nn.py 317.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35
    'fc',
    'embedding',
P
peizhilin 已提交
36
    'dynamic_lstm',
X
Xin Pan 已提交
37 38 39 40
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
P
peizhilin 已提交
41
    'crf_decoding',
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
P
peizhilin 已提交
101
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
P
phlrain 已提交
172
    'lstm',
Y
Yu Yang 已提交
173 174 175 176 177 178 179 180 181
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
182
       is_test=False,
183
       name=None):
Y
Yu Yang 已提交
184
    """
185
    **Fully Connected Layer**
Y
Yu Yang 已提交
186

187 188 189 190 191 192 193 194
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
195
    to the output as well.
C
caoying03 已提交
196

C
caoying03 已提交
197
    This process can be formulated as follows:
198 199 200

    .. math::

201
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
202 203 204

    In the above equation:

C
caoying03 已提交
205 206 207 208
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
209
    * :math:`Act`: The activation function.
C
caoying03 已提交
210
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
211 212

    Args:
R
ranqiu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
228 229
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
230
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
231
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
232
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
233

234
    Returns:
F
fengjiayi 已提交
235
        Variable: The transformation result.
236 237

    Raises:
C
caoying03 已提交
238
        ValueError: If rank of the input tensor is less than 2.
239 240 241 242

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
243
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
244
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
245
    """
C
caoying03 已提交
246

C
caoying03 已提交
247
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
248 249 250 251

    dtype = helper.input_dtype()

    mul_results = []
252 253
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
254 255 256
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
257

Y
Yu Yang 已提交
258
        w = helper.create_parameter(
259
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
260
        tmp = helper.create_variable_for_type_inference(dtype)
261
        helper.append_op(
262 263 264
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
265
            outputs={"Out": tmp},
M
mozga-intel 已提交
266 267
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
268 269 270 271
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
272
    else:
X
Xin Pan 已提交
273
        pre_bias = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
278
            attrs={"use_mkldnn": False})
279 280 281 282
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
283 284


285 286 287
def embedding(input,
              size,
              is_sparse=False,
288
              is_distributed=False,
289 290 291
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
292
    """
293 294
    **Embedding Layer**

295
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
296 297
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
298 299 300

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
301 302

    Args:
303 304 305 306 307
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
308
        is_distributed(bool): Whether to run lookup table from remote parameter server.
309 310
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
311
            with zeros whenever lookup encounters it in :attr:`input`. If
312
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
313 314
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
315
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
316

317 318 319
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
320

321 322
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
323

C
chengduoZH 已提交
324
          dict_size = len(dataset.ids)
325
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
326
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
327 328 329 330 331
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
332
    tmp = helper.create_variable_for_type_inference(dtype)
333 334
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
335 336 337 338 339
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
340 341 342 343 344
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
345 346 347
    return tmp


W
wopeizl 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
P
peizhilin 已提交
364

W
wopeizl 已提交
365 366 367 368 369 370 371 372 373 374 375
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
376

W
wopeizl 已提交
377 378 379 380
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
381

W
wopeizl 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
468 469


P
phlrain 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483
def lstm(input,
         init_h,
         init_c,
         max_len,
         dropout_prob,
         input_size,
         hidden_size,
         num_layers,
         is_bidirec=False,
         dtype='float32',
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
484
    """
P
phlrain 已提交
485
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
486 487 488 489 490

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        dropout_prob(float): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
        input_size (int): hidden size of the input tensor
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
        is_bidirec (bool): If it is bidirectional
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
540
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
541

L
liuhongyu 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
567
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
633 634 635 636 637 638 639 640 641 642 643
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
644 645
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
646 647 648
    """
    **Dynamic LSTMP Layer**

649 650 651 652 653 654
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
655 656 657 658 659

    The formula is as follows:

    .. math::

660
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
661

662
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
663

664
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
665

666
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
667

668
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
669

670
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
671

672
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
673

Y
Yibing Liu 已提交
674 675 676 677 678 679
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
680
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
681
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
682
          bias vector).
Y
Yibing Liu 已提交
683 684 685
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
686
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
687
    * :math:`h`: The hidden state.
688
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
689 690
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
691
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
692
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
693
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
694 695
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
696 697 698 699

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
700

Y
Yibing Liu 已提交
701 702 703 704 705 706 707 708 709 710 711 712
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
713
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
714 715
                               hidden-hidden weight and projection weight.

716 717
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
718 719
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
720 721
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
722
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
723 724 725 726 727

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
728
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
729 730 731 732 733 734
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
735
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
736 737 738
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
739
                                - The shape is (1 x 7D).
C
chengduo 已提交
740 741 742 743 744

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
745 746 747 748 749 750 751 752 753
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
754
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
755 756
                              default "tanh".
        proj_activation(str): The activation for projection output.
757
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
758 759
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
760 761
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
762 763

    Returns:
764 765 766 767
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
768 769

    Examples:
770

Y
Yibing Liu 已提交
771 772
        .. code-block:: python

773 774 775 776
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
777
            hidden_dim, proj_dim = 512, 256
778
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
779
                                     act=None, bias_attr=None)
780 781 782
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
783 784 785 786
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
787
    """
788

C
chengduo 已提交
789
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
790
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
791
    size = size // 4
Y
Yibing Liu 已提交
792 793 794 795 796 797 798 799 800 801
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
802 803 804 805 806 807
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
836 837 838 839 840 841 842 843 844
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
845
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
846

847
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
848
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
849

G
guosheng 已提交
850 851 852 853 854 855 856 857 858
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
859

G
guosheng 已提交
860
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
861

G
guosheng 已提交
862
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
863 864
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
865 866 867 868
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
869
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
870 871

    Args:
872 873
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
874
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
875
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
876 877
            is the hidden size.
        size(int): The dimension of the gru cell.
878
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
879 880
            hidden-hidden weight matrix. Note:

881
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
882
              :math:`D` is the hidden size.
883
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
884
              The first part are weights of the update gate and reset gate with
885
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
886
              candidate hidden state with shape :math:`(D \\times D)`.
887 888 889 890 891

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
892
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
893
            the bias in the update gate, reset gate and candidate calculations.
894 895 896
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
897 898
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
899
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
900 901 902
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
903
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
904
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
905 906 907 908
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
909 910

    Returns:
G
guosheng 已提交
911
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
912
            and sequence length is the same with the input.
913

G
guosheng 已提交
914
    Examples:
915

G
guosheng 已提交
916 917
        .. code-block:: python

918 919 920 921
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
922
            hidden_dim = 512
923
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
924 925 926 927 928 929 930 931 932 933
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
934
    batch_size = input.shape[0]
G
guosheng 已提交
935
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
936
    if h_0:
G
guosheng 已提交
937
        assert h_0.shape == (
Y
Yancey 已提交
938 939 940
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
941

X
Xin Pan 已提交
942 943 944 945
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
964 965 966
def gru_unit(input,
             hidden,
             size,
967 968
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
969
             activation='tanh',
970
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
971
    """
972
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
973

974 975
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
976

977
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
978

979
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
980

981
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
982 983

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
984 985 986
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
987 988
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

989 990
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
991 992 993
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
994 995 996

    Args:
        input (Variable): The fc transformed input value of current step.
997
        hidden (Variable): The hidden value of gru unit from previous step.
998
        size (integer): The input dimension value.
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1013
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1014
            the bias in the update gate, reset gate and candidate calculations.
1015 1016 1017
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1018 1019
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1020 1021 1022 1023
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1024

1025 1026 1027 1028 1029 1030
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1031

1032
             # assuming we have x_t_data and prev_hidden of size=10
1033
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1034 1035
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1048
    size = size // 3
Y
Yu Yang 已提交
1049 1050

    # create weight
1051 1052
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1053

X
Xin Pan 已提交
1054 1055 1056
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1057
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1058
    # create bias
1059
    if helper.bias_attr:
Y
Yu Yang 已提交
1060 1061 1062
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1063
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1064 1065 1066

    helper.append_op(
        type='gru_unit',
1067
        inputs=inputs,
Y
Yu Yang 已提交
1068 1069 1070 1071 1072 1073
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1074 1075
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1076 1077 1078 1079 1080
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1081
@templatedoc()
1082
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1083 1084 1085 1086 1087 1088 1089
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1090
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1091 1092 1093 1094
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1095 1096 1097
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1098 1099

    """
Y
Yu Yang 已提交
1100 1101 1102 1103 1104 1105
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1106 1107 1108 1109 1110 1111 1112 1113
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1129 1130 1131 1132
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yuyang18 已提交
1133

W
wopeizl 已提交
1134 1135
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1136

W
wopeizl 已提交
1137
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
1138

W
wopeizl 已提交
1139
        label(${label_type}): ${label_comment}
Y
yuyang18 已提交
1140

W
wopeizl 已提交
1141 1142
    Returns:
        Variable: ${viterbi_path_comment}
1143

W
wopeizl 已提交
1144 1145
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1146

W
wopeizl 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
P
peizhilin 已提交
1157
                "Transition": transition,
W
wopeizl 已提交
1158 1159
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1160

W
wopeizl 已提交
1161
    return viterbi_path
Y
Yu Yang 已提交
1162 1163


Y
yi.wu 已提交
1164
@templatedoc()
F
fengjiayi 已提交
1165
def cos_sim(X, Y):
Y
Yu Yang 已提交
1166
    """
Y
yi.wu 已提交
1167 1168 1169
    ${comment}

    Args:
1170 1171
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1172

Y
yi.wu 已提交
1173
    Returns:
1174
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1175
    """
F
fengjiayi 已提交
1176
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1177 1178 1179
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1190 1191 1192 1193 1194
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1195
            dropout_implementation="downgrade_in_infer"):
1196 1197 1198 1199 1200
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1201
    training. The dropout operator randomly sets (according to the given dropout
1202 1203 1204 1205
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1206 1207
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1208 1209 1210 1211 1212 1213 1214
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1226
                                           dropout op can be removed from the program.
P
phlrain 已提交
1227
                                           the program will be efficient
1228

P
phlrain 已提交
1229

1230 1231

    Returns:
1232
        Variable: A tensor variable is the shape with `x`.
1233 1234

