framework.py 162.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'load_op_library',
53
    'require_version',
54
]
Y
Yu Yang 已提交
55

Q
qiaolongfei 已提交
56 57 58 59
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
60 61
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
62 63
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
64 65


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
173
def in_dygraph_mode():
L
lujun 已提交
174
    """
Y
Youwei Song 已提交
175 176
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
177 178

    Returns:
Y
Youwei Song 已提交
179
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
180 181 182 183

    Examples:
        .. code-block:: python

184
            import paddle.fluid as fluid
L
lujun 已提交
185
            if fluid.in_dygraph_mode():
Y
Youwei Song 已提交
186 187 188
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
189 190

    """
L
lujun 已提交
191
    return _dygraph_tracer_ is not None
192 193


194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
216 217
def _dygraph_tracer():
    return _dygraph_tracer_
218

W
Wu Yi 已提交
219

M
minqiyang 已提交
220
def _current_expected_place():
L
lujun 已提交
221
    return _dygraph_current_expected_place_
M
minqiyang 已提交
222 223


S
sneaxiy 已提交
224
def _cpu_num():
225
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
226 227 228 229 230 231 232 233
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
234
        os.environ['CPU_NUM'] = str(1)
235
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
236 237 238 239 240 241 242 243 244 245
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
246 247


C
chengduo 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


H
hong 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275
def _var_base_to_np(var_base):
    """
    convert VarBase tp numpy
    
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase

    """
    var = var_base._copy_to(core.CPUPlace(), True)
    return np.array(var.value().get_tensor())


S
sneaxiy 已提交
276
def cuda_places(device_ids=None):
L
lujun 已提交
277
    """
278 279 280 281 282
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
283 284

    If :code:`device_ids` is None, environment variable of
285
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
286 287 288
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
289
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
290 291

    If :code:`device_ids` is not None, it should be the device
292
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
293 294 295
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
296 297
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
298 299

    Returns:
300
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
301 302 303 304

    Examples:
        .. code-block:: python

305
            import paddle.fluid as fluid
L
lujun 已提交
306 307 308
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
309 310 311
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
312
        device_ids = _cuda_ids()
S
sneaxiy 已提交
313 314 315 316 317 318
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
319
    """
320
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
321 322 323
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
324 325
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
326 327
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
328

329 330
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
331 332

    Returns:
333
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
334 335 336 337

    Examples:
        .. code-block:: python

338
            import paddle.fluid as fluid
L
lujun 已提交
339 340 341
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
342 343 344 345 346 347
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
348
    """
349
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
350 351 352

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
353 354 355 356
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
357

358 359
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
360 361

    Returns:
362
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
363 364 365 366

    Examples:
        .. code-block:: python

367
            import paddle.fluid as fluid
L
lujun 已提交
368 369 370 371 372
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
373 374 375
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
376 377
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
378 379


380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
406
@signature_safe_contextmanager
407 408 409 410
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
411 412 413
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
414 415

    Args:
T
Tao Luo 已提交
416
        prefix(str, optional): prefix. Default is none.
417 418 419

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
420

421
          import paddle.fluid as fluid
422
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
423 424 425 426 427 428
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
429
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
430
                f = fluid.layers.pow(d, 2.0)
431
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
451 452
    """
    # TODO(panyx0718): Only [0-9a-z].
453 454 455 456 457 458 459 460 461
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
462 463 464 465 466 467 468 469 470 471 472 473


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
474 475 476
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
477 478 479 480


def grad_var_name(var_name):
    """
481 482
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
483 484 485
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
486

487
def convert_np_dtype_to_dtype_(np_dtype):
488 489
    """
    Convert the data type in numpy to the data type in Paddle
490

491
    Args:
492
        np_dtype(np.dtype): the data type in numpy.
493

494 495
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
496 497

    """
498 499
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
500
        return core.VarDesc.VarType.FP32
501
    elif dtype == np.float64:
502
        return core.VarDesc.VarType.FP64
503
    elif dtype == np.float16:
504
        return core.VarDesc.VarType.FP16
505
    elif dtype == np.int32:
506
        return core.VarDesc.VarType.INT32
507
    elif dtype == np.int16:
508
        return core.VarDesc.VarType.INT16
509
    elif dtype == np.int64:
510
        return core.VarDesc.VarType.INT64
511
    elif dtype == np.bool:
512
        return core.VarDesc.VarType.BOOL
513 514
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
515 516
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
517 518
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
519
    else:
M
minqiyang 已提交
520
        raise ValueError("Not supported numpy dtype %s" % dtype)
521 522 523


def dtype_is_floating(dtype):
524 525 526
    """
    Check the data type is floating or not.
    Args:
527
        dtype(np.dtype|core.VarDesc.VarType): data type.
528 529 530 531 532
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
533
    if not isinstance(dtype, core.VarDesc.VarType):
534 535
        dtype = convert_np_dtype_to_dtype_(dtype)

536 537 538 539
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
540 541


Y
Yang Yang(Tony) 已提交
542
def _debug_string_(proto, throw_on_error=True):
543 544 545 546 547 548 549 550 551 552 553
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
554
    error_fields = list()
Y
Yang Yang(Tony) 已提交
555
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
556 557
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
558 559 560
    return proto.__str__()


X
Xin Pan 已提交
561
class Variable(object):
562
    """
J
Jiabin Yang 已提交
563
    **Notes**:
564
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
565

566 567
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
568 569 570
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
571
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
572 573
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
574

575
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
576
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
577

578
    Most of a Variable's member variables can be setted to be None. It mean
579
    it is not available or will be specified later.
580

581
    Examples:
582 583
        In Static Graph Mode:

584 585
        .. code-block:: python

586
            import paddle.fluid as fluid
587
            cur_program = fluid.Program()
588 589 590 591
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
592
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
593 594 595 596 597 598 599 600 601

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

602 603
    """

Y
Yu Yang 已提交
604 605
    def __init__(self,
                 block,
Y
Yu Yang 已提交
606
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
607 608 609 610
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
611
                 capacity=None,
Q
QI JUN 已提交
612
                 persistable=None,
F
fengjiayi 已提交
613
                 error_clip=None,
Y
Yu Yang 已提交
614
                 stop_gradient=False,
F
fengjiayi 已提交
615
                 is_data=False,
H
Huihuang Zheng 已提交
616
                 need_check_feed=False,
H
hong 已提交
617
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
618
                 **kwargs):
Y
Yu Yang 已提交
619 620
        self.block = block
        if name is None:
Y
Yu Yang 已提交
621
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
622

