pybind.cc 55.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/framework/garbage_collector.h"
28
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
29 30 31
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
32
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
33
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
35
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
38
#include "paddle/fluid/framework/version.h"
39
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
40
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
42
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
43
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
45
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
46
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/platform/enforce.h"
48
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
51
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
52 53
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
54
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
55
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
56
#include "paddle/fluid/pybind/ir.h"
57 58
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
59
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
61

62
#include "paddle/fluid/string/to_string.h"
63

D
Dong Zhihong 已提交
64
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
65
#ifndef _WIN32
Y
Yi Wang 已提交
66
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
67
#endif
Y
Yi Wang 已提交
68 69
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
70 71
#endif

M
minqiyang 已提交
72 73
#include "pybind11/stl.h"

74 75 76 77
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
78 79 80
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

81
namespace paddle {
82
namespace pybind {
83
bool IsCompiledWithCUDA() {
84
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
85 86 87 88 89 90
  return false;
#else
  return true;
#endif
}

91 92 93 94 95 96 97 98
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

99 100 101 102 103 104 105 106
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

107
bool IsCompiledWithBrpc() {
108
#ifndef PADDLE_WITH_DISTRIBUTE
109 110
  return false;
#endif
111 112 113 114 115 116

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
117 118
}

Y
update  
Yancey1989 已提交
119
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
120
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
121 122 123 124 125 126
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
127 128 129 130 131
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

132
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
133 134 135
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
136
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
137 138
  paddle::framework::UseGarbageCollectorGFlags();

139
  m.doc() = "C++ core of PaddlePaddle";
140

141 142 143 144
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

145
  BindException(&m);
Y
Yu Yang 已提交
146

S
sneaxiy 已提交
147
  m.def(
S
sneaxiy 已提交
148
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
149 150 151 152
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
153 154 155
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

156 157 158 159 160 161 162
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

M
minqiyang 已提交
163
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
164 165
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
166
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
167

M
minqiyang 已提交
168
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
169 170 171 172 173 174 175 176
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
177
      .def("_run_backward",
X
Xin Pan 已提交
178
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
179
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
180
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
181
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
182
      .def("_grad_ivar",
M
minqiyang 已提交
183
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
184
           py::return_value_policy::reference)
M
minqiyang 已提交
185
      .def("_copy_to",
P
Paddle CI 已提交
186
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
187 188 189 190 191
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
192
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
193
      .def("_copy_to",
P
Paddle CI 已提交
194
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
195 196 197 198 199
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
200
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
201
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
202
           py::return_value_policy::reference)
203 204 205
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
206
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
207 208 209 210
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
211

212
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
213
      .def(py::init<const std::string &>())
214 215 216 217
      .def("register_backward_hooks",
           [](imperative::OpBase &self, const py::object &callable) {
             self.RegisterBackwardHooks(callable);
           })
M
minqiyang 已提交
218 219 220 221 222 223 224 225 226 227
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
228 229 230 231 232 233
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
234 235 236 237 238 239 240
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
241 242
          py::return_value_policy::reference);

X
Xin Pan 已提交
243
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
244
  layer.def(py::init<>())
X
Xin Pan 已提交
245 246 247
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
248
      });
X
Xin Pan 已提交
249

X
polish  
Xin Pan 已提交
250
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
251
      .def(py::init<>())
X
Xin Pan 已提交
252 253
      .def_static(
          "apply",
X
Xin Pan 已提交
254
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
255
              -> std::vector<imperative::VarBase *> {
256 257 258 259 260 261 262 263 264 265 266
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  framework::Variable *v = ret_vars[i];
                  // TODO(minqiyang): use unique_name generator to set a name
                  outputs.emplace_back(
                      new imperative::VarBase("", v, nullptr, true));
                }

                return outputs;
X
Xin Pan 已提交
267 268
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
269 270 271 272 273
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
274

275 276
  BindTracer(&m);

277 278 279
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
S
sneaxiy 已提交
280 281
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
282
      .def("_get_dims",
283
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
284
      .def("_set_dims",
Q
qijun 已提交
285
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
286
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
287
           })
Y
yuyang18 已提交
288
      .def("_set_layout",
D
dzhwinter 已提交
289 290 291
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
292
      .def("_alloc_float",
D
dzhwinter 已提交
293
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
294
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
295
           })
Y
yuyang18 已提交
296
      .def("_alloc_float",
Y
Yu Yang 已提交
297
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
298
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
299
           })
Y
yuyang18 已提交
300
      .def("_alloc_int",
Y
Yu Yang 已提交
301
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
302
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
303
           })
Y
yuyang18 已提交
304
      .def("_alloc_int",
D
dzhwinter 已提交
305
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
306
             self.mutable_data<int>(place);
Q
qijun 已提交
307
           })
Y
yuyang18 已提交
308
      .def("_alloc_int",
C
chengduoZH 已提交
309 310 311
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
312
      .def("_alloc_float",
C
chengduoZH 已提交
313 314 315
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
316 317
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
318
      .def("set", PyCPUTensorSetFromArray<double>)
319
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
320
      .def("set", PyCPUTensorSetFromArray<bool>)
321
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
322
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
323
      .def("set", PyCPUTensorSetFromArray<int8_t>)
324
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
325 326
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
327
      .def("set", PyCUDATensorSetFromArray<double>)
328
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
329
      .def("set", PyCUDATensorSetFromArray<bool>)
330
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
331
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
332
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
333 334 335 336 337 338
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
339
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
340
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
341
#endif
342
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
343 344 345 346
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
347
      .def("_place", [](Tensor &self) { return self.place(); })
Y
Yu Yang 已提交
348
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
349