    Examples:
1235

1236 1237
        .. code-block:: python

1238 1239
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1240 1241
    """

F
fengjiayi 已提交
1242
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1243 1244 1245
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1246 1247 1248 1249

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1250 1251 1252 1253 1254
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1255 1256 1257 1258
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1259 1260
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1261
        })
1262 1263 1264
    return out


1265
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1266
    """
Y
Yibing Liu 已提交
1267 1268
    **Cross Entropy Layer**

1269 1270 1271
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1272 1273

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1274
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1275

Y
Yibing Liu 已提交
1276
        .. math::
Y
yangyaming 已提交
1277

Y
Yibing Liu 已提交
1278 1279 1280
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1281 1282
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1283 1284 1285 1286 1287

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1288
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1289 1290 1291
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1292 1293
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1294
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1295

Y
Yibing Liu 已提交
1296
    Args:
Y
yangyaming 已提交
1297
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1298 1299 1300 1301
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1302
        label (Variable|list): the ground truth which is a 2-D tensor. When
1303 1304 1305 1306
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1307
        soft_label (bool): a flag indicating whether to
1308
                                           interpretate the given labels as soft
1309
                                           labels. Default: `False`.
M
minqiyang 已提交
1310 1311
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1312
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1313 1314 1315 1316 1317

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1318 1319 1320 1321 1322
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1323 1324 1325 1326 1327 1328

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1329
    """
F
fengjiayi 已提交
1330
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1331
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1332 1333 1334 1335 1336
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1337 1338
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1339 1340 1341
    return out


F
fengjiayi 已提交
1342
def square_error_cost(input, label):
Y
Yu Yang 已提交
1343
    """
1344 1345
    **Square error cost layer**

1346 1347
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1348

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1362 1363
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1364 1365

    Returns:
G
guosheng 已提交
1366
        Variable: The tensor variable storing the element-wise squared error \
1367
                  difference of input and label.
1368 1369 1370 1371 1372 1373 1374 1375

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1376
    """
F
fengjiayi 已提交
1377
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1378
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1379 1380 1381 1382 1383 1384
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1385
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1386
    helper.append_op(
F
fengjiayi 已提交
1387 1388
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1389 1390 1391
    return square_out


Y
yi.wu 已提交
1392
@templatedoc()
Y
Yu Yang 已提交
1393 1394 1395 1396
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1397
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1398
    """
Y
yi.wu 已提交
1399
    **Chunk Evaluator**
Y
yi.wu 已提交
1400

Y
yangyaming 已提交
1401
    This function computes and outputs the precision, recall and
1402
    F1-score of chunk detection.
Y
yi.wu 已提交
1403

Y
yi.wu 已提交
1404 1405 1406 1407 1408 1409 1410 1411
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1412

Y
yi.wu 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1438

Y
yi.wu 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1463
    Args:
1464 1465 1466 1467 1468
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1469

Y
yi.wu 已提交
1470
    Returns:
Y
update  
yi.wu 已提交
1471 1472 1473
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1474

Y
yi.wu 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1487
    """
F
fengjiayi 已提交
1488
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1489 1490

    # prepare output
X
Xin Pan 已提交
1491 1492 1493 1494 1495 1496 1497
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1498 1499 1500 1501 1502 1503 1504 1505

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1506 1507 1508 1509
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1510 1511 1512
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1513 1514
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1515
        })
1516 1517
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1518 1519


1520
@templatedoc()
Y
Yu Yang 已提交
1521 1522 1523 1524 1525 1526 1527
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1528 1529
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1530 1531 1532 1533
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1534 1535 1536 1537 1538 1539 1540

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1554

1555 1556
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1557 1558 1559 1560 1561 1562 1563
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1564
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1575
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1576 1577 1578 1579 1580 1581
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1582
def sequence_softmax(input, use_cudnn=False, name=None):
1583 1584 1585
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1586
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1603 1604 1605
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1618 1619
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1620
    softmax_out = helper.create_variable_for_type_inference(dtype)
1621 1622 1623 1624 1625 1626 1627 1628
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1629
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1630
    """
1631
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1632
    has the same shape as the input.
Q
qiaolongfei 已提交
1633

1634 1635 1636 1637 1638 1639
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1640
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1641 1642 1643 1644 1645 1646 1647

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1648
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1649 1650 1651 1652 1653 1654 1655 1656

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1657 1658 1659
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1672 1673
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1674
    softmax_out = helper.create_variable_for_type_inference(dtype)
1675 1676 1677 1678 1679 1680 1681 1682
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1683 1684 1685
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1686 1687
           stride=1,
           padding=0,
1688
           dilation=1,
Y
Yu Yang 已提交
1689 1690 1691
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1692
           use_cudnn=True,
1693 1694
           act=None,
           name=None):
Y
Yu Yang 已提交
1695
    """
C
chengduoZH 已提交
1696
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1697 1698
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1699
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1700 1701 1702 1703 1704 1705 1706
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1707 1708 1709
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1710

1711
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1712

C
chengduoZH 已提交
1713 1714
    .. math::

C
refine  
chengduoZH 已提交
1715
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1716

T
tensor-tang 已提交
1717
    Where:
C
chengduoZH 已提交
1718

1719 1720 1721 1722 1723
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1724
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1725 1726 1727

    Example:

1728 1729
        - Input:

W
weixing02 已提交
1730
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1731

W
weixing02 已提交
1732
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1733

1734
        - Output:
T
tensor-tang 已提交
1735

W
weixing02 已提交
1736
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1737

C
chengduoZH 已提交
1738
        Where
1739 1740

        .. math::
C
chengduoZH 已提交
1741

W
weixing02 已提交
1742 1743
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1744 1745

    Args:
1746
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1747
        num_filters(int): The number of filter. It is as same as the output
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1776 1777
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1778 1779
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1780
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1781
            will be named automatically. Default: None
C
chengduoZH 已提交
1782 1783

    Returns:
G
guosheng 已提交
1784
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1785 1786
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1787
    Raises:
1788 1789
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1790

C
chengduoZH 已提交
1791 1792 1793
    Examples:
        .. code-block:: python

1794 1795
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1796 1797 1798
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1799
    assert param_attr is not False, "param_attr should not be False here."
1800
    l_type = 'conv2d'
X
xzl 已提交
1801 1802
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1803
        l_type = 'depthwise_conv2d'
1804 1805 1806 1807

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1808 1809 1810 1811 1812
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1813
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1814

C
chengduoZH 已提交
1815 1816 1817
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1818
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1819

C
chengduoZH 已提交
1820 1821
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1822 1823

    input_shape = input.shape
M
minqiyang 已提交
1824
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1825 1826

    def _get_default_param_initializer():
C
chengduo 已提交
1827 1828
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1829 1830 1831 1832 1833 1834 1835 1836
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1837
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1838

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1853
    helper.append_op(
1854
        type=l_type,
Y
Yu Yang 已提交
1855 1856 1857 1858 1859
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1860 1861 1862
        attrs={
            'strides': stride,
            'paddings': padding,
1863
            'dilations': dilation,
C
chengduoZH 已提交
1864
            'groups': groups,
1865
            'use_cudnn': use_cudnn,
1866
            'use_mkldnn': False,
C
chengduoZH 已提交
1867
        })
Y
Yu Yang 已提交
1868 1869 1870 1871 1872 1873

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1891 1892 1893 1894 1895 1896
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1906 1907
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1908 1909 1910
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1911
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1937
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1938 1939
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1940
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1941 1942
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1943
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1944 1945
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1946
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1947 1948 1949 1950 1951 1952
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1963 1964
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1965 1966
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1967
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1968
            will be named automatically. Default: None.
C
chengduoZH 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1981 1982
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1983 1984 1985
    """

    l_type = 'conv3d'
C
chengduo 已提交
1986
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1997
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2011 2012 2013
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2014 2015 2016 2017 2018 2019 2020 2021
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2022
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2037
            'use_mkldnn': False
C
chengduoZH 已提交
2038 2039
        })

2040
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2041 2042 2043 2044

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2045
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2046
    """
Y
yangyaming 已提交
2047 2048 2049
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2061
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2062 2063 2064 2065 2066
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2067
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2068 2069 2070 2071 2072 2073 2074

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2075 2076
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2077

L
Luo Tao 已提交
2078 2079
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2080
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2081
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2082
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2083 2084 2085 2086 2087 2088 2089

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2090

Y
yangyaming 已提交
2091
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2092 2093 2094 2095 2096
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2097 2098
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2099
    """
F
fengjiayi 已提交
2100
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2101
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2102 2103
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2104 2105 2106 2107 2108 2109

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2110 2111
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2112

Y
yangyaming 已提交
2113 2114 2115 2116 2117
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2118 2119 2120
    return pool_out


C
add doc  
chengduoZH 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2140
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2141 2142 2143 2144 2145
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2146
def sequence_first_step(input):
L
Luo Tao 已提交
2147
    """
L
Luo Tao 已提交
2148
    This function gets the first step of sequence.
L
Luo Tao 已提交
2149 2150 2151 2152

    .. code-block:: text

       x is a 1-level LoDTensor:
2153
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2154 2155 2156 2157 2158
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2159
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2160
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2161

L
Luo Tao 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2171

Y
yangyaming 已提交
2172
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2173 2174 2175
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2176 2177 2178
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2179
def sequence_last_step(input):
L
Luo Tao 已提交
2180
    """
L
Luo Tao 已提交
2181
    This function gets the last step of sequence.
L
Luo Tao 已提交
2182 2183 2184 2185

    .. code-block:: text

       x is a 1-level LoDTensor:
2186
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2187 2188 2189 2190 2191
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2192
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2193
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2194

L
Luo Tao 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2204

Y
yangyaming 已提交
2205
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2206 2207 2208
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2209 2210 2211
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2212 2213 2214 2215
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2216
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2217 2218 2219 2220 2221
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2222

Y
Yibing Liu 已提交
2223 2224
	- Case:

2225
            Given the input Variable **input**:
2226

2227 2228 2229
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2230

2231
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2232

2233
            the output Variable will be
2234

2235 2236 2237
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2238 2239

    NOTE: The first dimension size of **input**, **offset** and **length**
2240
          should be equal. The **offset** should start from 0.
2241