Y
Yu Yang 已提交
623
        if dtype is not None:
624
            if not isinstance(dtype, core.VarDesc.VarType):
625
                dtype = convert_np_dtype_to_dtype_(dtype)
626

H
hong 已提交
627 628
        self.belong_to_optimizer = belong_to_optimizer

L
lujun 已提交
629
        if in_dygraph_mode():
M
minqiyang 已提交
630
            # record vars in tracer rather than blocks
M
minqiyang 已提交
631
            self._ivar = kwargs.get("ivar", None)
632
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
633
            if not self._ivar:
634
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
635 636 637
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
638
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
639
                    if persistable else False)
M
minqiyang 已提交
640
            if persistable:
L
lujun 已提交
641
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
642
            self.op = None
M
minqiyang 已提交
643
        else:
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
708 709 710
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

711 712 713 714 715 716 717 718
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
719
            self.block.vars[name] = self
720
            self.op = None
721
            self._stop_gradient = stop_gradient
722
            self.is_data = is_data
Y
Yu Yang 已提交
723

724
    @dygraph_only
725 726
    def detach(self):
        """
J
Jiabin Yang 已提交
727 728
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
729

730
        Returns a new Variable, detached from the current graph.
731

732
        Returns:
J
Jiabin Yang 已提交
733
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
734

735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

763
    @dygraph_only
764
    def numpy(self):
765
        """
J
Jiabin Yang 已提交
766 767
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
768

J
Jiabin Yang 已提交
769
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
770 771 772 773 774

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
775
            ndarray: dtype is same as current Variable
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
797
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
798
        return np.array(new_ivar.value().get_tensor())
799

800 801 802
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
803 804 805
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
H
hong 已提交
829 830 831 832
        assert isinstance(value, (Variable, np.ndarray, core.VarBase)), \
                "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
833
        if isinstance(value, Variable):
H
hong 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847
            value_np = value.numpy()
        elif isinstance(value, core.VarBase):
            value_np = _var_base_to_np(value)
        self_tensor = self._ivar.value().get_tensor()

        self_tensor_np = np.array(self_tensor)

        assert self_tensor_np.shape == value_np.shape,  \
                                      "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format( self._ivar.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype,  \
                                      "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format( self._ivar.name, self_tensor_np.dtype, value_np.dtype)

        self_tensor.set(value_np, _current_expected_place())
848

849
    @dygraph_only
850
    def backward(self, backward_strategy=None):
851
        """
J
Jiabin Yang 已提交
852 853
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
854 855 856

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
857 858
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
859

J
Jiabin Yang 已提交
860 861
        Returns:
            NoneType: None
862 863 864 865 866 867 868 869 870 871 872 873

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
874 875
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
876 877 878 879 880 881 882 883 884
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
885 886 887 888 889
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
890

J
Jiabin Yang 已提交
891 892 893 894
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
895

896
    @dygraph_only
897
    def gradient(self):
898
        """
J
Jiabin Yang 已提交
899 900
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
901 902 903

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
904 905
        Returns:
            ndarray: Numpy value of the gradient of current Variable
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
        if not self._ivar._grad_ivar().value().get_tensor()._is_initialized():
            raise ValueError(
                "%s's Grad is Empty, Please check if it has no data in" %
                self.name)
936 937
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
938

939
    @dygraph_only
940
    def clear_gradient(self):
941
        """
J
Jiabin Yang 已提交
942 943 944 945
        **Notes**:
            **1. This API is ONLY avaliable in Dygraph mode**

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
946

J
Jiabin Yang 已提交
947
        Clear  (set to ``0`` ) the Gradient of Current Variable
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
974
        self._ivar._clear_gradient()
X
Xin Pan 已提交
975

976
    def __str__(self):
Y
Yang Yang(Tony) 已提交
977 978
        return self.to_string(True)

F
update  
fengjiayi 已提交
979
    def to_string(self, throw_on_error, with_details=False):
980 981 982
        """
        Get debug string.

J
Jiabin Yang 已提交
983 984 985 986 987
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
988

989 990
        Returns:
            str: The debug string.
991 992 993 994 995

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
996

997 998 999 1000 1001
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1002
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1003
                print("=============with detail===============")
1004
                print(new_variable.to_string(True, True))
1005
        """
L
lujun 已提交
1006
        if in_dygraph_mode():
L
lujun 已提交
1007
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
1008 1009 1010 1011 1012 1013 1014
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
1015

F
update  
fengjiayi 已提交
1016 1017
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1018
        protostr = self.desc.serialize_to_string()
1019
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1020 1021 1022 1023
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1024 1025 1026
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1027
        return res_str
1028 1029 1030

    __repr__ = __str__

1031
    @property
1032
    def stop_gradient(self):
J
Jiabin Yang 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
                fc = fluid.FC("fc1", size=5, dtype="float32")
                fc2 = fluid.FC("fc2", size=3, dtype="float32")
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
                out1 = fc(a)
                out2 = fc2(b)
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

                assert (fc._w.gradient() == 0).all()
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1062
        if in_dygraph_mode():
M
minqiyang 已提交
1063 1064
            return self._ivar.stop_gradient
        else:
1065
            return self._stop_gradient
1066

1067 1068
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1069
        if in_dygraph_mode():
M
minqiyang 已提交
1070
            self._ivar.stop_gradient = s
1071
        else:
1072
            self._stop_gradient = s
1073

1074 1075
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1097
        if in_dygraph_mode():
1098 1099 1100
            return self._ivar.persistable
        else:
            return self.desc.persistable()
1101

Y
Yu Yang 已提交
1102 1103
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1104
        if in_dygraph_mode():
1105 1106 1107
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1108 1109
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1110

Y
Yu Yang 已提交
1111 1112
    @property
    def name(self):
J
Jiabin Yang 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1129
        if in_dygraph_mode():
1130 1131 1132
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1133

T
typhoonzero 已提交
1134 1135
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1136
        if in_dygraph_mode():
1137 1138 1139
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1140

Y
Yu Yang 已提交
1141 1142
    @property
    def shape(self):
J
Jiabin Yang 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1160
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1161
        if in_dygraph_mode():
1162 1163 1164
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1165 1166

    @property
F
fengjiayi 已提交
1167
    def dtype(self):
J
Jiabin Yang 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1184
        if in_dygraph_mode():
1185 1186 1187
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1188 1189

    @property
1190
    @dygraph_not_support
Y
Yu Yang 已提交
1191
    def lod_level(self):
J
Jiabin Yang 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1213
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1214 1215
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1216
        return self.desc.lod_level()
Y
Yu Yang 已提交
1217

