1052
             return self.Var(name);
Y
Yu Yang 已提交
1053
           },
S
sneaxiy 已提交
1054 1055
           py::arg("name"),
           R"DOC(
1056
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1057

1058
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1059
           current scope, the variable would be created. Otherwise,
1060
           return the existing variable.
S
sneaxiy 已提交
1061 1062

           Args:
1063 1064
               name (str): the variable name.

S
sneaxiy 已提交
1065
           Returns:
1066
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1067 1068 1069 1070
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1071
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
1072
           its parent scope. Return None if not found.
1073

S
sneaxiy 已提交
1074 1075
           Args:
               name (str): the variable name.
1076

S
sneaxiy 已提交
1077
           Returns:
1078
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1079
           )DOC",
1080
           py::return_value_policy::reference)
1081
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1082 1083 1084 1085 1086 1087
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1088
           py::return_value_policy::reference)
S
sneaxiy 已提交
1089 1090 1091
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1092 1093
           )DOC")
      .def("_kids", &Scope::kids);
1094

S
sneaxiy 已提交
1095 1096 1097 1098 1099 1100
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1101 1102
        R"DOC(
        Create a new scope.
1103

S
sneaxiy 已提交
1104 1105 1106
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1107 1108
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1109 1110
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1111 1112
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1113 1114 1115 1116
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1117 1118
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1119 1120 1121 1122
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1123 1124
    return ret_values;
  });
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1154 1155 1156
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1157 1158 1159 1160 1161
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1162 1163 1164
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1179
  m.def("prune", [](const ProgramDesc &origin,
1180
                    const std::set<std::string> &feeded_var_names,
1181
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1182
    ProgramDesc prog_with_targets(origin);
1183

1184
    for (const auto &t : targets) {
1185
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1186
    }
1187
    proto::ProgramDesc pruned_desc;
1188
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
1189
    return new ProgramDesc(pruned_desc);
1190
  });
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1208 1209 1210 1211
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1212 1213 1214
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1215 1216
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1217
  // clang-format off
Y
Yu Yang 已提交
1218
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1219 1220
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1221
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1222 1223 1224
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1225
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1226
                      -> paddle::platform::DeviceContext* {
1227
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
1228
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
1229
#else
Q
qijun 已提交
1230
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1231
#endif
C
chengduoZH 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1243
// clang-format on
1244
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1245 1246
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1247
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1248 1249 1250 1251 1252 1253 1254 1255
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1256
    The memory of CUDAPlace with different dev_id is not accessible.
1257 1258 1259 1260 1261 1262 1263 1264
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1265 1266 1267 1268

    Examples:
        .. code-block:: python

1269
          import paddle.fluid as fluid
L
lujun 已提交
1270 1271
          gpu_place = fluid.CUDAPlace(0)

1272
        )DOC")
S
sneaxiy 已提交
1273 1274 1275
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1300 1301
             new (&self) platform::CUDAPlace(dev_id);
#else
1302 1303 1304 1305 1306 1307 1308 1309 1310
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1311 1312
#endif
           })
S
sneaxiy 已提交
1313 1314 1315 1316 1317 1318
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
1319
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1320

1321
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1322 1323
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1324 1325 1326 1327

    Examples:
        .. code-block:: python

1328
          import paddle.fluid as fluid
1329
          cpu_place = fluid.CPUPlace()to be allocated
L
lujun 已提交
1330

1331
        )DOC")
1332
      .def(py::init<>())
S
sneaxiy 已提交
1333 1334 1335 1336 1337 1338
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1339
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1340

1341
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1342 1343 1344 1345 1346 1347
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1348 1349 1350 1351

    Examples:
        .. code-block:: python

1352
          import paddle.fluid as fluid
L
lujun 已提交
1353 1354
          place = fluid.CUDAPinnedPlace()

1355
        )DOC")
S
sneaxiy 已提交
1356
      .def("__init__",
S
sneaxiy 已提交
1357
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1358 1359 1360
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
1361
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1362
           })
S
sneaxiy 已提交
1363 1364 1365 1366 1367 1368 1369 1370
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1371 1372
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1373 1374
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1375 1376 1377 1378 1379
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1380 1381
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1382 1383 1384 1385 1386 1387
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1388 1389 1390 1391
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
1392 1393
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1394 1395 1396 1397 1398
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1399
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1400
             self = gpu_place;
C
chengduoZH 已提交
1401 1402
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1403 1404
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1405
      });
Y
Yu Yang 已提交
1406