Y
Yibing Liu 已提交
2242
    Args:
2243
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2244
                         sequences.
Y
Yibing Liu 已提交
2245 2246 2247 2248 2249 2250
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2251
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2262
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2263 2264 2265 2266
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2267
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2282
@templatedoc()
Y
Yu Yang 已提交
2283
def pool2d(input,
C
chengduoZH 已提交
2284 2285
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2286 2287
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2288
           global_pooling=False,
C
chengduoZH 已提交
2289
           use_cudnn=True,
2290
           ceil_mode=False,
2291 2292
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2293
    """
F
fengjiayi 已提交
2294
    ${comment}
2295 2296

    Args:
2297 2298 2299
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2300
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2301
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2302 2303
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2304
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2305 2306 2307 2308 2309 2310
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2311 2312 2313
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2314
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2315
                        layer will be named automatically.
2316
        exclusive (bool): Whether to exclude padding points in average pooling
2317
                          mode, default is true
F
fengjiayi 已提交
2318

2319
    Returns:
F
fengjiayi 已提交
2320
        Variable: The pooling result.
F
fengjiayi 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2334 2335 2336 2337
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2338
                            global_pooling=False)
Y
Yu Yang 已提交
2339 2340 2341 2342 2343
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2344

C
chengduoZH 已提交
2345 2346 2347 2348 2349
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2350 2351 2352 2353
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2354 2355
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2356

C
Add doc  
chengduoZH 已提交
2357
    l_type = 'pool2d'
2358 2359

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2360
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2361
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2362 2363

    helper.append_op(
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2375 2376
            "use_mkldnn": False,
            "exclusive": exclusive,
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2390 2391
           name=None,
           exclusive=True):
2392 2393
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2394
    pooling configurations mentioned in input parameters.
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2407
        exclusive (bool): Whether to exclude padding points in average pooling
2408
                          mode, default is true
2409

2410
    Returns:
2411
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2412 2413 2414 2415 2416
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2417

C
chengduoZH 已提交
2418 2419 2420 2421 2422
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2423 2424 2425
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2426

C
chengduoZH 已提交
2427 2428
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2429

2430 2431
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2432
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2433
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2434 2435

    helper.append_op(
2436
        type=l_type,
Y
Yu Yang 已提交
2437 2438 2439 2440 2441 2442 2443
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2444
            "paddings": pool_padding,
2445
            "use_cudnn": use_cudnn,
2446
            "ceil_mode": ceil_mode,
2447 2448
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2461
               data_layout='NCHW',
Y
Yang Yang 已提交
2462
               in_place=False,
2463 2464
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2465
               moving_variance_name=None,
2466 2467
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2468
    """
Q
qiaolongfei 已提交
2469 2470 2471 2472
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2473

Q
qiaolongfei 已提交
2474
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2475

Q
qiaolongfei 已提交
2476 2477
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2478 2479 2480
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2493 2494

    Args:
Q
qiaolongfei 已提交
2495
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2496 2497 2498 2499
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2500 2501 2502 2503 2504 2505 2506 2507
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2508
        data_layout(string, default NCHW): NCHW|NHWC
2509
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2510 2511 2512 2513
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2514
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2515
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2516 2517

    Returns:
Q
qiaolongfei 已提交
2518
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2519 2520 2521 2522 2523 2524 2525

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2526
    """
C
chengduo 已提交
2527
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2550
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2551

2552 2553
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2554 2555 2556
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2557
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2558
        shape=param_shape,
2559 2560 2561 2562 2563 2564 2565
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2566
            trainable=False,
W
wanghaoshuang 已提交
2567
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2568
        shape=param_shape,
2569 2570
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2571 2572 2573 2574 2575 2576

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2577 2578 2579 2580
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2581

X
Xin Pan 已提交
2582 2583
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2601 2602 2603 2604
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2605
            "use_mkldnn": False,
2606
            "fuse_with_relu": fuse_with_relu
2607
        })
Y
Yu Yang 已提交
2608 2609 2610 2611

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2612
@templatedoc()
G
guosheng 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2623
    ${comment}
G
guosheng 已提交
2624 2625 2626

    The formula is as follows:

Y
yuyang18 已提交
2627
    ..  math::
G
guosheng 已提交
2628 2629 2630 2631 2632 2633 2634

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2635 2636 2637 2638 2639 2640 2641 2642
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2643

G
guosheng 已提交
2644 2645
    Args:
        input(Variable): The input tensor variable.
2646
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2647
            normalization. Default True.
2648
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2649 2650
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2651
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2652
            Default 1.
2653
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2654
            division by zero. Default 1e-05.
G
guosheng 已提交
2655
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2656 2657
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2658 2659
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2660
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2661 2662
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2663
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2664
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2665
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2666 2667 2668
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2669 2670

    Returns:
Y
yuyang18 已提交
2671
        ${y_comment}
G
guosheng 已提交
2672 2673 2674

    Examples:

Y
yuyang18 已提交
2675 2676 2677
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2693
    if shift:
G
guosheng 已提交
2694 2695 2696 2697 2698 2699
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2700 2701 2702 2703 2704
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2798 2799 2800 2801
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2802 2803 2804
                     padding=0,
                     stride=1,
                     dilation=1,
2805
                     groups=None,
C
caoying03 已提交
2806
                     param_attr=None,
2807
                     bias_attr=None,
C
chengduoZH 已提交
2808
                     use_cudnn=True,
2809
                     act=None,
C
caoying03 已提交
2810
                     name=None):
Y
Yu Yang 已提交
2811
    """
2812 2813 2814 2815 2816 2817 2818 2819
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2820 2821
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2822 2823 2824
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2825 2826 2827 2828 2829

    For each input :math:`X`, the equation is:

    .. math::

2830
        Out = \sigma (W \\ast X + b)
2831

2832
    Where:
2833 2834 2835

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2836 2837 2838 2839
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2840

2841 2842 2843 2844
    Example:

        - Input:

2845
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2846

2847
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2848 2849 2850

        - Output:

2851
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2852 2853

        Where
Y
Yu Yang 已提交
2854

2855 2856
        .. math::

2857 2858 2859 2860
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2861 2862

    Args:
2863 2864 2865 2866
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2867 2868 2869 2870
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2899
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2900 2901 2902
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2903
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2904
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2905 2906

    Returns:
2907
        Variable: The tensor variable storing the convolution transpose result.
2908 2909

    Raises:
2910 2911
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2912 2913 2914 2915

    Examples:
       .. code-block:: python

2916 2917
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2918
    """
C
chengduo 已提交
2919
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2920 2921 2922 2923 2924 2925 2926 2927
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2928 2929 2930
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2931 2932 2933
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2934

C
chengduoZH 已提交
2935 2936
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2937

Y
Yu Yang 已提交
2938 2939 2940 2941 2942
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2943

Y
Yu Yang 已提交
2944 2945
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2946

C
chengduoZH 已提交
2947
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2948
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2949
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2950
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2951
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2952 2953 2954
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2955

2956 2957 2958 2959 2960 2961 2962
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2963
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2964
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2965

Y
Yu Yang 已提交
2966 2967 2968
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2969
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2970
    helper.append_op(
2971
        type=op_type,
Y
Yu Yang 已提交
2972 2973
        inputs={'Input': [input],
                'Filter': [img_filter]},
2974
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2975
        attrs={
2976
            'output_size': output_size,
2977 2978 2979 2980 2981
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2982 2983
        })

2984 2985 2986
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2987 2988


2989
def conv3d_transpose(input,
Y
Yu Yang 已提交
2990 2991 2992
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2993 2994 2995
                     padding=0,
                     stride=1,
                     dilation=1,
2996
                     groups=None,
C
caoying03 已提交
2997
                     param_attr=None,
2998
                     bias_attr=None,
C
chengduoZH 已提交
2999
                     use_cudnn=True,
3000
                     act=None,
C
caoying03 已提交
3001
                     name=None):
Y
Yu Yang 已提交
3002
    """
3003
    **Convlution3D transpose layer**
3004

3005
    The convolution3D transpose layer calculates the output based on the input,
3006
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3007 3008 3009 3010 3011 3012
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3013 3014 3015
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3016 3017 3018 3019 3020

    For each input :math:`X`, the equation is:

    .. math::

3021
        Out = \sigma (W \\ast X + b)
3022 3023 3024

    In the above equation:

3025 3026
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3027 3028 3029 3030
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3031

3032 3033 3034 3035
    Example:

        - Input:

3036
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3037

3038
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3039 3040 3041

        - Output:

3042
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3043 3044

        Where
Y
Yu Yang 已提交
3045

3046 3047
        .. math::

3048 3049 3050
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3051 3052

    Args:
3053
        input(Variable): The input image with [N, C, D, H, W] format.
3054 3055 3056
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3057
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3058 3059
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3060
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3061 3062 3063
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3064 3065
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3066
        stride(int|tuple): The stride size. If stride is a tuple, it must
3067 3068
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3069
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3070 3071 3072
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3073 3074 3075 3076 3077
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3087 3088
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3089 3090
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3091 3092
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3093 3094

    Returns:
3095
        Variable: The tensor variable storing the convolution transpose result.
3096 3097

    Raises:
3098 3099
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3100 3101 3102 3103

    Examples:
       .. code-block:: python

3104 3105
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3106
    """
C
chengduo 已提交
3107
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3108 3109
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3110
    if not isinstance(input, Variable):
3111
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3112 3113
    input_channel = input.shape[1]

3114 3115 3116
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3117

C
chengduoZH 已提交
3118 3119 3120
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3121 3122 3123 3124 3125 3126
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3127 3128 3129
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3130

3131
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3132
                         padding[0] - 1) // dilation[0] + 1
3133
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3134
                         padding[1] - 1) // dilation[1] + 1
3135
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3136
                         padding[2] - 1) // dilation[2] + 1
3137
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3138
    else:
3139 3140
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3141