Y
Yu Yang 已提交
1218 1219
    @property
    def type(self):
J
Jiabin Yang 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1236
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1237
            return self._ivar.type
1238 1239
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1240

W
Wu Yi 已提交
1241
    def _set_error_clip(self, error_clip):
1242 1243 1244 1245 1246 1247 1248 1249 1250
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1251 1252
        self.error_clip = error_clip

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1340
    def _cloneVar(self, copy=False):
1341 1342
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1343 1344
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1345 1346 1347 1348
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1349
        new_var = self._cloneVar()
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1360
        new_var = self._cloneVar()
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1371
                return self._cloneVar(True)
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1390
                return self._cloneVar(True)
1391
            index = int(item)
1392
            if (index > 0 and index >= self.shape[axis]) \
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
        def fill_constant(shape, dtype, value, force_cpu=False, out=None):
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
                    'force_cpu': force_cpu or force_init_on_cpu()
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1458
            else:
H
Hongyu Liu 已提交
1459 1460 1461
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
                    fill_constant([1], 'int32', 1, force_cpu=True, out=temp_1)
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
        infer_flags = list(1 for i in range(len(slice_axis)))

        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

        out = self
        if len(slice_axis) > 0:
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1541
                inputs=inputs,
H
Hongyu Liu 已提交
1542
                outputs={'Out': [slice_out_var]},
1543
                attrs=attrs)
H
Hongyu Liu 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1561

Y
Yu Yang 已提交
1562

F
fengjiayi 已提交
1563 1564 1565
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1566

1567 1568
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1569 1570 1571 1572
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1573
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1574 1575 1576 1577 1578
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1579 1580 1581 1582
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1592
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1593 1594 1595 1596 1597 1598
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1599 1600 1601 1602 1603 1604 1605 1606
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1607 1608
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1609 1610
        return self.op_proto_map[type]

1611 1612 1613 1614 1615 1616
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1617 1618 1619 1620
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1621
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1622 1623
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1624 1625
        }

F
fengjiayi 已提交
1626

X
Xin Pan 已提交
1627
class Operator(object):
1628
    """
1629 1630 1631 1632 1633 1634 1635
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1636
        type(str): The type of operator. Default None.
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1657
        Block.append_op or Block._prepend_op instead.
1658 1659 1660 1661

    Examples:
        .. code-block:: python

1662
            import paddle.fluid as fluid
1663
            cur_program = fluid.Program()
1664 1665 1666 1667 1668
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1669
    """
1670
    OP_WITHOUT_KERNEL_SET = {
1671 1672
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1673 1674
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1675
        'c_sync_comm_stream'
1676
    }
1677

Y
Yu Yang 已提交
1678 1679
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1680
                 desc,
Y
Yu Yang 已提交
1681 1682 1683
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1684
                 attrs=None):
L
lujun 已提交
1685
        if in_dygraph_mode():
1686 1687
            if type is None:
                raise ValueError(
1688
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1689
            self._type = type
M
minqiyang 已提交
1690
            self.attrs = attrs if attrs else {}
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1705
                )] = self.block.program._op_role
1706 1707 1708

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1709 1710
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1711 1712 1713 1714 1715 1716 1717 1718

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1719
                    "`type` to initialized an Operator can not be None.")
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1751
                        for index, arg in enumerate(in_args):
1752 1753 1754 1755
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1756
                            elif isinstance(arg, Variable):
1757
                                in_arg_names.append(cpt.to_text(arg.name))
1758
                            else:
1759 1760 1761 1762 1763 1764
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
                                    "but received : " % (in_proto.name, type),
                                    arg)
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1791
                        if not in_dygraph_mode():
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1811
    def _has_kernel(self, op_type):
1812 1813
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1814
    def to_string(self, throw_on_error):
1815
        """
1816 1817
        Get debug string.

1818
        Args:
1819 1820
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1821

1822 1823
        Returns:
            str: The debug string.
1824 1825

        """
1826
        protostr = self.desc.serialize_to_string()
1827
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1828 1829 1830 1831
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1832 1833 1834

    __repr__ = __str__

F
fengjiayi 已提交
1835 1836
    @property
    def type(self):
L
lujun 已提交
1837
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1838
            return self._type
1839 1840
        else:
            return self.desc.type()
F
fengjiayi 已提交
1841 1842

    def input(self, name):
1843
        """
1844
        Get the input arguments according to the input parameter name.
1845

1846 1847
        Args:
            name(str): The input parameter name.
1848

1849 1850 1851
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1852
        """
F
fengjiayi 已提交
1853 1854
        return self.desc.input(name)

W
Wu Yi 已提交
1855
    def _rename_input(self, old_name, new_name):
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1866
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1867

W
Wu Yi 已提交
1868
    def _rename_output(self, old_name, new_name):
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1879
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1880

F
fengjiayi 已提交
1881 1882 1883 1884
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1885 1886 1887 1888 1889 1890 1891 1892
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1893
    def output(self, name):
1894
        """
1895
        Get output arguments by the output parameter name.
1896

1897 1898
        Args:
            name(str): The output parameter name.
1899

1900 1901 1902
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1903
        """
F
fengjiayi 已提交
1904 1905 1906 1907 1908 1909
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1910 1911 1912 1913 1914 1915 1916 1917
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1918
    def has_attr(self, name):
1919
        """
1920 1921
        Whether this Operator has the attribute with name or not.

1922
        Args:
1923
            name(str): the attribute name.
1924

1925 1926
        Returns:
            bool: True if has this attribute.
1927 1928

        """
F
fengjiayi 已提交
1929 1930 1931
        return self.desc.has_attr(name)

    def attr_type(self, name):
1932
        """
1933
        Get the type of attribute by attribute's name.
1934

1935 1936
        Args:
            name(str): the attribute name.
1937

1938 1939
        Returns:
            core.AttrType: the attribute type.
1940
        """
F
fengjiayi 已提交
1941 1942
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1943
    def _set_attr(self, name, val):
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1954 1955
        self._update_desc_attr(name, val)

1956 1957 1958
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1970 1971
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1972 1973
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1974
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1975 1976 1977 1978
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1979
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1980

F
fengjiayi 已提交
1981 1982 1983 1984 1985
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1986
        """
1987 1988
        Get the attribute by name.

