pybind.cc 138.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46 47
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
48
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
49
#include "paddle/fluid/framework/op_info.h"
50
#include "paddle/fluid/framework/op_registry.h"
51
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
52
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/selected_rows.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/fluid/pybind/eager.h"
79
#include "paddle/fluid/pybind/io.h"
80
#include "paddle/utils/none.h"
81 82 83
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
84
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
85
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
86
#include "paddle/fluid/pybind/box_helper_py.h"
87
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
88
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
89
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
90
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
91
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
92
#include "paddle/fluid/pybind/generator_py.h"
93
#include "paddle/fluid/pybind/global_value_getter_setter.h"
94
#include "paddle/fluid/pybind/gloo_context_py.h"
95
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
96
#include "paddle/fluid/pybind/heter_wrapper_py.h"
97
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
98
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
99
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
100
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
101
#include "paddle/fluid/pybind/pybind_boost_headers.h"
102

103
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
104
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
105
#endif
106
#include "paddle/fluid/framework/data_type.h"
107 108
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
109
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
110
#include "paddle/fluid/pybind/tensor_py.h"
111
#include "paddle/fluid/string/to_string.h"
112 113
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
114
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
115
#endif
116
#ifndef PADDLE_WITH_HIP
117
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
118
#endif
119
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
120 121
#endif

122
#ifdef PADDLE_WITH_ASCEND_CL
123
#include "paddle/fluid/platform/collective_helper.h"
124 125
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
126 127
#endif

128
#ifdef PADDLE_WITH_XPU
129
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
130 131
#endif

132 133
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"

Y
Yanghello 已提交
134 135 136 137
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
138
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
139 140 141
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
142 143
#include "pybind11/stl.h"

144
DECLARE_bool(use_mkldnn);
145

Q
Qiao Longfei 已提交
146 147
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
148 149 150
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
151

152
namespace paddle {
153
namespace pybind {
154 155 156 157 158 159 160 161

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;

162
bool IsCompiledWithCUDA() {
163 164 165 166 167 168 169 170 171
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
172 173 174 175 176 177
  return false;
#else
  return true;
#endif
}

178 179 180 181 182 183 184 185
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

186 187 188 189 190 191 192 193
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

194 195 196 197 198 199 200 201
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

202 203 204 205 206 207 208 209
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

210 211 212 213 214 215 216 217
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

218 219 220 221 222 223 224 225
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

226 227 228 229 230 231 232 233 234 235 236
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

237 238 239 240 241 242 243 244 245 246 247
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
T
taixiurong 已提交
283 284 285
      {"GPU", &platform::is_gpu_place},
      {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place},
286
      {"NPU", &platform::is_npu_place},
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

326
bool IsCompiledWithBrpc() {
327
#ifndef PADDLE_WITH_DISTRIBUTE
328 329
  return false;
#endif
330
  return true;
331 332
}

Y
update  
Yancey1989 已提交
333
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
334
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
335 336 337 338 339 340
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
341 342 343 344 345 346 347 348 349 350
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
373 374 375
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
389 390
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
391 392
    }
    vec_res.emplace_back(
393
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
394 395 396 397 398 399 400 401 402 403 404 405
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
406 407
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
408 409 410 411 412 413 414 415 416 417 418 419
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
420 421 422
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
423 424 425 426
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
427 428
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
429 430 431 432
  }
  return vec_res;
}

433 434 435 436 437 438 439 440
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
441 442
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
443 444 445 446 447 448 449 450 451 452 453 454 455
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
456 457 458
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
459 460 461 462 463
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
464 465 466 467 468
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
469 470
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
471 472 473
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
474 475 476 477 478 479 480 481 482
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
483 484
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
485 486 487 488 489
  }

  return;
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
514 515 516 517
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
518
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
519 520 521 522 523 524 525 526
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
527 528 529 530 531 532 533 534 535 536 537
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