3142
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3143
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3144 3145 3146
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3147
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3148
    helper.append_op(
3149
        type=l_type,
Y
Yu Yang 已提交
3150 3151
        inputs={'Input': [input],
                'Filter': [img_filter]},
3152
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3153 3154 3155 3156
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3157
            'groups': groups,
C
chengduoZH 已提交
3158 3159
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3160

3161 3162
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3163
    return out
Y
yangyaming 已提交
3164 3165


Y
yangyaming 已提交
3166
def sequence_expand(x, y, ref_level=-1, name=None):
3167
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3168 3169 3170 3171
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3172 3173 3174 3175 3176

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3177
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3178
                x.data = [[a], [b], [c], [d]]
3179 3180 3181
                x.dims = [4, 1]

            y is a LoDTensor:
3182 3183
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3184

Y
yangyaming 已提交
3185
            ref_level: 0
3186

Y
yangyaming 已提交
3187
            then output is a 1-level LoDTensor:
3188
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3189
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3190 3191 3192 3193
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3194
                x.data = [[a], [b], [c]]
3195 3196 3197
                x.dims = [3, 1]

            y is a LoDTensor:
3198
                y.lod = [[2, 0, 3]]
3199

Y
yangyaming 已提交
3200
            ref_level: -1
3201

Y
yangyaming 已提交
3202 3203 3204
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3205 3206 3207
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3208 3209
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3210
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3211
                        will be named automatically.
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3222
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3223
    """
Y
yangyaming 已提交
3224
    helper = LayerHelper('sequence_expand', input=x, **locals())
3225
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3226
    tmp = helper.create_variable_for_type_inference(dtype)
3227
    helper.append_op(
Y
yangyaming 已提交
3228 3229 3230 3231 3232
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3233
    return tmp
3234 3235


C
chengduo 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3292
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3293 3294 3295 3296 3297 3298 3299 3300
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3301
@templatedoc()
3302
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3303 3304 3305 3306 3307
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3308 3309 3310
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3311
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3312 3313 3314 3315
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3316 3317 3318
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3319

F
fengjiayi 已提交
3320
    Returns:
M
minqiyang 已提交
3321
        Variable: The padded sequence batch and the original lengths before
3322
                  padding. All sequences has the same length.
M
minqiyang 已提交
3323

F
fengjiayi 已提交
3324 3325 3326 3327 3328 3329 3330
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3331
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3332
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3333 3334 3335 3336 3337
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3338 3339
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3340 3341 3342 3343

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3344 3345 3346 3347 3348 3349
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3350 3351
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3352
        attrs={'padded_length': maxlen})
3353
    return out, length
F
fengjiayi 已提交
3354 3355


3356
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3357
    """
3358
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3359

3360 3361
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3371 3372 3373
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3374
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3375 3376 3377 3378 3379 3380

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3381
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3382 3383 3384 3385 3386 3387

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3388 3389
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3404
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3416 3417 3418 3419 3420 3421 3422 3423 3424
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3425 3426
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3427 3428 3429

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3430 3431

    This layer does the search in beams for one time step. Specifically, it
3432 3433 3434 3435 3436 3437
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3438

3439 3440 3441 3442 3443 3444 3445 3446
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3447

3448
    Args:
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3474

3475
    Returns:
3476 3477
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3478 3479 3480 3481

    Examples:
        .. code-block:: python

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3499 3500 3501 3502
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3503 3504 3505
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3506 3507 3508 3509 3510

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3511
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3529 3530 3531 3532 3533 3534 3535
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3536

3537 3538 3539 3540 3541 3542 3543 3544 3545
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3546

3547 3548 3549 3550 3551 3552
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3553

3554 3555 3556 3557 3558 3559 3560 3561
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3562 3563
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3579 3580 3581 3582
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3583
              param_attr=None,
C
caoying03 已提交
3584 3585
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3586 3587 3588 3589
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3590
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3591

3592
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3593

3594
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3595

3596
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3597 3598 3599

            h_t & = o_t tanh(c_t)

3600 3601 3602 3603 3604 3605
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3606 3607 3608

        .. math::

3609
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3610 3611 3612 3613 3614 3615 3616 3617

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3618
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3619 3620

    Args:
Y
yangyaming 已提交
3621 3622 3623 3624 3625 3626
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3627
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3640 3641
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3642 3643

    Returns:
Y
yangyaming 已提交
3644
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3645 3646

    Raises:
3647 3648 3649 3650
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3651 3652 3653 3654 3655 3656

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3657
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3658
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3659
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3676
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3677 3678 3679 3680
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3681 3682
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3683 3684 3685
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3686
    size = cell_t_prev.shape[1]
3687
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3688 3689
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3690
                param_attr=param_attr,
3691
                bias_attr=bias_attr)
Y
yangyaming 已提交
3692
    dtype = x_t.dtype
X
Xin Pan 已提交
3693 3694
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3695 3696 3697 3698 3699 3700 3701 3702 3703

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3704
    return h, c
G
guosheng 已提交
3705 3706


C
caoying03 已提交
3707
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3708
    """
Y
yangyaming 已提交
3709
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3710 3711 3712

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3713
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3714 3715
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3716 3717
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3718
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3719
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3720
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3721 3722
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3723 3724 3725

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3726

G
guosheng 已提交
3727 3728 3729 3730 3731 3732
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3733
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3734 3735 3736 3737
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3738 3739 3740 3741

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3742
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3743 3744 3745
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3746 3747
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3748
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3749 3750
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3751 3752 3753 3754 3755
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3756
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3757 3758 3759 3760
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3761 3762


C
caoying03 已提交
3763
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3764
    """
Y
Yibing Liu 已提交
3765
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3766 3767 3768

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3769 3770 3771
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3772
            must be in the range :math:`[-rank(input), rank(input))`. If
3773
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3774
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3775 3776
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3777
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3778
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3779
                       will be named automatically.
G
guosheng 已提交
3780 3781

    Returns:
Y
Yibing Liu 已提交
3782
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3783

G
guosheng 已提交
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3794 3795
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3796 3797 3798 3799 3800 3801 3802

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3803 3804
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3805
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3806 3807
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3808 3809 3810 3811 3812
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3813
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3814 3815 3816 3817
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3818 3819


C
caoying03 已提交
3820
def reduce_max(input, dim=None, keep_dim=False, name=None):
3821
    """
Y
yangyaming 已提交
3822
    Computes the maximum of tensor elements over the given dimension.
3823 3824 3825

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3826
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3827 3828 3829
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3830
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3831 3832
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3833
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3834 3835
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3836 3837 3838

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3839

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3851 3852 3853 3854 3855 3856 3857

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3858 3859
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3860
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3861 3862
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3863 3864 3865 3866 3867
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3868
            'dim': dim if dim != None else [0],
3869 3870 3871 3872 3873 3874
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3875
def reduce_min(input, dim=None, keep_dim=False, name=None):
3876
    """
Y
yangyaming 已提交
3877
    Computes the minimum of tensor elements over the given dimension.
3878 3879 3880

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3881
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3882 3883 3884
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3885
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3886 3887
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3888
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3889 3890
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3891 3892 3893

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3894

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3906 3907 3908 3909 3910 3911 3912

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3913 3914
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3915
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3916 3917
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3918 3919 3920 3921 3922
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3923
            'dim': dim if dim != None else [0],
3924 3925 3926 3927
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3928 3929


3930 3931 3932 3933 3934 3935
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3936
        dim (list|int|None): The dimensions along which the product is performed. If
3937 3938
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3939 3940
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3941 3942 3943
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3944
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3945
            layer will be named automatically.
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3960
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3961
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3962 3963 3964 3965 3966 3967 3968

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3969 3970
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3971
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3972 3973
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3974 3975 3976 3977 3978
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3979
            'dim': dim if dim != None else [0],
3980 3981 3982 3983 3984 3985
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3986
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3987
    """
C
caoying03 已提交
3988
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3989 3990 3991

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3992 3993 3994 3995 3996
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3997
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3998
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3999
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4000 4001
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4002 4003

    Returns:
D
dzhwinter 已提交
4004
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4005 4006 4007 4008 4009 4010 4011 4012 4013

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4014 4015
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4031
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4045 4046 4047 4048 4049 4050 4051 4052 4053


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4054
    .. math::
4055 4056

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4057 4058 4059 4060 4061

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4062
        x(Variable|list): The input tensor to l2_normalize layer.
4063
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4064 4065
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4066
        epsilon(float): The epsilon value is used to avoid division by zero, \
4067
            the defalut value is 1e-10.
4068
        name(str|None): A name for this layer(optional). If set None, the layer \
4069
            will be named automatically.
C
caoying03 已提交
4070 4071

    Returns:
4072
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4073 4074

    Examples:
4075

C
caoying03 已提交
4076 4077
        .. code-block:: python

4078 4079 4080 4081
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4082 4083
    """

F
fengjiayi 已提交
4084 4085
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4086 4087
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4088 4089
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4090
    helper.append_op(
4091 4092 4093 4094
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4095
        attrs={
4096 4097
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4098 4099
        })
    return out
4100 4101


S
sneaxiy 已提交
4102
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4103
    """
Y
ying 已提交
4104 4105 4106 4107
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4108

C
chengduoZH 已提交
4109
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4110
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4111

4112 4113 4114 4115 4116
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4117
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4118

C
chengduoZH 已提交
4119
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4120
      performs in the following way.
G
guosheng 已提交
4121

4122
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4123
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4124
        last two dimensions and a batched matrix multiply supporting broadcast
4125
        applies on the two tensors.
G
guosheng 已提交
4126

Y
ying 已提交
4127 4128
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4129
    removed after matrix multiplication.
G
guosheng 已提交
4130 4131 4132

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4133 4134 4135
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4136
        alpha (float): The scale of output. Default 1.0.
4137
        name(str|None): A name for this layer(optional). If set None, the layer
4138
            will be named automatically.
G
guosheng 已提交
4139 4140

    Returns:
4141
        Variable: The product Tensor variable.
G
guosheng 已提交
4142

G
guosheng 已提交
4143 4144 4145
    Examples:
        .. code-block:: python

4146
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4147 4148
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4149

4150 4151
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4152

4153 4154
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4155

4156 4157
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4158 4159 4160 4161