1989
        Args:
1990
            name(str): the attribute name.
1991

1992 1993
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1994 1995
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1996
        return self.desc.attr(name)
Y
Yu Yang 已提交
1997

W
Wu Yi 已提交
1998
    def _block_attr_id(self, name):
1999
        """
G
gongweibao 已提交
2000
        Get the block attribute's id by name.
2001

2002 2003
        Args:
            name(str): the attribute name.
2004

2005 2006
        Returns:
            int: the block index.
2007
        """
W
Wu Yi 已提交
2008
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2009

W
Wu Yi 已提交
2010
    def _block_attr(self, name):
G
gongweibao 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2021
        id = self._block_attr_id(name)
G
gongweibao 已提交
2022 2023 2024
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2025
    def _blocks_attr(self, name):
G
gongweibao 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2036
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2037 2038 2039 2040 2041
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2042
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2053
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2054

J
JiayiFeng 已提交
2055
    def all_attrs(self):
F
fengjiayi 已提交
2056
        """
2057 2058 2059
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2060
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2061 2062 2063 2064
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2065 2066
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2067
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2068 2069 2070
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2071
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2072 2073 2074 2075
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2076 2077
        return attr_map

Y
Yu Yang 已提交
2078

Y
Yu Yang 已提交
2079
class Block(object):
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2094
        use `Program._create_block()` to create a block.
2095 2096 2097 2098

    Examples:
        .. code-block:: python

2099 2100 2101
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2102 2103 2104 2105 2106 2107 2108 2109 2110
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2111
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2112
        self.desc = program.desc.block(idx)
2113
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2114
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2115
        self.program = program
2116
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2117

2118
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2119 2120
        return self.to_string(True)

F
fengjiayi 已提交
2121 2122
    def to_string(self, throw_on_error, with_details=False):
        """
2123 2124
        Get debug string.

F
fengjiayi 已提交
2125 2126
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2127
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2128
            with_details(bool): more details about variables and parameters
2129 2130
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2131

2132 2133
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2134 2135 2136 2137
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2138
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2139 2140
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2141
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2142
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2143
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2144
            for op in self.ops:
F
fengjiayi 已提交
2145 2146
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2147 2148 2149
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2150 2151
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2152 2153
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2154 2155 2156

    __repr__ = __str__

Y
Yu Yang 已提交
2157 2158
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2159
        return self.desc.parent
Y
Yu Yang 已提交
2160

Y
Yu Yang 已提交
2161 2162 2163 2164
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2165
    def _set_forward_block_idx(self, idx):
2166 2167 2168 2169 2170 2171 2172 2173 2174
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2175
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2176

Y
Yu Yang 已提交
2177 2178
    @property
    def idx(self):
Y
Yu Yang 已提交
2179
        return self.desc.id
Y
Yu Yang 已提交
2180

Q
Qiao Longfei 已提交
2181
    def var(self, name):
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2195
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2196 2197 2198
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2199 2200
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2201
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2202
        return v
Q
Qiao Longfei 已提交
2203

X
Xin Pan 已提交
2204
    def _find_var_recursive(self, name):
2205 2206 2207 2208 2209 2210 2211
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2212
            Variable: the Variable with the giving name. Or None if not found.
2213
        """
Y
Yu Yang 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2238
        return None
Y
Yu Yang 已提交
2239

X
Xin Pan 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2259

Q
Qiao Longfei 已提交
2260
    def all_parameters(self):
2261
        return list(self.iter_parameters())
2262

2263
    def iter_parameters(self):
M
minqiyang 已提交
2264
        return (item[1] for item in six.iteritems(self.vars)
2265
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2266

Y
Yu Yang 已提交
2267
    def create_var(self, *args, **kwargs):
2268
        var = Variable(block=self, *args, **kwargs)
2269 2270
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2271
        return var
Y
Yu Yang 已提交
2272

Q
Qiao Longfei 已提交
2273 2274 2275
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2276
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2277 2278
        """
        Rename variable in vars and ops' inputs and outputs
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2291
        """
M
minqiyang 已提交
2292 2293
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2294

T
typhoonzero 已提交
2295
        if not self.has_var(name):
2296
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2297 2298
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2299
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2300 2301 2302 2303 2304 2305 2306
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2307
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2308 2309 2310 2311
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2312
        orig_var_type = v.type
M
minqiyang 已提交
2313
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2314
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2315
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2316
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
2317 2318 2319 2320
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
2321
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2322 2323 2324 2325 2326 2327 2328
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
2329
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2330 2331
            var = Variable(
                self,
T
typhoonzero 已提交
2332
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2333 2334 2335 2336
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2337
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2338 2339 2340
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2341
        self._sync_with_cpp()
2342
        return var
T
typhoonzero 已提交
2343

W
Wu Yi 已提交
2344 2345
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2346
        self.desc._remove_var(cpt.to_bytes(name))
2347 2348
        del self.vars[name]

Y
Yu Yang 已提交
2349 2350
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
2351
        param = Parameter(global_block, *args, **kwargs)
2352
        if 'initializer' in kwargs:
2353 2354 2355 2356 2357

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2358 2359 2360 2361 2362
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2378
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2379
        return param
Y
Yu Yang 已提交
2380

Y
Yu Yang 已提交
2381
    def append_op(self, *args, **kwargs):
2382 2383 2384 2385 2386 2387
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2388
        if in_dygraph_mode():
2389 2390 2391
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2392 2393 2394 2395 2396
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2397

J
Jiabin Yang 已提交
2398 2399
            type = kwargs.get("type", None)

2400 2401 2402
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2403
                type=type,
M
minqiyang 已提交
2404 2405
                inputs=None,
                outputs=None,
2406
                attrs=attrs)
2407

M
minqiyang 已提交
2408 2409 2410
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2411
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2412 2413

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2414
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2415 2416
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2417
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2418
        else:
2419 2420 2421 2422 2423 2424 2425 2426 2427
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2428
            self.ops.append(op)
M
minqiyang 已提交
2429

2430 2431
        return op

W
Wu Yi 已提交
2432
    def _insert_op(self, index, *args, **kwargs):
2433 2434 2435 2436 2437 2438 2439 2440 2441
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2442 2443
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2444 2445 2446 2447
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2448
    def _remove_op(self, index):
2449 2450 2451 2452 2453 2454 2455 2456 2457
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2458 2459
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2460 2461
        del self.ops[index]

W
Wu Yi 已提交
2462
    def _slice_ops(self, start, end):
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2473
        return self.ops[start:end]
Y
Yancey1989 已提交
2474

W
Wu Yi 已提交
2475
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2476
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2477 2478
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2479
            op = Operator(
J
Jiabin Yang 已提交
2480
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2481

J
Jiabin Yang 已提交
2482
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2483
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2484 2485
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2486
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2487
        else:
2488 2489 2490 2491 2492 2493 2494 2495
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2496
            self.ops.insert(0, op)
2497

Y
Yu Yang 已提交
2498 2499
        return op

W
Wu Yi 已提交
2500
    def _sync_with_cpp(self):
2501
        """
2502 2503
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2504
        """
Q
Qiao Longfei 已提交
2505 2506 2507 2508 2509
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2510
        # sync variables removed from c++ end
2511
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2512
            if not self.desc.find_var(cpt.to_bytes(var)):
2513 2514
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2515
        # sync operators from cpp
2516 2517 2518 2519
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2536 2537 2538 2539 2540

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2541
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2542 2543 2544 2545 2546 2547 2548

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2562 2563 2564 2565
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2566
    def _copy_param_info_from(self, other):
2567
        """
2568 2569
        Copy the information of parameters from the other block.