X
Xin Pan 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
363
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
364
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
365
     columns, hence [5, 2].
X
Xin Pan 已提交
366 367 368

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
369 370
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
394 395
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
396 397 398 399 400 401 402 403 404 405 406 407 408 409
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
410
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
411 412 413 414 415
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
416
      .def("set_lod",
417
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
418
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
419
             LoD new_lod;
420 421
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
422 423
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
424
             self.set_lod(new_lod);
S
sneaxiy 已提交
425 426 427 428 429 430 431
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
           )DOC")
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
447 448 449 450
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
451
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
452 453
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
454 455

           Args:
456
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
S
sneaxiy 已提交
457
           )DOC")
458 459 460 461 462 463 464 465
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
466 467 468 469 470 471 472
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
           )DOC")
G
gongweibao 已提交
473
      // Set above comments of set_lod.
474 475 476 477 478 479 480 481
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
482 483 484 485 486
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
487
               out (List[List[int]): the sequence lengths.
S
sneaxiy 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
           )DOC");
D
dangqingqing 已提交
501

Q
qijun 已提交
502 503 504 505 506 507 508 509 510 511 512
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
513 514
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
515 516
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
517 518 519 520 521 522 523 524 525
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
526
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
527
      .def("rows", [](SelectedRows &self) {
528 529 530 531 532
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
533
      });
Q
qijun 已提交
534

535
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
536 537 538

All parameter, weight, gradient are variables in Paddle.
)DOC")
539
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
540
      .def("set_int",
541 542
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
543 544 545 546 547 548 549
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
550
      .def("get_tensor",
551 552
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
553 554
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
555 556 557
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
558 559 560 561 562
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
563 564 565
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
566
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
567 568 569 570 571
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
572
#endif
Y
Refine  
Yu Yang 已提交
573 574 575 576 577
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
578
           py::return_value_policy::reference);
579

Y
Refine  
Yu Yang 已提交
580
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
581
      .def("start", &framework::ReaderHolder::Start)
582
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
583

S
sneaxiy 已提交
584 585 586 587
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
588 589
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
590
      .def("push",
S
sneaxiy 已提交
591
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
592
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
593
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
594
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
595
           })
S
sneaxiy 已提交
596 597 598 599
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
600

S
sneaxiy 已提交
601
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
602 603 604 605 606 607
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
608
        py::return_value_policy::copy);
S
sneaxiy 已提交
609

S
sneaxiy 已提交
610
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
630 631
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
632
      .def("var",
633
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
634
             return self.Var(name);
Y
Yu Yang 已提交
635
           },
S
sneaxiy 已提交
636 637
           py::arg("name"),
           R"DOC(
638
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
639

640
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
641
           current scope, the variable would be created. Otherwise,
642
           return the existing variable.
S
sneaxiy 已提交
643 644

           Args:
645 646
               name (str): the variable name.

S
sneaxiy 已提交
647
           Returns:
648
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
649 650 651 652
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
653
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
654
           its parent scope. Return None if not found.
655

S
sneaxiy 已提交
656 657
           Args:
               name (str): the variable name.
658

S
sneaxiy 已提交
659
           Returns:
660
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
661
           )DOC",
662
           py::return_value_policy::reference)
663
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
664 665 666 667 668 669
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
670
           py::return_value_policy::reference)
S
sneaxiy 已提交
671 672 673
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
674 675
           )DOC")
      .def("_kids", &Scope::kids);
676

S
sneaxiy 已提交
677 678 679 680 681 682
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
683 684
        R"DOC(
        Create a new scope.
685

S
sneaxiy 已提交
686 687 688
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
689 690
        py::return_value_policy::reference);

Y
Yu Yang 已提交
691 692
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
693 694
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
695 696 697 698 699 700 701 702 703 704
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
705 706
    return ret_values;
  });
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
723
  m.def("prune", [](const ProgramDesc &origin,
724
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
725
    ProgramDesc prog_with_targets(origin);
726
    for (const auto &t : targets) {
727
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
728
    }
729
    proto::ProgramDesc pruned_desc;
730
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
731
    return new ProgramDesc(pruned_desc);
732
  });
733 734 735 736
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
737 738 739
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
740 741
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
742
  // clang-format off
Y
Yu Yang 已提交
743
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
744 745
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
746
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
747 748 749
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
750
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
751
                      -> paddle::platform::DeviceContext* {
752
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
753
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
754
#else
Q
qijun 已提交
755
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
756
#endif
C
chengduoZH 已提交
757 758 759 760 761 762 763 764 765 766 767
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
768
// clang-format on
P
peizhilin 已提交
769
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
770 771
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
772
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
773 774 775 776 777 778 779 780 781 782 783 784
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
785 786 787 788 789
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
790
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
791