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4162 4163
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4164

Y
ying 已提交
4165
            # x: [M], y: [N]
4166
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4167
    """
Y
ying 已提交
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4180
            y_shape = y_shape + [1]
Y
ying 已提交
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4197
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4198
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4199
    helper.append_op(
4200 4201 4202 4203
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4204 4205 4206
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4207
            'alpha': float(alpha),
S
sneaxiy 已提交
4208
        })
4209
    return out
4210 4211


4212
def topk(input, k, name=None):
Q
qingqing01 已提交
4213 4214 4215 4216
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4217
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4218 4219 4220 4221 4222 4223
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4245 4246 4247
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4248
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4249
                 of input.
4250
        name(str|None): A name for this layer(optional). If set None, the layer
4251
                       will be named automatically.
F
fengjiayi 已提交
4252
                       Default: None
Q
qingqing01 已提交
4253 4254

    Returns:
4255 4256 4257
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4258
        within the last dimension of input.
Q
qingqing01 已提交
4259

F
fengjiayi 已提交
4260 4261
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4262 4263 4264 4265 4266 4267 4268

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4269 4270
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4282
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4283
    """
Y
ying 已提交
4284 4285 4286 4287 4288 4289 4290 4291 4292
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4293

Y
ying 已提交
4294
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4295

4296
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4297 4298
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4299
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4300

4301
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4302 4303
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4304

4305 4306 4307
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4308
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4309
                          the length of reference string.
4310
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4311
                                     calculating edit distance.
4312
        name (str): The name of this layer. It is optional.
4313

W
wanghaoshuang 已提交
4314
    Returns:
W
wanghaoshuang 已提交
4315
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4316 4317 4318 4319

    Examples:
        .. code-block:: python

T
tink2123 已提交
4320 4321
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4322
            cost = fluid.layers.edit_distance(input=x,label=y)
4323
    """
4324
    helper = LayerHelper("edit_distance", **locals())
4325

4326
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4327
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4328 4329
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4330 4331 4332 4333 4334

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4335
            attrs={"tokens": ignored_tokens})
4336 4337 4338 4339 4340
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4341
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4342
            attrs={"tokens": ignored_tokens})
4343 4344
        label = erased_label

4345
    # edit distance op
X
Xin Pan 已提交
4346 4347
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4348 4349 4350 4351
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4352 4353
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4354 4355
        attrs={"normalized": normalized})

4356
    return edit_distance_out, sequence_num
4357 4358 4359 4360 4361


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4362

Y
ying 已提交
4363 4364 4365 4366
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4384
        input.lod = [[4, 4]]
4385 4386 4387 4388 4389 4390 4391

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4392
        output.lod = [[2, 1]]
4393 4394 4395

    Args:

Y
ying 已提交
4396 4397 4398 4399 4400 4401 4402 4403 4404
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4405
        name (str): The name of this layer. It is optional.
4406 4407

    Returns:
4408
        Variable: CTC greedy decode result. If all the sequences in result were
4409
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4410 4411 4412 4413 4414

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4415

4416
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4417
    """
4418
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4419
    _, topk_indices = topk(input, k=1)
4420 4421

    # ctc align op
X
Xin Pan 已提交
4422
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4423 4424 4425
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4426
        outputs={"Output": [ctc_out]},
4427 4428
        attrs={"merge_repeated": True,
               "blank": blank})
4429
    return ctc_out
4430 4431


W
Wu Yi 已提交
4432
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4433
    """
4434 4435
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4436
    to compute Connectionist Temporal Classification (CTC) loss.
4437 4438
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4439 4440 4441
    input tensor.

    Args:
4442
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4443 4444 4445 4446
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4447
       label (Variable): The ground truth of variable-length sequence,
4448 4449 4450
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4451 4452
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4453 4454 4455
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4456
         follewed by a mean_op.
W
Wu Yi 已提交
4457
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4458 4459

    Returns:
4460 4461
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4462 4463

    Examples:
4464

W
wanghaoshuang 已提交
4465
        .. code-block:: python
4466

4467 4468 4469
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4470 4471

    """
F
fengjiayi 已提交
4472
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4473 4474
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4475 4476 4477 4478 4479 4480
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4481 4482 4483 4484 4485
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4486
    return loss_out
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4502 4503 4504
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4505 4506 4507 4508 4509
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4510

4511
            out.lod  = [[0, 1, 3]]
4512 4513 4514 4515

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4516 4517 4518 4519 4520 4521 4522
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4523 4524 4525

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4526 4527

    Returns:
4528

4529 4530 4531 4532 4533
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4534
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4535
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4536 4537
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4538
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4539 4540 4541 4542 4543 4544
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4545 4546


4547 4548 4549 4550
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4551 4552 4553 4554 4555 4556
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4557
        num_neg_samples=None,
4558 4559 4560
        name=None,
        sampler="uniform",
        custom_dist=None,
4561 4562
        seed=0,
        is_sparse=False):
4563 4564 4565 4566 4567 4568 4569
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4570 4571
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4572
            sample is 1.0.
C
chengduo 已提交
4573 4574 4575 4576 4577 4578 4579 4580 4581
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4582
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4583 4584
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4585 4586 4587
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4588
        custom_dist (float[]): A float[] with size=num_total_classes.
4589 4590 4591 4592
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4593
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4594

4595
    Returns:
Y
Yibing Liu 已提交
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4623 4624 4625 4626 4627 4628 4629 4630 4631

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4632

4633
    """
Y
Yang Yu 已提交
4634 4635 4636
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4637 4638

    dim = input.shape[1]
Y
Yang Yu 已提交
4639 4640 4641 4642 4643 4644
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4645
    inputs = {}
C
chengduo 已提交
4646 4647 4648 4649 4650 4651 4652
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4653 4654 4655
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4656

4657 4658 4659 4660
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4661 4662 4663 4664 4665 4666 4667

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4720 4721 4722 4723
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4724 4725 4726 4727 4728
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4729 4730
    attrs = {
        'num_total_classes': int(num_total_classes),
4731 4732
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4733 4734
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4735
    }
Y
Yang Yu 已提交
4736 4737 4738

    helper.append_op(
        type='nce',
C
chengduo 已提交
4739
        inputs=inputs,
Y
Yang Yu 已提交
4740 4741 4742 4743 4744 4745
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4746
    return cost / (num_neg_samples + 1)
4747 4748


C
chengduo 已提交
4749 4750 4751 4752 4753 4754
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4755 4756
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4757
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4767

W
weixing02 已提交
4768
    Args:
M
minqiyang 已提交
4769
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4770 4771 4772 4773 4774
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4786 4787 4788 4789 4790 4791 4792 4793

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4794 4795 4796
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4797 4798 4799 4800
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4801 4802
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4803 4804
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4805
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4806 4807 4808 4809 4810
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4811 4812 4813 4814 4815 4816 4817 4818
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4819 4820
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4821
        inputs=inputs,
W
weixing02 已提交
4822 4823 4824 4825 4826 4827
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4828
def transpose(x, perm, name=None):
Y
ying 已提交
4829 4830 4831 4832 4833 4834 4835
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4836 4837 4838
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4839 4840 4841 4842 4843 4844 4845

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4846
            # use append_batch_size=False to avoid prepending extra
4847
            # batch size in shape
4848
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4849
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4850
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4851 4852
    """

Y
fix ci.  
ying 已提交
4853
    if len(perm) != len(x.shape):
Y
ying 已提交
4854 4855 4856
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4857 4858 4859 4860 4861 4862
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4863 4864

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4865 4866
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4867
    helper.append_op(
4868
        type='transpose2',
Y
fix ci.  
ying 已提交
4869
        inputs={'X': [x]},
4870 4871
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4872 4873
        attrs={'axis': perm})
    return out
4874 4875


4876 4877 4878 4879 4880 4881 4882
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4883
    """
4884 4885 4886 4887 4888 4889 4890
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4919 4920 4921 4922 4923 4924 4925 4926 4927
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4928 4929 4930
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4931 4932 4933 4934 4935
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4963 4964 4965
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4978
            output.dims = {8, 8}
4979

4980
            output.lod = [[4, 4]]
4981

D
dzhwinter 已提交
4982
     Examples:
4983 4984 4985

        .. code-block:: python

4986 4987
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4988 4989

    """
W
wanghaoshuang 已提交
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5000 5001 5002 5003 5004 5005 5006
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5007
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5008
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5009
    helper.append_op(
5010
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5011
    return out
5012 5013


Y
yuyang18 已提交
5014
@templatedoc()
5015
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5016 5017
    """
    ${comment}
5018 5019

    Args:
Y
yuyang18 已提交
5020
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5021 5022
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5023 5024 5025 5026 5027
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5028
        ${out_comment}.
5029 5030

    Examples:
Y
yuyang18 已提交
5031 5032 5033 5034
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5035 5036 5037 5038 5039 5040
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5041
    out = helper.create_variable_for_type_inference(dtype)
5042 5043 5044 5045 5046
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5047
    return helper.append_activation(out)
5048 5049


Y
yuyang18 已提交
5050
@templatedoc()
5051 5052
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5053 5054 5055 5056 5057 5058 5059
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5060 5061

    Args:
Y
yuyang18 已提交
5062 5063
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5064 5065

    Returns:
Y
yuyang18 已提交
5066
        ${out_comment}.
5067 5068
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5069 5070 5071 5072 5073

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5074
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5075 5076 5077 5078 5079 5080
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5081 5082


5083 5084 5085
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
5086
                               ignore_index=-100,
5087 5088
                               numeric_stable_mode=False,
                               return_softmax=False):
5089 5090
    """
    **Softmax With Cross Entropy Operator.**
5091

5092 5093 5094 5095
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5096

5097 5098 5099
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5100

5101 5102 5103
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5104

5105
    The equation is as follows:
5106

5107
    1) Hard label (one-hot label, so every sample has exactly one class)
5108

5109 5110 5111 5112
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5113

5114 5115 5116
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5117

5118 5119 5120 5121
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5122 5123 5124
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5125

S
sneaxiy 已提交
5126 5127 5128 5129 5130 5131 5132 5133
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5134 5135 5136 5137 5138 5139 5140 5141
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5142 5143
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5144
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5145 5146 5147
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5148 5149 5150
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5151
                                    stable algorithm. Default: False
5152
        return_softmax (bool): A flag indicating whether to return the softmax
5153
                               along with the cross entropy loss. Default: False
5154

5155
    Returns:
5156 5157 5158 5159
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5160
                              2-D tensor with shape [N x K].
5161 5162 5163 5164 5165 5166 5167

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5168 5169
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5170 5171
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5172 5173
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5174 5175 5176 5177 5178 5179
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5180 5181 5182 5183 5184
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5185 5186 5187 5188

    if return_softmax:
        return loss, softmax

5189 5190 5191 5192 5193
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5194 5195
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5196
    For each instance, it computes the smooth L1 loss element by element first
5197
    and then sums all the losses. So the shape of ouput Variable is
5198
    [batch_size, 1].
5199

5200 5201
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5202
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5203
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5204
            L1 loss op with same shape as :attr:`x`.
5205
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5206 5207
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5208
            by this tensor element by element.
5209
        outside_weight (Variable|None): A tensor with rank at least 2. This
5210 5211
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5212
            element by element.
5213
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5214 5215
           scalar with default value 1.0.