2570
        Args:
2571 2572 2573 2574 2575
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2576 2577 2578 2579 2580

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2581 2582
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2583
        for p in other.iter_parameters():
2584 2585 2586
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2587
                raise ValueError("_copy_param_info_from should be invoked with "
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2600
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2601
                error_clip=p.error_clip,
2602 2603 2604
                name=v.name)
            self.vars[new_p.name] = new_p

2605
    def _clone_variable(self, var, force_persistable=True):
2606 2607
        """
        Clone a variable into current block.
2608

2609 2610
        Args:
            var: the variable to be cloned.
2611 2612 2613
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2614 2615

        Returns:
2616
            Variable: the new  variable cloned from 'var' in current block.
2617 2618
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2619 2620 2621 2622 2623
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2624 2625
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2626
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2627 2628 2629 2630 2631 2632
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2633
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2634 2635
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2636 2637 2638 2639 2640 2641 2642
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2643
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2644 2645
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2646
        return ret_var
2647

Y
Yu Yang 已提交
2648

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2744
    def remove_input_by_id(self, node_id):
2745 2746 2747 2748 2749 2750
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2751
        self.node.remove_input(node_id)
2752

2753
    def remove_input(self, node):
2754 2755 2756 2757
        """
        Remove a node from inputs.

        Args:
2758
            node(IrNode): the node being removed.
2759
        """
2760
        self.node.remove_input(node.node)
2761

2762
    def append_input(self, node):
2763 2764 2765 2766
        """
        Append a node in inputs.

        Args:
2767
            node(IrNode): the node being appended.
2768
        """
2769
        self.node.append_input(node.node)
2770 2771 2772 2773 2774 2775 2776 2777

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2778
    def remove_output_by_id(self, node_id):
2779 2780 2781 2782 2783 2784
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2785
        self.node.remove_output(node_id)
2786

2787
    def remove_output(self, node):
2788 2789 2790 2791
        """
        Remove a node from outputs.

        Args:
2792
            node(IrNode): the node being removed.
2793
        """
2794
        self.node.remove_output(node.node)
2795

2796
    def append_output(self, node):
2797 2798 2799 2800
        """
        Append a node in outputs.

        Args:
2801
            node(IrNode): the node being appended.
2802
        """
2803
        self.node.append_output(node.node)
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3021
                all(isinstance(v, Block) for v in val):
3022 3023
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3024
                isinstance(val, core.ProgramDesc):
3025 3026 3027 3028
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3072 3073
class IrGraph(object):
    """
3074
    Python IrGraph. Beneath it is a core.Graph, which is used for
3075
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3076 3077
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3078 3079 3080 3081
    """

    def __init__(self, graph, for_test=False):
        """
3082 3083
        Construct an IrGraph using core.Graph.

3084 3085 3086 3087 3088 3089 3090 3091 3092
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3093 3094 3095 3096
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3097 3098 3099
        Warns:
            The method only clones the graph structure, not its attributes.

3100 3101 3102
        Returns:
            IrGraph: A new and duplicated graph.
        """
3103
        g = self.graph.clone()
3104 3105
        return IrGraph(g, self._for_test)

3106
    def is_test(self):
3107 3108 3109
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3110 3111
        return self._for_test

W
WangZhen 已提交
3112
    def all_nodes(self):
3113 3114 3115
        """
        Return all nodes included in the graph as a set.
        """
3116
        return {IrNode(node) for node in self.graph.nodes()}
3117

3118
    def all_var_nodes(self):
3119 3120 3121
        """
        Return all variable nodes included in the graph as a set.
        """
3122
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3123

3124
    def all_persistable_nodes(self):
3125 3126 3127
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3128 3129 3130 3131 3132
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3133
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3134

3135
    def all_op_nodes(self):
3136 3137 3138
        """
        Return all operator nodes included in the graph as a set.
        """
3139
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3140

3141
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3153
            IrVarNode: the created persistable variable node.
3154
        """
3155 3156 3157 3158 3159
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3160
        return IrVarNode(self.graph.create_var_node(var_desc))
3161 3162

    def create_var_node(self, name, var_type, shape, var_dtype):
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3174
            IrVarNode: the created variable node.
3175 3176
        """

3177 3178 3179 3180
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3181
        return IrVarNode(self.graph.create_var_node(var_desc))
3182 3183

    def create_var_node_from_desc(self, var_desc):
3184 3185 3186 3187 3188 3189 3190 3191
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3192
            IrVarNode: the created variable node.
3193
        """
3194
        return IrVarNode(self.graph.create_var_node(var_desc))
3195 3196

    def create_op_node(self, op_type, attrs, inputs, outputs):
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
3207
            IrOpNode: the created operator node.
3208
        """
3209 3210
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3211
        for attr, value in six.iteritems(attrs):
3212
            self._update_desc_attr(op_desc, attr, value)
3213
        for input_name, var_nodes in six.iteritems(inputs):
3214 3215 3216 3217
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3218
        for output_name, var_nodes in six.iteritems(outputs):
3219 3220 3221 3222
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3223
        return IrOpNode(self.graph.create_op_node(op_desc))
3224 3225

    def create_op_node_from_desc(self, op_desc):
3226 3227 3228 3229 3230 3231 3232
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3233
            IrOpNode: the created operator node.
3234
        """
3235
        return IrOpNode(self.graph.create_op_node(op_desc))
3236 3237

    def update_input_link(self, old_input_node, new_input_node, op_node):
3238 3239 3240 3241
        """
        Update the input's link of a operator node.

        Args:
3242 3243 3244
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3245
        """
3246
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3247 3248
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3249 3250 3251 3252
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3253
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3254

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3273
    def link_to(self, node_in, node_out):
3274 3275 3276 3277
        """
        Connect two nodes.