Y
Yu Yang 已提交
1407
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
1419
      .def("run",
1420
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1421 1422 1423
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1424
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1425 1426 1427 1428 1429
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1430 1431 1432 1433 1434 1435 1436
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1437 1438
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1439
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1440
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1441 1442 1443 1444
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1445

1446 1447 1448
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1449 1450 1451 1452 1453 1454 1455 1456 1457
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1458
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1459
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1460
      .def("close", &Executor::Close)
1461 1462
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1463 1464
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1465 1466 1467 1468
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1469
             pybind11::gil_scoped_release release;
1470 1471 1472 1473 1474 1475 1476
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1489
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1490 1491 1492 1493 1494 1495 1496
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1507
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1508 1509
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1510
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1511 1512
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1513
      });
S
sneaxiy 已提交
1514

D
dzhwinter 已提交
1515
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1516
  m.def("init_glog", framework::InitGLOG);
1517
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1518 1519
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1520

1521
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1522
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1523
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1524
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1525
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
H
hutuxian 已提交
1526 1527 1528
  m.def("run_cmd", [](const std::string &cmd) -> const std::string {
    return paddle::framework::shell_get_command_output(cmd);
  });
1529 1530 1531 1532 1533 1534
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1535

1536
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1537
  m.def("get_fetch_variable", framework::GetFetchVariable);
1538
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1539

X
Xin Pan 已提交
1540 1541
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1542 1543 1544 1545 1546
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1547
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1548

Y
Yu Yang 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1558
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1559
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1560 1561 1562

    Examples:
        .. code-block:: python
1563

Z
Zeng Jinle 已提交
1564 1565 1566 1567
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1568 1569
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1580 1581 1582 1583 1584 1585
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1586 1587
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1588 1589 1590 1591 1592 1593
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1616

Y
Yu Yang 已提交
1617
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1618
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1619
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1620

P
peizhilin 已提交
1621
#ifndef _WIN32
D
dangqingqing 已提交
1622 1623 1624
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1625
#endif
P
peizhilin 已提交
1626
#endif
Y
Yu Yang 已提交
1627

1628 1629 1630 1631 1632 1633
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1634 1635 1636 1637
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1638
      .value("kAll", platform::ProfilerState::kAll)
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1650
  m.def("set_tracer_option", platform::SetTracerOption);
1651 1652
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1653
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1654
  m.def("reset_profiler", platform::ResetProfiler);
1655
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1656 1657 1658
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1659

1660 1661
  m.def("size_of_dtype", framework::SizeOfType);

1662 1663 1664
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1665 1666
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1667
      .def("has", &ir::Pass::Has)
1668 1669 1670
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1671
           })
1672
      .def(
1673
          "set",
1674 1675 1676
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1677 1678
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1679 1680
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1695 1696
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1697
        self.Apply(graph.get());
F
flame 已提交
1698
      });
1699

X
fix  
Xin Pan 已提交
1700 1701
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1716
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1717

Y
yuyang18 已提交
1718
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1719 1720 1721 1722
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1723 1724 1725
    Examples:
        .. code-block:: python

1726
          import paddle.fluid as fluid
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1737 1738 1739
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1740 1741
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1742 1743
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1744 1745
        )DOC");

Y
yuyang18 已提交
1746
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1747 1748 1749 1750 1751
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1762
      .def_property(
1763 1764 1765 1766
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1767 1768 1769 1770
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1771 1772 1773 1774 1775
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1776 1777 1778
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1779 1780
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1781 1782 1783 1784 1785 1786 1787
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1788 1789 1790 1791
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1792 1793
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1794 1795 1796 1797 1798 1799

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1800
              )DOC")
Q
Qiao Longfei 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
1810
                user call exe.run() in python
Q
Qiao Longfei 已提交
1811
              )DOC")
1812 1813 1814 1815 1816 1817 1818 1819
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
1820 1821 1822 1823 1824
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1825

Y
yuyang18 已提交
1826
  exec_strategy.def_property(
Y
yuyang18 已提交
1827 1828 1829 1830 1831 1832 1833
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1834 1835
      });

C
chengduo 已提交
1836 1837 1838 1839
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1840 1841 1842
    Examples:
        .. code-block:: python

1843 1844
            import os
            import numpy as np
F
flame 已提交
1845
            import paddle.fluid as fluid
1846 1847 1848 1849 1850 1851 1852 1853 1854

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
1855
            build_strategy = fluid.BuildStrategy()
1856 1857
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
1858
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
1859 1860 1861 1862
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
1863
)DOC");
Y
yuyang18 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1880 1881
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1882
            self.reduce_ = strategy;
C
chengduo 已提交
1883
          },
1884
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
1885 1886
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
1887
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
1888 1889
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
1890
                Default is 'AllReduce'.
F
flame 已提交
1891 1892 1893 1894 1895 1896 1897 1898