5216
    Returns:
5217
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5218 5219 5220 5221 5222

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5223 5224
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5225
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5226
            out = fluid.layers.smooth_l1(x=fc, y=label)
5227
    """
5228

5229
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5230 5231
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5244 5245 5246 5247


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5248
    This layer creates the one-hot representations for input indices.
5249 5250

    Args:
Y
Yibing Liu 已提交
5251 5252
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5253 5254

    Returns:
Y
Yibing Liu 已提交
5255
        Variable: The one-hot representations of input.
5256 5257

    Examples:
C
caoying03 已提交
5258
        .. code-block:: python
5259

Y
Yibing Liu 已提交
5260 5261
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5262 5263
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5264
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5265 5266 5267 5268 5269 5270
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5271 5272


Y
Yu Yang 已提交
5273
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5274
    """
Y
yi.wu 已提交
5275 5276 5277
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5278 5279 5280 5281 5282 5283

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5284 5285
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5286 5287 5288 5289 5290 5291

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5292 5293
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5294 5295
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5296 5297 5298 5299 5300
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5301
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5302
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5303 5304
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5305 5306
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5307 5308 5309
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5310 5311


5312
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5313
    """
C
caoying03 已提交
5314 5315
    Gives a new shape to the input Tensor without changing its data.

5316 5317 5318 5319 5320
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5321

5322
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5323

5324 5325 5326 5327
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5328
    2. 0 means the actual dimension value is going to be copied from the
5329 5330 5331 5332
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5333 5334

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5335
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5336
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5337

5338
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5339 5340
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5341 5342
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5343
    dimensions.
C
caoying03 已提交
5344

5345
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5346 5347 5348 5349
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5350 5351

    Args:
5352
        x(variable): The input tensor.
C
caoying03 已提交
5353 5354
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5355 5356 5357 5358 5359
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5360 5361
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5362 5363 5364 5365 5366 5367 5368
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5369
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5370

5371
    Returns:
G
guosheng 已提交
5372 5373 5374 5375
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5376

X
Xin Pan 已提交
5377 5378 5379
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5380 5381
    Examples:
        .. code-block:: python
G
guosheng 已提交
5382

5383
            data = fluid.layers.data(
5384
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5385
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5386
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5387 5388 5389
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5390
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5391 5392 5393 5394 5395
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5396

5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5412
    helper = LayerHelper("reshape2", **locals())
5413 5414
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5415
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5416
    helper.append_op(
5417
        type="reshape2",
X
Xin Pan 已提交
5418
        inputs=inputs,
D
dzhwinter 已提交
5419
        attrs={"shape": shape},
5420 5421
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5422

D
dzhwinter 已提交
5423
    return helper.append_activation(out)
5424

5425

5426
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5427
    """
M
minqiyang 已提交
5428 5429 5430
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5431
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5432

Y
Yibing Liu 已提交
5433 5434
    Examples:
    Case 1:
M
minqiyang 已提交
5435
      Given
Y
Yibing Liu 已提交
5436 5437 5438 5439 5440 5441 5442 5443
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5444
        and
Y
Yibing Liu 已提交
5445 5446 5447
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5448

Y
Yibing Liu 已提交
5449
    Args:
5450
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5451
        axes (list): List of integers, indicating the dimensions to be squeezed.
5452
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5453 5454 5455 5456 5457 5458 5459 5460

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5461
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5462 5463
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5464 5465
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5466
    helper.append_op(
5467
        type="squeeze2",
5468
        inputs={"X": input},
Y
Yibing Liu 已提交
5469
        attrs={"axes": axes},
5470 5471
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5472

5473 5474 5475
    return out


5476
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5477
    """
M
minqiyang 已提交
5478 5479 5480
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5481

M
minqiyang 已提交
5482 5483
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5484
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5485

Y
Yibing Liu 已提交
5486
    Args:
5487
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5488
        axes (list): List of integers, indicating the dimensions to be inserted.
5489
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5490 5491 5492 5493 5494 5495 5496 5497

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5498
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5499 5500
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5501 5502
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5503
    helper.append_op(
5504
        type="unsqueeze2",
5505
        inputs={"X": input},
Y
Yibing Liu 已提交
5506
        attrs={"axes": axes},
5507 5508
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5509

5510 5511
    return out

5512

Y
yangyaming 已提交
5513
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5514
    """
Y
Yibing Liu 已提交
5515
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5516 5517 5518 5519
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5520
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5521 5522 5523 5524 5525 5526

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5527
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5528 5529 5530
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5531
            target_lod: [4, 2]
Y
yangyaming 已提交
5532 5533

            then we get a 1-level LoDTensor:
5534
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5535 5536 5537 5538 5539 5540
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5541
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5542 5543 5544 5545
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5546
                y.data = [[2, 4]]
Y
yangyaming 已提交
5547 5548 5549
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5550
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5551 5552 5553 5554 5555 5556
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5557
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5558 5559 5560 5561
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5562
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5563 5564 5565 5566
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5567
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5568 5569 5570 5571 5572
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5573
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5574
                           from :attr:`y`.
Y
yangyaming 已提交
5575
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5576
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5577 5578

    Returns:
Y
Yibing Liu 已提交
5579
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5580 5581

    Raises:
Y
Yibing Liu 已提交
5582
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5583 5584 5585 5586 5587 5588 5589 5590 5591

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5592
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5618
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5647 5648
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5661 5662 5663
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5677 5678 5679 5680


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5681
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5682
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5683

G
guosheng 已提交
5684 5685 5686 5687
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5710
                         The length of :attr:paddings must be
G
guosheng 已提交
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5721

G
guosheng 已提交
5722 5723 5724 5725 5726 5727
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5728
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5729 5730 5731 5732 5733 5734 5735
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5736 5737


C
chengduo 已提交
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5808
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5809 5810 5811 5812 5813 5814 5815 5816 5817
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5818 5819 5820 5821 5822 5823 5824
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5825 5826
    called label-smoothing regularization (LSR).

5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5850
                              be :math:`(1, class\_num)`.
5851 5852
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5853
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5873
    smooth_label = helper.create_variable_for_type_inference(dtype)
5874 5875 5876 5877 5878 5879 5880
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5881 5882


W
wopeizl 已提交
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5919 5920


J
jerrywgz 已提交
5921 5922 5923 5924 5925 5926
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5927 5928
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5945 5946 5947
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5948 5949 5950 5951 5952 5953
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5954
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5995 5996
        .. code-block:: python

W
whs 已提交
5997 5998 5999 6000
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6001
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6002 6003 6004 6005 6006 6007
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6008 6009


6010 6011 6012 6013
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6014 6015
                 resample='BILINEAR',
                 actual_shape=None):
6016
    """
Q
qiaolongfei 已提交
6017
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6018

6019
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6020 6021 6022
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6023

6024
        'BILINEAR' : Bilinear interpolation
6025
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6026

6027
    Args:
6028
        input (Variable): The input tensor of image resize layer,
6029 6030
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6031
        out_shape(list|tuple|Variable|None): Output shape of image resize
6032 6033
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6034
        scale(float|None): The multiplier for the input height or width.
6035 6036 6037
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6038 6039
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6040
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6041
                       currently.
6042
                       Default: 'BILINEAR'
6043 6044 6045
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6046
                                :attr:`out_shape` and :attr:`scale` specifying
6047 6048 6049 6050 6051 6052 6053
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6054 6055
                                constructing stage.
                                Default: None
6056 6057

    Returns:
Q
update  
qiaolongfei 已提交
6058 6059
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6060

6061 6062 6063
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6064
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6065 6066 6067 6068
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6069 6070 6071
    Examples:
        .. code-block:: python

6072
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6073
    """
6074 6075 6076 6077
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6078 6079
    if resample not in resample_methods:
        raise ValueError(
6080
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6081
        )
6082
    resample_type = resample_methods[resample]
6083
    if out_shape is None and scale is None:
6084
        raise ValueError("One of out_shape and scale must not be None.")
6085
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6086
    dtype = helper.input_dtype()
6087 6088 6089 6090

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6091 6092 6093
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6094
    if out_shape is not None:
6095 6096 6097 6098
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6099
            inputs['OutSize'] = out_shape
6100 6101 6102 6103 6104 6105 6106 6107
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6108 6109 6110 6111
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6112 6113 6114 6115 6116
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6117
    out = helper.create_variable_for_type_inference(dtype)
6118
    helper.append_op(
6119
        type='{}_interp'.format(resample_type),
6120
        inputs=inputs,
6121
        outputs={"Out": out},
6122 6123 6124
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6125
    return out
F
stash  
fengjiayi 已提交
6126 6127


6128
@templatedoc(op_type="bilinear_interp")
6129 6130 6131 6132 6133
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6134
    """
6135 6136
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6137 6138
    in priority order.

6139 6140 6141 6142
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6143 6144
    again in the other direction.