        Args:
3278 3279
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3280
        """
3281
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3282
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3283 3284
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3285 3286

    def safe_remove_nodes(self, remove_nodes):
3287 3288 3289 3290 3291 3292 3293
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3294
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3295 3296 3297 3298
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3299 3300
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3301

Z
Zhen Wang 已提交
3302 3303 3304 3305 3306 3307 3308 3309
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3310
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3311 3312 3313 3314
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3315
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3316 3317 3318
                        ]
                    else:
                        var_nodes[each_var_name].append(
3319 3320
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3321 3322
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3323
    def has_circle(self):
3324 3325 3326 3327 3328 3329
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3330 3331 3332
        return core.has_circle(self.graph)

    def graph_num(self):
3333 3334 3335 3336 3337 3338
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3339 3340 3341
        return core.graph_num(self.graph)

    def topology_sort(self):
3342 3343 3344 3345 3346 3347
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3348
            list(IrNode): nodes in topology order.
3349
        """
3350
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3351
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3352 3353

    def build_adjacency_list(self):
3354 3355 3356 3357
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3358
            dict{IrNode: set(IrNode)}: the adjacency list.
3359
        """
3360 3361 3362 3363 3364
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3365

3366 3367 3368 3369 3370 3371 3372 3373
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3374
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3375 3376 3377 3378 3379
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3380 3381 3382
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3383
                                          + ' -o ' + pdf_save_path, shell=True)
3384 3385 3386 3387 3388
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3389
        remove_ctr_vars = set()
3390
        if remove_ctr_var:
3391
            for node in self.all_var_nodes():
3392 3393 3394
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3395 3396
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3397 3398
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3399 3400 3401 3402 3403 3404
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3405 3406 3407 3408
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3409 3410
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3411 3412 3413 3414 3415 3416 3417
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3418 3419 3420
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3421
        WARN: When the graph includes backward operator nodes, the
3422 3423 3424 3425 3426 3427
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3428
        convert_pass = core.get_pass('graph_to_program_pass')
3429 3430
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3431 3432 3433 3434
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3462
class Program(object):
D
dzhwinter 已提交
3463
    """
3464 3465
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3466
    it will contain nested block.
3467

J
Jiabin Yang 已提交
3468 3469 3470
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3471

J
Jiabin Yang 已提交
3472
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3473
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3474 3475 3476 3477 3478 3479 3480
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3481 3482 3483 3484
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3485 3486

    Returns:
J
Jiabin Yang 已提交
3487
        Program: An empty Program.
D
dzhwinter 已提交
3488 3489

    Examples:
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3503 3504 3505

    """

3506 3507
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3508 3509
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3510
        self._seed = 0
Y
yuyang18 已提交
3511
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3512
        self.__op_role_var = []
T
tangwei12 已提交
3513

3514 3515
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3516
        self._is_distributed = False
3517
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3518
        self._is_chief = False
3519 3520 3521
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3522
        self._endpoints = []
3523 3524 3525
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3526
        self._trainers_endpoints = []
3527
        # the distributed lookup table names
T
tangwei12 已提交
3528
        self._distributed_lookup_table = None
3529 3530 3531

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3532 3533
        self._use_lamb = False

3534 3535 3536
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3537

3538 3539 3540
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3541
        self._program_config = None
3542

H
hutuxian 已提交
3543 3544 3545
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3546 3547 3548
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3549
    @property
3550
    def _op_role(self):
Y
yuyang18 已提交
3551 3552 3553 3554 3555 3556 3557 3558
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3559
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3560 3561 3562 3563
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3564 3565
        return self._current_role

3566 3567
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3568 3569 3570
        self._current_role = role

    @property
3571
    def _op_role_var(self):
Y
yuyang18 已提交
3572
        """
3573
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3574

3575
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3576 3577 3578

        Notes: This is a very low-level API. Users should not use it directly.
        """
3579
        return self.__op_role_var
Y
yuyang18 已提交
3580

3581 3582 3583 3584 3585 3586 3587 3588 3589
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3590
    @signature_safe_contextmanager
W
Wu Yi 已提交
3591
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3592 3593 3594 3595 3596 3597 3598
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3599
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3600 3601 3602

        Examples:

3603
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3604
            >>> p, g = backward(...)
W
Wu Yi 已提交
3605
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3606 3607
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3608
        tmp_role = self._current_role
3609
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3610

Y
yuyang18 已提交
3611 3612
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3613
        self.__op_role_var = [
3614 3615 3616
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3617
        yield
3618
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3619
        self._current_role = tmp_role
Y
Yu Yang 已提交
3620

S
rename  
sneaxiy 已提交
3621
    @signature_safe_contextmanager
X
Xin Pan 已提交
3622
    def _lr_schedule_guard(self, is_with_opt=False):
3623 3624 3625 3626 3627 3628 3629
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3630 3631 3632 3633
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3634 3635 3636

        Examples:

3637
            >>> import paddle.fluid as fluid
3638 3639 3640 3641
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3642 3643

        tmp_role = self._current_role
3644
        tmp_var = self.__op_role_var
3645

3646 3647
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3648 3649
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3650
        # TODO(typhoonzero): how to set target learning rate var
3651
        self.__op_role_var = []
3652
        yield
3653
        self.__op_role_var = tmp_var
3654
        self._current_role = tmp_role
3655

3656
    def __str__(self):
Y
yuyang18 已提交
3657 3658 3659 3660 3661 3662 3663 3664 3665
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3666 3667
        return self.to_string(True)

F
fengjiayi 已提交
3668 3669 3670
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3671

J
Jiabin Yang 已提交
3672 3673 3674
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3675

J
Jiabin Yang 已提交
3676
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3677

H
haowang101779990 已提交
3678
        Returns:
J
Jiabin Yang 已提交
3679
            str: The debug string describe current Program.
Y
yuyang18 已提交
3680 3681

        Raises:
J
Jiabin Yang 已提交
3682
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3683

3684 3685 3686 3687 3688 3689 3690
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
J
Jiabin Yang 已提交
3691 3692 3693
                print("program string without detial: {}".format(prog_string))
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
                print("program string with detial: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3703 3704
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3705 3706
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3707

W
Wu Yi 已提交
3708
    def _get_desc(self):
Y
yuyang18 已提交
3709 3710 3711 3712 3713 3714 3715
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3716 3717
        return self.desc

X
version  
Xin Pan 已提交
3718 3719 3720
    def _version(self):
        return self.desc._version()

3721
    @dygraph_not_support
3722
    def clone(self, for_test=False):
Y
yuyang18 已提交
3723
        """
3724
        **Notes**:
J
Jiabin Yang 已提交
3725 3726 3727 3728
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3729
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3730