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1899 1900 1901 1902 1903
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1904 1905
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1906
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1907
          },
1908 1909
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
1910 1911
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
1912
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
1913 1914 1915 1916 1917

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1946
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1961
                   )DOC")
Y
yuyang18 已提交
1962 1963 1964 1965
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1966 1967
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1968
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1969
          },
1970
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
1971
                writing the SSA Graph to file in the form of graphviz.
1972
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
1973 1974 1975 1976 1977 1978

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1979 1980
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1981
                    )DOC")
S
sneaxiy 已提交
1982 1983 1984 1985 1986 1987
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1988 1989
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1990 1991
            self.enable_sequential_execution_ = b;
          },
1992 1993
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
1994 1995 1996 1997 1998 1999 2000 2001

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2002 2003 2004 2005 2006 2007
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2008 2009
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
2010 2011
            self.remove_unnecessary_lock_ = b;
          },
2012 2013
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2014 2015 2016 2017 2018 2019 2020 2021

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2022 2023 2024 2025
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2026 2027 2028
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
2029 2030
            self.num_trainers_ = num_trainers;
          })
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2043 2044 2045 2046 2047 2048
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2049
      .def_property("use_hierarchical_allreduce",
2050 2051 2052 2053 2054 2055
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2056
      .def_property("hierarchical_allreduce_inter_nranks",
2057 2058 2059 2060 2061 2062 2063
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2064 2065 2066 2067 2068 2069
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2070 2071
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
2072 2073
            self.fuse_elewise_add_act_ops_ = b;
          },
2074
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2075
                to fuse elementwise_add_op and activation_op,
2076
                it may make the execution faster. Default is False.
F
flame 已提交
2077 2078 2079 2080 2081 2082 2083 2084

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy is finlaized."));
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy is finlaized."));
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2126 2127 2128 2129 2130 2131
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2132 2133
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
2134 2135
            self.fuse_relu_depthwise_conv_ = b;
          },
2136
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2137 2138 2139
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2140
                Default is False.
F
flame 已提交
2141 2142 2143 2144 2145 2146 2147 2148

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
2159
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2160 2161 2162 2163
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2164 2165 2166 2167 2168 2169 2170 2171 2172
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2173 2174
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2175 2176
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2177 2178
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2179 2180
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
2181 2182
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2183 2184 2185 2186
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2187 2188
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
2189 2190
            self.sync_batch_norm_ = b;
          },
2191
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2192 2193 2194
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2195 2196
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2197 2198 2199 2200 2201 2202 2203 2204

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2205 2206
      .def_property(
          "memory_optimize",
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
H
hong 已提交
2222 2223
                  "BuildStrategy.memory_optimize must be None, False or "
                  "True");
2224 2225
            }
          },
2226
          R"DOC((bool, optional): memory opitimize aims to save total memory
2227
                consumption, set to True to enable it.
2228

2229 2230 2231
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2232
                True means enabling and False means disabling. Default is None.)DOC")
2233 2234 2235
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2236 2237 2238 2239 2240 2241 2242 2243 2244
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2245 2246 2247
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2248
      .def_property(
D
dzhwinter 已提交
2249 2250 2251
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
2252 2253
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2254 2255 2256 2257
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2258
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2259 2260 2261 2262 2263 2264 2265
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2266 2267 2268 2269
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2270 2271 2272 2273 2274 2275 2276 2277 2278
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2279
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2280
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2281 2282 2283 2284 2285
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2286 2287

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2288
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2289
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2290
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2291 2292 2293 2294
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2295 2296 2297 2298 2299
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2300 2301 2302
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2303 2304 2305 2306
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2307 2308 2309 2310 2311 2312 2313
      .def("run",
           [](ParallelExecutor &self,
              const std::vector<std::string> &fetch_tensors) {
             pybind11::gil_scoped_release release;
             return self.Run(fetch_tensors);
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2314

D
dongdaxiang 已提交
2315
  BindFleetWrapper(&m);
2316
  BindGlooWrapper(&m);
H
hutuxian 已提交
2317
  BindBoxHelper(&m);
H
hutuxian 已提交
2318 2319 2320
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2321
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2322
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2323
#endif
F
flame 已提交
2324 2325
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2326
  BindInferenceApi(&m);
2327
  BindDataset(&m);
2328 2329 2330
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
2331
}
2332
}  // namespace pybind
2333
}  // namespace paddle