792 793
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
S
sneaxiy 已提交
794 795 796 797 798
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
799
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
800

C
chengduoZH 已提交
801
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
802
      .def("__init__",
S
sneaxiy 已提交
803
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
804 805 806
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
807
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
808
           })
S
sneaxiy 已提交
809 810 811 812 813 814 815
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
816 817
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
818 819
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
820 821 822 823
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
824 825 826 827 828 829
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
Y
Yu Yang 已提交
830 831 832 833 834
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
835
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
836
             self = gpu_place;
C
chengduoZH 已提交
837 838
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
839 840
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
841
      });
Y
Yu Yang 已提交
842

Y
Yu Yang 已提交
843 844 845
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
846
                    proto::OpDesc desc;
Y
Yu Yang 已提交
847 848 849 850 851
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
852
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
853
                  })
854
      .def("run",
855
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
856 857 858
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
859
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
860 861 862 863 864
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
865 866 867 868 869 870 871
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
872 873
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
874
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
875
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
876 877 878 879
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
880

F
fengjiayi 已提交
881
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
882
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
883
      .def("close", &Executor::Close)
S
sneaxiy 已提交
884
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
885 886
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
887
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
888 889
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
890
      });
S
sneaxiy 已提交
891

D
dzhwinter 已提交
892
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
893
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
894 895
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
896

897
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
898
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
899
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
900
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
901
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
902 903 904 905 906 907
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
908

909
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
910
  m.def("get_fetch_variable", framework::GetFetchVariable);
911
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
912

X
Xin Pan 已提交
913 914
  m.def("_is_program_version_supported", IsProgramVersionSupported);

915 916 917 918 919
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
920

Y
Yu Yang 已提交
921 922 923 924 925 926 927 928 929
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
930
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
931 932
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
933 934 935 936 937 938 939 940 941 942
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
943 944 945 946 947 948 949
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
           py::arg("tensor"), "Append a LoDensor to LoDTensorArray.");
Y
Yu Yang 已提交
950

D
dzhwinter 已提交
951 952 953
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
954
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
955
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
956
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
957

P
peizhilin 已提交
958
#ifndef _WIN32
D
dangqingqing 已提交
959 960 961
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
962
#endif
P
peizhilin 已提交
963
#endif
Y
Yu Yang 已提交
964

965 966 967 968
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
969
      .value("kAll", platform::ProfilerState::kAll)
970 971 972 973 974 975 976 977 978 979 980 981 982
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
983
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
984
  m.def("reset_profiler", platform::ResetProfiler);
985
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
986 987 988
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
989

990 991
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
992
      .def("has", &ir::Pass::Has)
993 994 995
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
996
           })
997
      .def(
998
          "set",
999 1000 1001
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1002 1003
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1004 1005 1006 1007
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
1008
        optim_graph.release();
F
flame 已提交
1009
      });
1010

X
fix  
Xin Pan 已提交
1011 1012
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1027
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1028

Y
yuyang18 已提交
1029
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1030 1031 1032 1033
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1045 1046 1047

        )DOC");

Y
yuyang18 已提交
1048
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1049 1050 1051 1052 1053
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1064
      .def_property(
1065 1066 1067 1068
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1069 1070 1071 1072
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1073 1074 1075 1076 1077
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1078 1079 1080 1081
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1082 1083 1084 1085 1086 1087 1088
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1100 1101 1102 1103 1104 1105
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1106

Y
yuyang18 已提交
1107
  exec_strategy.def_property(
Y
yuyang18 已提交
1108 1109 1110 1111 1112 1113 1114
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1115 1116
      });

C
chengduo 已提交
1117 1118 1119 1120
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1132
)DOC");
Y
yuyang18 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1149
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1150
            self.reduce_ = strategy;
C
chengduo 已提交
1151 1152 1153 1154 1155 1156 1157
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1158 1159 1160 1161 1162
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1163
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1164
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1165 1166 1167 1168 1169 1170
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1171 1172 1173 1174
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1175
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1176
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1177 1178 1179 1180
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1181 1182 1183 1184 1185 1186
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1187
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1197
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1198 1199
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1200
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1201 1202 1203 1204 1205 1206
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1219 1220 1221 1222 1223 1224
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1225
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1226 1227 1228 1229 1230
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
Q
qingqing01 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1260 1261 1262 1263
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1264 1265 1266 1267
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1268
      .def_property(
D
dzhwinter 已提交
1269 1270 1271
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1272 1273 1274 1275
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1276
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1277
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1278 1279 1280 1281 1282
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1283 1284

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1285
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1286
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1287
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1288 1289 1290 1291
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1292 1293 1294 1295 1296
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1297 1298 1299 1300
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1301 1302 1303 1304 1305 1306
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1307

1308
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1309
  BindAsyncExecutor(&m);
F
flame 已提交
1310 1311
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1312
  BindInferenceApi(&m);
L
Luo Tao 已提交
1313
}
1314
}  // namespace pybind
1315
}  // namespace paddle