3731 3732
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3733

3734

J
Jiabin Yang 已提交
3735
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3736 3737 3738
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3739

Y
yuyang18 已提交
3740
        * Set for_test to False when we want to clone the program for training.
3741
        * Set for_test to True when we want to clone the program for testing.
3742 3743
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3744
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3745

J
Jiabin Yang 已提交
3746 3747
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3748

J
Jiabin Yang 已提交
3749 3750 3751 3752
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3753

J
Jiabin Yang 已提交
3754
        Args:
3755

J
Jiabin Yang 已提交
3756
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3757

J
Jiabin Yang 已提交
3758 3759
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3760

Y
yuyang18 已提交
3761 3762 3763

        Examples:

J
Jiabin Yang 已提交
3764
        **Notes: The Program's order maybe different after** :code:`clone` **and
3765
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
3766
        example we give you an simple method** :code:`print_prog(program)` **to
3767
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
3768
        after** :code:`clone`:
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3806 3807 3808

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3876 3877
        """
        if for_test:
3878
            if self._appending_grad_times > 0:
3879 3880 3881 3882 3883 3884 3885
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3886 3887 3888
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3889
        else:
3890
            p = Program()
G
gongweibao 已提交
3891 3892
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3893
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3894 3895 3896
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3897 3898

            p._current_role = self._current_role
3899
            p.__op_role_var = self.__op_role_var
3900
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3901

W
Wu Yi 已提交
3902
            p._sync_with_cpp()
3903

W
Wu Yi 已提交
3904
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3905
        p._copy_data_info_from(self)
3906
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3907
        return p
3908

3909
    def _prune(self, targets):
Y
yuyang18 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
3923 3924 3925 3926
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
3927

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
3962
        """
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

3980 3981
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3982 3983
        if not isinstance(targets, list):
            targets = [targets]
3984 3985 3986 3987 3988 3989

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3990 3991 3992 3993
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3994 3995
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3996
                    # and we need to find the current op that generate this
3997 3998 3999 4000 4001 4002 4003 4004
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

4005
                    t = t.op
4006 4007 4008 4009
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
4010
                else:
4011 4012
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
4013 4014 4015

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
4016
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
4017 4018 4019
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4020
        res._sync_with_cpp()
4021 4022
        return res

X
Xin Pan 已提交
4023
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4024
        """
F
fengjiayi 已提交
4025 4026 4027 4028 4029
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4030
        3. change the :code:`is_test`
Y
yuyang18 已提交
4031 4032 4033
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4034
        Args:
X
Xin Pan 已提交
4035 4036
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4037

Y
yuyang18 已提交
4038 4039 4040 4041 4042 4043
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4044
        res = Program()
4045
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4046 4047 4048 4049

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4050
        if prune_read_op:
4051 4052 4053 4054 4055 4056 4057 4058 4059
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4060
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4061 4062

        # change all `is_test` attributes to True
M
minqiyang 已提交
4063
        for i in six.moves.range(res.desc.num_blocks()):
4064
            block = res.desc.block(i)
M
minqiyang 已提交
4065
            for j in six.moves.range(block.op_size()):
4066 4067
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4068
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4069 4070 4071
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4072
        res._sync_with_cpp()
4073 4074
        return res

4075 4076
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4077
        """
J
Jiabin Yang 已提交
4078 4079 4080 4081
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4082

4083 4084
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4085

J
Jiabin Yang 已提交
4086
        Args:
Y
yuyang18 已提交
4087

J
Jiabin Yang 已提交
4088
            binary_str_type (str): the binary prootbuf string.
4089

J
Jiabin Yang 已提交
4090 4091
        Returns:
            Program: A deserialized Program.
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4114
        """
4115 4116
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4117
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4118
        p._sync_with_cpp()
4119
        return p
Y
Yu Yang 已提交
4120

4121
    @staticmethod
4122
    def _construct_from_desc(desc):
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4138 4139
    @property
    def random_seed(self):
Y
yuyang18 已提交
4140
        """
J
Jiabin Yang 已提交
4141
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4142 4143
        the random seed from random device.

J
Jiabin Yang 已提交
4144 4145 4146 4147
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4148

4149 4150 4151 4152 4153 4154 4155 4156

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4157 4158 4159
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4160 4161
                print(random_seed)
                prog.random_seed = 1
4162 4163
                z_var = fluid.layers.dropout(x_var, 0.7)

4164
                print(prog.random_seed)
Y
yuyang18 已提交
4165
        """
D
dzhwinter 已提交
4166 4167
        return self._seed

Q
qiaolongfei 已提交
4168 4169
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4170
        """
4171 4172
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4173 4174 4175 4176
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4177

4178 4179 4180 4181 4182 4183 4184 4185 4186

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4187 4188


Y
yuyang18 已提交
4189
        """
Q
qiaolongfei 已提交
4190 4191
        return self.desc.num_blocks()

D
dzhwinter 已提交
4192 4193 4194 4195 4196 4197
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4198
    def __repr__(self):
4199
        return self.__str__()
4200

Y
Yu Yang 已提交
4201
    def global_block(self):
Y
yuyang18 已提交
4202
        """
J
Jiabin Yang 已提交
4203 4204
        **Notes**:
            **This API has no effect in Dygraph mode**
4205 4206 4207

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4208 4209
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4210

4211 4212 4213 4214 4215 4216 4217 4218 4219

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4220

Y
yuyang18 已提交
4221
        """
Y
Yu Yang 已提交
4222 4223
        return self.blocks[0]

Q
Qiao Longfei 已提交
4224
    def block(self, index):
Y
yuyang18 已提交
4225
        """
J
Jiabin Yang 已提交
4226 4227
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4228

4229 4230
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4231 4232
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4233

J
Jiabin Yang 已提交
4234 4235
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4236 4237 4238 4239 4240 4241 4242 4243 4244

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4245
        """
Q
Qiao Longfei 已提交
4246 4247
        return self.blocks[index]

Y
Yu Yang 已提交
4248
    def current_block(self):
Y
yuyang18 已提交
4249
        """
J
Jiabin Yang 已提交
4250 4251
        **Notes**:
            **This API has no effect in Dygraph mode**
4252

J
Jiabin Yang 已提交
4253 4254
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4255

J
Jiabin Yang 已提交
4256 4257
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4258

4259 4260 4261 4262 4263 4264 4265 4266
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4267
        """
Y
Yu Yang 已提交
4268 4269
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4270
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4271 4272 4273 4274 4275
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4276

Y
yuyang18 已提交
4277 4278 4279 4280 4281
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4282
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4283 4284 4285
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4286 4287 4288 4289
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4290
    def _rollback(self):
Y
yuyang18 已提交
4291 4292 4293 4294 4295
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4296 4297
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4298
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4309 4310 4311
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4312
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4313

W
Wu Yi 已提交
4314
    def _copy_param_info_from(self, other):
4315
        """
4316
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4317

Y
yuyang18 已提交
4318 4319 4320
        Notes: This is a very low level API. Users should not invoke it
        directly.