6145
    For details of bilinear interpolation, please refer to Wikipedia:
6146
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6147 6148 6149 6150 6151

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6152

Y
yuyang18 已提交
6153 6154 6155 6156 6157
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6158 6159 6160
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6161
                                :attr:`out_shape` and :attr:`scale` specifying
6162 6163 6164 6165 6166 6167 6168
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6169 6170
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6171 6172 6173

    Returns:
        ${out_comment}.
6174 6175 6176 6177 6178

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6179 6180
    """

6181
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6182 6183


6184
@templatedoc(op_type="nearest_interp")
6185 6186 6187 6188 6189
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6190
    """
6191
    Resize input by performing nearest neighbor interpolation in both the
6192 6193
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6194 6195
    out_shape and scale in priority order.

6196
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6197
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6198 6199 6200 6201 6202

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6203

Y
yuyang18 已提交
6204 6205 6206 6207 6208
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6209 6210 6211
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6212
                                :attr:`out_shape` and :attr:`scale` specifying
6213 6214 6215 6216 6217 6218 6219
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6220 6221
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6222 6223 6224

    Returns:
        ${out_comment}.
6225 6226 6227 6228 6229

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6230 6231
    """

6232
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6233 6234 6235 6236


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6237 6238 6239
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6240 6241 6242 6243 6244 6245 6246
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6247
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6248

6249
    Returns:
Q
update  
qiaolongfei 已提交
6250
        Variable: The output is a 4-D tensor of the shape
6251
        (num_batches, channls, out_h, out_w).
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6262 6263 6264
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6265 6266 6267
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6268 6269
def gather(input, index):
    """
Q
qiaolongfei 已提交
6270 6271
    **Gather Layer**

6272
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6273 6274 6275 6276
    of X indexed by `index` and concatenate them together.

    .. math::

6277
        Out = X[Index]
W
whs 已提交
6278 6279 6280 6281 6282 6283 6284


    .. code-block:: text


                Given:

6285 6286
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6297
        input (Variable): The source input with rank>=1.
W
whs 已提交
6298 6299 6300 6301 6302 6303
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6304

W
whs 已提交
6305 6306 6307 6308 6309 6310
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6311
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6312 6313 6314 6315 6316 6317 6318 6319
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6351
    out = helper.create_variable_for_type_inference(dtype)
6352 6353 6354 6355 6356 6357 6358 6359 6360
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6411
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6412 6413 6414 6415 6416 6417 6418 6419 6420
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6434

6435 6436 6437
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6438
    """
F
stash  
fengjiayi 已提交
6439
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6440
    dtype = x.dtype
X
Xin Pan 已提交
6441
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6442
    if seed is None:
6443
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6444
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6445
    if isinstance(seed, int):
F
fengjiayi 已提交
6446 6447 6448 6449 6450
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6451 6452 6453 6454
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6455
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6456 6457
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6458 6459
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6460
    return out
W
whs 已提交
6461 6462


6463
def log(x, name=None):
W
wanghaoshuang 已提交
6464 6465 6466 6467 6468
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6469
        Out = \\ln(x)
W
wanghaoshuang 已提交
6470 6471

    Args:
6472
        x (Variable): Input tensor.
6473 6474
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6475 6476 6477 6478 6479 6480 6481 6482

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6483
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6484 6485
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6486
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6487
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6488
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6489 6490 6491
    return out


6492
def relu(x, name=None):
W
wanghaoshuang 已提交
6493 6494
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6495
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6496 6497 6498 6499
    the tensor elementwise.

    .. math::

6500
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6501 6502

    Args:
6503
        x (Variable): The input tensor.
6504 6505
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6506 6507 6508 6509 6510 6511 6512 6513

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6514
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6515 6516
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6517
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6518
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6519
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6520
    return out
6521 6522


C
chengduo 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6564 6565 6566
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6567 6568 6569 6570
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6571
    .. math::
6572 6573

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6574

6575
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6576 6577 6578 6579 6580
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6581
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6582
                           Its shape should be the same as input.
6583
        num_classes (int): The possible number of labels.
W
whs 已提交
6584 6585 6586 6587

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6588
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6589 6590 6591 6592

    Examples:

        .. code-block:: python
6593

W
whs 已提交
6594 6595 6596 6597
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6598 6599 6600
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6601 6602
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6603 6604
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6605
        outputs={
W
whs 已提交
6606 6607 6608
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6609 6610 6611
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6686
            isinstance(shape, Variable)):
6687 6688 6689 6690 6691
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6692
    out = helper.create_variable_for_type_inference(x.dtype)
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6710 6711


W
whs 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6729

W
whs 已提交
6730
              out_shape = [2, 3, 5, 5]
6731

W
whs 已提交
6732
          Step 1:
6733

W
whs 已提交
6734 6735 6736
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6737

W
whs 已提交
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6808
            isinstance(out_shape, Variable)):
W
whs 已提交
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6830 6831 6832 6833 6834 6835 6836 6837
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6838

6839 6840
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6841

6842 6843 6844 6845
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6846

6847 6848 6849 6850 6851
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6852 6853 6854

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6890
    out = helper.create_variable_for_type_inference("float32")
6891 6892 6893 6894 6895 6896 6897 6898

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6899 6900


M
minqiyang 已提交
6901 6902
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6903
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6904
    which compares left score and right score passed in.
M
minqiyang 已提交
6905
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6906 6907 6908 6909 6910 6911

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6912
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6913 6914
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6915
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6916 6917 6918
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6919
       Variable: The ranking loss.
M
minqiyang 已提交
6920
    Raises:
M
minqiyang 已提交
6921
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6922 6923 6924 6925 6926 6927 6928
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6929
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6930 6931 6932 6933 6934 6935
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6936 6937
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6963

W
whs 已提交
6964 6965
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6966

W
whs 已提交
6967
      Case 0:
M
minqiyang 已提交
6968

W
whs 已提交
6969 6970 6971
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6972

W
whs 已提交
6973 6974 6975
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6976

W
whs 已提交
6977
      Case 1:
M
minqiyang 已提交
6978

W
whs 已提交
6979 6980
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6981

W
whs 已提交
6982 6983 6984
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6985

W
whs 已提交
6986
      Case 2:
M
minqiyang 已提交
6987

W
whs 已提交
6988 6989
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6990

W
whs 已提交
6991 6992 6993
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6994 6995


W
whs 已提交
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7022
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7049 7050 7051 7052 7053

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7054 7055
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7056 7057
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7058
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7079 7080 7081 7082 7083

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7084 7085
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7086 7087
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7088
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7109 7110 7111 7112 7113

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7114 7115
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7116 7117
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7118
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7140 7141 7142 7143 7144

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7145
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7146
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7147 7148
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7149
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7172 7173 7174 7175 7176

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7177 7178
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7179 7180
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7181
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7203 7204 7205 7206 7207

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7208 7209
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7210 7211
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7212
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7213 7214 7215 7216 7217 7218 7219 7220
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7221 7222 7223 7224
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7225
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7226 7227 7228

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7229 7230
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7231 7232 7233 7234
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7235
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7236
                       will be named automatically.
J
jerrywgz 已提交
7237 7238 7239 7240 7241 7242 7243 7244

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7245
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7259
        attr=helper.param_attr,
J
jerrywgz 已提交
7260 7261 7262 7263
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7264
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7265 7266 7267 7268 7269 7270 7271 7272 7273
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7284
    Returns:
7285
        output(${out_type}): ${out_comment}
7286 7287 7288 7289 7290 7291 7292

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7293 7294
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7295
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7314
    Returns:
7315
        output(${out_type}): ${out_comment}
7316 7317 7318 7319 7320 7321 7322

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7323 7324
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7325
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7343
    Returns:
7344
        output(${out_type}): ${out_comment}
7345 7346 7347 7348 7349 7350 7351

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7352 7353
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7354
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7355 7356 7357 7358 7359 7360 7361 7362
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7376

7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7387 7388
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7404
        ValueError: If axis is not in range [0, rank(x)].
7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7421 7422
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7423
    helper.append_op(
7424
        type='flatten2',
7425
        inputs={"X": x},
7426 7427
        outputs={'Out': out,
                 'XShape': x_shape},
7428 7429
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7430 7431


C
chenweihang 已提交
7432
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7433
    """
C
chenweihang 已提交
7434
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7435
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7436 7437
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7438

C
chenweihang 已提交
7439 7440 7441 7442
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7443
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7444 7445 7446 7447 7448 7449
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7450
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7451 7452 7453
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7454 7455 7456
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7468 7469
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7470 7471 7472 7473 7474 7475
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7476
    return out
7477

7478

S
sneaxiy 已提交
7479 7480 7481 7482 7483 7484 7485 7486 7487
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7488

S
sneaxiy 已提交
7489
    .. math::
7490

S
sneaxiy 已提交
7491 7492 7493
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7494
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7495 7496 7497 7498
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7499 7500 7501
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7502 7503
    Returns:
        Variable: The output sequence mask.
7504

S
sneaxiy 已提交
7505 7506
    """

Q
qingqing01 已提交
7507
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7508
    if name is None:
X
Xin Pan 已提交
7509
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7510
    else:
X
Xin Pan 已提交
7511
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7512

Q
qingqing01 已提交
7513 7514 7515
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7516 7517
        outputs={'Y': out},
        attrs={
7518
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7519 7520 7521
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7522 7523


X
Xin Pan 已提交
7524
def stack(x, axis=0):
S
sneaxiy 已提交
7525 7526 7527 7528
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7529 7530 7531 7532 7533 7534 7535

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7536
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7537
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7538 7539

    Args:
7540
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7541
        axis (int|None): The axis along which all inputs are stacked.
7542

S
sneaxiy 已提交
7543 7544
    Returns:
        Variable: The stacked variable.
7545

S
sneaxiy 已提交
7546 7547
    """

X
Xin Pan 已提交
7548 7549 7550 7551 7552 7553
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7554
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7555
    helper.append_op(
S
sneaxiy 已提交
7556 7557
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7558

X
Xin Pan 已提交
7559
    return out
D
dzhwinter 已提交
7560 7561 7562 7563 7564 7565 7566