4321 4322 4323 4324 4325 4326 4327
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4328
            raise TypeError("_copy_param_info_from should be invoked with "
4329 4330 4331
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4332
            raise ValueError("_copy_param_info_from should be invoked with two "
4333
                             "program, with represent the same topology")
W
Wu Yi 已提交
4334
        self.global_block()._copy_param_info_from(other.global_block())
4335

4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4351
        self._parameters_on_pservers = other._parameters_on_pservers
4352
        self._endpoints = other._endpoints
4353
        self._ps_endpoint = other._ps_endpoint
4354 4355
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4356
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4357 4358
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4359

Y
yuyang18 已提交
4360 4361 4362
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4363 4364 4365 4366 4367 4368 4369
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4370
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4371 4372 4373
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4374
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4375
                             "program, with represent the same topology")
4376
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4377 4378
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4379 4380
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4381

4382
    @dygraph_not_support
4383
    def list_vars(self):
Y
yuyang18 已提交
4384
        """
J
Jiabin Yang 已提交
4385
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4386

J
Jiabin Yang 已提交
4387 4388
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4400
        """
4401
        for each_block in self.blocks:
4402
            for each_var in list(each_block.vars.values()):
4403 4404
                yield each_var

Y
Yu Yang 已提交
4405

Y
Yu Yang 已提交
4406
class Parameter(Variable):
4407
    """
4408
    Parameter is derived from Variable. A parameter is a persistable
4409
    Variable, and will be updated by optimizers after each iteration.
4410
    The training of a neural network is essentially the updating of
4411 4412
    its parameters.

4413
    Relative to a general Variable, a Parameter has several its own
4414 4415
    member variables:

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4428 4429
    """

Y
Yu Yang 已提交
4430
    def __init__(self, block, shape, dtype, **kwargs):
4431 4432 4433 4434 4435
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4436
        if len(shape) == 0:
4437 4438
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4439 4440 4441

        for each in shape:
            if each < 0:
4442 4443 4444
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4445 4446 4447

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4448 4449 4450 4451
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4452 4453
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4454
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4455

W
wanghaoshuang 已提交
4456
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4457

4458 4459
        self.is_distributed = False

F
fengjiayi 已提交
4460 4461 4462
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4463 4464 4465
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4466

F
update  
fengjiayi 已提交
4467 4468 4469 4470 4471 4472 4473 4474
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4475 4476 4477 4478 4479 4480 4481 4482 4483
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4484 4485 4486 4487 4488 4489
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4490
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4491
            for attr_name in additional_attr:
4492 4493
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4494 4495
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4496 4497 4498 4499
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4500

Y
Yu Yang 已提交
4501
# program is a global instance.
Y
Yu Yang 已提交
4502 4503
_main_program_ = Program()
_startup_program_ = Program()
4504

4505

4506
def default_startup_program():
Y
Yu Yang 已提交
4507
    """
Y
yuyang18 已提交
4508 4509
    Get default/global startup program.

J
Jiabin Yang 已提交
4510 4511 4512
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4513 4514 4515
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4516
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4517

J
Jiabin Yang 已提交
4518
    Returns: current default startup :ref:`api_fluid_Program`
4519

J
Jiabin Yang 已提交
4520
    Returns type: :ref:`api_fluid_Program`
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4536
    """
Y
Yu Yang 已提交
4537
    return _startup_program_
4538

4539

4540
def default_main_program():
Y
Yu Yang 已提交
4541
    """
4542 4543 4544 4545 4546
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4547

4548 4549
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4550
    :code:`default_main_program` when the program is not specified.
4551

4552 4553
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4554
    Returns:
4555
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4556 4557 4558 4559 4560

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4561

4562
            # Sample Network:
4563 4564
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4584
            #print the number of blocks in the program, 1 in this case
4585
            print(fluid.default_main_program().num_blocks)
4586 4587

            #print the description of variable 'image'
4588
            print(fluid.default_main_program().blocks[0].var('image'))
4589

Y
Yu Yang 已提交
4590
    """
Y
Yu Yang 已提交
4591
    return _main_program_
Y
Yu Yang 已提交
4592 4593 4594 4595 4596


def switch_main_program(program):
    """
    Switch the main program to a new program.
4597

Y
Yu Yang 已提交
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4612
    Switch the startup program to a new program
Y
Yu Yang 已提交
4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4625
@signature_safe_contextmanager
Y
Yu Yang 已提交
4626 4627
def program_guard(main_program, startup_program=None):
    """
4628 4629
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4630
    variables to the new main programs.
4631

G
guofei 已提交
4632 4633 4634 4635 4636 4637 4638
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
4639
    Examples:
4640 4641 4642
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4643

4644 4645 4646
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
4647
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
4648
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4649 4650 4651

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4652

Y
Yu Yang 已提交
4653
    Examples:
4654
       .. code-block:: python
Y
yuyang18 已提交
4655

4656 4657 4658 4659 4660
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
4661 4662
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4675 4676


W
Wu Yi 已提交
4677
def _get_var(name, program=None):
X
xuwei06 已提交
4678
    """
Y
yuyang18 已提交
4679
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4680

X
xuwei06 已提交
4681 4682 4683
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4684
        If None, default_global_program() will be used.
X
xuwei06 已提交
4685 4686 4687 4688 4689 4690 4691

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4692
    assert isinstance(program, Program)
X
xuwei06 已提交
4693 4694

    return program.global_block().var(name)
4695 4696


S
rename  
sneaxiy 已提交
4697
@signature_safe_contextmanager
L
lujun 已提交
4698 4699 4700 4701
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
4702

4703
    yield
P
Paddle CI 已提交
4704

L
lujun 已提交
4705
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4706 4707


S
rename  
sneaxiy 已提交
4708
@signature_safe_contextmanager
L
lujun 已提交
4709 4710 4711 4712
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4713

4714
    yield
M
minqiyang 已提交
4715

L
lujun 已提交
4716
    _dygraph_current_expected_place_ = tmp_place
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()