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7567

D
dzhwinter 已提交
7568 7569 7570
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7571
    raised.
D
dzhwinter 已提交
7572 7573

    Args:
M
minqiyang 已提交
7574
        x (Variable): Input variable.
D
dzhwinter 已提交
7575 7576
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7577

D
dzhwinter 已提交
7578 7579
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7580

D
dzhwinter 已提交
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7592
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7593 7594 7595 7596 7597 7598 7599 7600

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7613

W
whs 已提交
7614 7615 7616 7617
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7618

W
whs 已提交
7619
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7620

W
whs 已提交
7621
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7622

W
whs 已提交
7623 7624 7625 7626
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7627

W
whs 已提交
7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7644
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7645 7646 7647 7648 7649 7650
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7651 7652


G
fix  
gongweibao 已提交
7653 7654 7655
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7656
@templatedoc()
G
fix  
gongweibao 已提交
7657 7658 7659 7660 7661 7662 7663 7664 7665
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7666
    ${comment}
G
fix  
gongweibao 已提交
7667 7668

    Args:
G
gongweibao 已提交
7669 7670 7671
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7672
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7673 7674 7675
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7676 7677
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7678
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7679 7680 7681 7682

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7683
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7700 7701


G
gongweibao 已提交
7702
@templatedoc()
X
Xin Pan 已提交
7703
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7704
    """
G
gongweibao 已提交
7705
    ${comment}
G
fix  
gongweibao 已提交
7706 7707

    Args:
G
gongweibao 已提交
7708 7709 7710 7711
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7712 7713 7714
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7715
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7716 7717 7718 7719

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7720
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7731
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7732 7733 7734 7735 7736
        })

    return out


G
gongweibao 已提交
7737
@templatedoc()
G
fix  
gongweibao 已提交
7738
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7739
    """
G
gongweibao 已提交
7740
    ${comment}
G
fix  
gongweibao 已提交
7741 7742

    Args:
G
gongweibao 已提交
7743 7744 7745 7746
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7747
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7748 7749

    Returns:
G
gongweibao 已提交
7750
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7751 7752 7753 7754

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7755
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7767
@templatedoc()
G
fix  
gongweibao 已提交
7768 7769 7770 7771 7772 7773 7774 7775 7776
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7777
    ${comment}
G
fix  
gongweibao 已提交
7778 7779

    Args:
G
gongweibao 已提交
7780 7781
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7782
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7783 7784 7785 7786
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7787
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7788 7789

    Returns:
G
gongweibao 已提交
7790
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7791 7792 7793
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7794
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7813
@templatedoc()
X
Xin Pan 已提交
7814
def sum(x):
G
fix  
gongweibao 已提交
7815
    """
G
gongweibao 已提交
7816
    ${comment}
G
fix  
gongweibao 已提交
7817 7818

    Args:
G
gongweibao 已提交
7819
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7820 7821

    Returns:
G
gongweibao 已提交
7822
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7823 7824 7825
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7826 7827
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7828 7829 7830 7831
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7832
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7833 7834 7835 7836

    return out


G
gongweibao 已提交
7837
@templatedoc()
G
fix  
gongweibao 已提交
7838 7839
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7840
    ${comment}
G
fix  
gongweibao 已提交
7841 7842

    Args:
G
gongweibao 已提交
7843 7844 7845 7846
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7847 7848

    Returns:
G
gongweibao 已提交
7849
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7850 7851 7852 7853

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7854 7855
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7867
@templatedoc()
G
fix  
gongweibao 已提交
7868 7869
def shape(input):
    """
G
gongweibao 已提交
7870
    ${comment}
G
fix  
gongweibao 已提交
7871 7872

    Args:
G
gongweibao 已提交
7873
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7874 7875

    Returns:
G
gongweibao 已提交
7876
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7877 7878 7879 7880

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7881 7882
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7883
    helper.append_op(
G
fix  
gongweibao 已提交
7884
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7885 7886

    return out
G
merge  
gongweibao 已提交
7887 7888


S
sneaxiy 已提交
7889 7890 7891 7892 7893 7894 7895 7896
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7897 7898
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7899
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7900 7901 7902
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7903

S
sneaxiy 已提交
7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7915
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7916 7917 7918 7919 7920 7921 7922 7923
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7924
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7925
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7926 7927 7928 7929 7930 7931

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7932
    if name is None:
X
Xin Pan 已提交
7933
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7934 7935 7936
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7937 7938 7939 7940 7941 7942 7943 7944 7945 7946

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7947
    return helper.append_activation(out)
S
sneaxiy 已提交
7948 7949


X
Xin Pan 已提交
7950
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7951 7952 7953
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7954
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7955 7956 7957
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7958
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7959 7960 7961
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7962
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7963 7964 7965
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7966
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7967 7968 7969
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7970
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7971 7972 7973
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7974
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7986 7987
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7988
        ])
M
minqiyang 已提交
7989 7990


7991
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7992 7993
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7994 7995
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7996 7997 7998

    if out is None:
        if name is None:
X
Xin Pan 已提交
7999
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8015
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8027 8028 8029 8030 8031 8032 8033 8034 8035

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8036 8037 8038 8039 8040 8041 8042
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8043
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8055 8056 8057 8058 8059 8060 8061 8062 8063

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8064 8065 8066 8067 8068 8069 8070
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8071
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8083 8084 8085 8086 8087 8088 8089 8090 8091

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8092 8093 8094 8095 8096 8097 8098
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8099
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8100 8101 8102 8103 8104 8105 8106 8107 8108 8109
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8110 8111 8112 8113 8114 8115 8116

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8117 8118 8119 8120
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8136 8137 8138 8139 8140 8141 8142

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8143 8144 8145 8146 8147
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8148 8149 8150 8151
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8175 8176 8177 8178 8179 8180 8181

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8182 8183 8184 8185 8186
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8187 8188 8189 8190
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8191 8192 8193 8194 8195 8196 8197 8198

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8217
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8247
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8248 8249 8250 8251 8252 8253 8254 8255 8256
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8257 8258
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8281
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8311
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8312 8313 8314 8315 8316 8317 8318 8319 8320 8321
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8322 8323


J
JiabinYang 已提交
8324
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8325
    """
J
JiabinYang 已提交
8326
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8327 8328 8329

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8330
    The attr blocksize indicates the input block size.
8331 8332

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8333
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8334 8335

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8336
    (but keeping all data)
J
JiabinYang 已提交
8337

J
JiabinYang 已提交
8338
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8339
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8340 8341 8342 8343 8344
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8345
    Args:
J
JiabinYang 已提交
8346
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8347
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8348 8349

    Returns:
J
JiabinYang 已提交
8350
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8351 8352

    Raises:
J
JiabinYang 已提交
8353
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8354 8355 8356 8357 8358 8359

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8360
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8361
                x=data, blocksize=2)
J
JiabinYang 已提交
8362 8363
    """

J
JiabinYang 已提交
8364
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8365

J
JiabinYang 已提交
8366 8367
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8368 8369

    if name is None:
J
JiabinYang 已提交
8370 8371
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8372 8373 8374 8375 8376
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8377
        type="space_to_depth",
J
JiabinYang 已提交
8378
        inputs={"X": x},
J
JiabinYang 已提交
8379
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8380
        outputs={"Out": out})
J
JiabinYang 已提交
8381 8382
    return out

J
JiabinYang 已提交
8383

S
sneaxiy 已提交
8384 8385
@templatedoc()
def sequence_reverse(x, name=None):
8386
    """
S
sneaxiy 已提交
8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8398
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8399 8400 8401 8402 8403 8404 8405 8406 8407 8408
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8409 8410


8411 8412 8413 8414 8415 8416
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8417

8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8437
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8450 8451


B
barrierye 已提交
8452
def similarity_focus(input, axis, indexes, name=None):
8453
    """
B
barrierye 已提交
8454
    SimilarityFocus Operator
B
barrierye 已提交
8455 8456

    Generate a similarity focus mask with the same shape of input using the following method:
8457 8458 8459
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8460
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8461 8462 8463 8464 8465 8466 8467
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8468
       each index.
B
barrierye 已提交
8469 8470 8471 8472
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8522
    Args:
8523
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8524
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8525
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8526
            1, 2 or 3.
B
barrierye 已提交
8527
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8528 8529

    Returns:
8530
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8531
            as the input.
8532

B
barrierye 已提交
8533 8534 8535
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8536 8537
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8550 8551 8552 8553 8554
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8555 8556 8557 8558 8559 8560 8561
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8562 8563


M
minqiyang 已提交
8564 8565
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8566 8567
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8568 8569
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8608
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8609
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8610 8611 8612 8613 8614 8615 8616 8617 8618

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8619 8620
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8621 8622
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8623 8624 8625 8626 8627 8628 8629
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8630 8631


D
dengkaipeng 已提交
8632
@templatedoc()
8633 8634
def grid_sampler(x, grid, name=None):
    """
8635
    This operation samples input X by using bilinear interpolation based on
8636
    flow field grid, which is usually gennerated by affine_grid. The grid of
8637 8638 8639 8640
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8641
    interpolation value of 4 nearest corner points.
8642 8643 8644 8645 8646 8647 8648 8649

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8650
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8680 8681

    Args:
8682 8683 8684
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8685 8686

    Returns:
8687
        out(Variable): Output of shape [N, C, H, W] data samples input X
8688 8689 8690 8691 8692 8693 8694 8695 8696
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8697 8698 8699 8700 8701 8702 8703 8704 8705
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8706
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8707 8708
    ipts = {'X': x, 'Grid': grid}

8709
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8710 8711 8712
    return out


G
gmcather 已提交
8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8807 8808 8809 8810 8811 8812 8813 8814 8815 8816


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8817
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8818

Q
Qiao Longfei 已提交
8819
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8820 8821 8822
    For example:

    .. math::
8823
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8824

Q
Qiao Longfei 已提交
8825
    In this formula:
8826 8827
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8828
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8829
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8830 8831 8832
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8833 8834
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8835 8836 8837
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8838
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8839
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8840
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8841 8842 8843 8844
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8845
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8846 8847 8848 8849

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8850
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8851 8852
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8853
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8854 8855 8856 8857

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8858
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)