538 539 540 541 542 543
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

544
  BindEager(&m);
545 546
  BindCudaStream(&m);

Y
Yu Yang 已提交
547 548 549
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
550
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
551

552 553
  AssertStaticGraphAndDygraphGradMakerNoDiff();

554
  m.doc() = "C++ core of PaddlePaddle";
555

556 557 558 559
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

560
  BindException(&m);
Y
Yu Yang 已提交
561

562 563
  m.def("set_num_threads", &platform::SetNumThreads);

564 565
  m.def("disable_signal_handler", &DisableSignalHandler);

566
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
567
  m.def("cudnn_version", &platform::DnnVersion);
568 569 570 571 572 573
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
574
#endif
575

Z
Zeng Jinle 已提交
576 577 578 579
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

580 581 582 583 584 585 586 587 588 589
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
590 591
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
592 593
#endif

Z
Zeng Jinle 已提交
594 595 596 597
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
598 599 600
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
601 602 603 604 605 606

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
607 608
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
609
    framework::Tensor tensor;
6
633WHU 已提交
610

S
Siming Dai 已提交
611
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
612 613
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
614
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
615
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
616 617 618 619 620
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
621

622 623 624 625 626 627
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

628 629 630 631 632 633
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
634 635
  });

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
661 662 663 664 665 666
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
667
  m.def(
S
sneaxiy 已提交
668
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
669 670 671 672
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
673 674 675
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
692 693 694
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
695
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
696

697
  m.def("_set_fuse_parameter_group_size",
698
        &paddle::framework::ir::SetFuseParameterGroupsSize);
699
  m.def("_set_fuse_parameter_memory_size",
700
        &paddle::framework::ir::SetFuseParameterMemorySize);
701

S
sneaxiy 已提交
702 703 704
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

705 706
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

707 708 709
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

710
  BindImperative(&m);
711

712 713 714
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
715
      .def("_is_initialized",
716
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
717
      .def("_get_dims",
718
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
719
      .def("_set_dims",
720
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
721
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
722
           })
Y
yuyang18 已提交
723
      .def("_set_layout",
724
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
725 726
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
727
      .def("_alloc_float",
728
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
729
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
730
           })
731
      .def("_alloc_float",
732
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
733 734
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
735
      .def("_alloc_float",
736
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
737
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
738
           })
739 740 741 742
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
743
      .def("_alloc_double",
744
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
745 746
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
747
      .def("_alloc_int",
748
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
749
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
750
           })
751
      .def("_alloc_int",
752
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
753 754
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
755
      .def("_alloc_int",
756
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
757
             self.mutable_data<int>(place);
Q
qijun 已提交
758
           })
Y
yuyang18 已提交
759
      .def("_alloc_int",
760 761
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
762 763
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
764
      .def("_alloc_float",
765 766
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
767 768
             self.mutable_data<float>(place);
           })
769
      .def("_mutable_data",
770
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
771 772 773
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
774
      .def("_mutable_data",
775
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
776 777 778
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
779
      .def("_mutable_data",
780
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
781 782 783 784
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
785
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
786 787 788
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
789
      .def("_clear", &framework::Tensor::clear)
790 791 792 793 794
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
795 796 797 798 799 800 801 802 803 804 805
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
806
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
807
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
808
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
809 810
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
811
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
812
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
813 814
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
815
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
816 817
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
818 819 820 821
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
822
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
823
          LoDTensor is to be set.
824 825
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
839

840 841 842
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
859
      .def("_to_dlpack",
860
           [](framework::Tensor &self) {
6
633WHU 已提交
861
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
862
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
880 881 882 883
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
884 885
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
886
      .def("_layout",
887 888 889 890
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
891
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
892
      .def("__str__", [](const framework::Tensor &self) {
893 894 895 896
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
897

L
Leo Chen 已提交
898
  // TODO(cql): add reference: en_user_guide_lod_tensor
899
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
974 975 976 977 978 979 980

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
981 982

        )DOC")
983 984
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
985 986 987 988 989 990 991 992 993
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
994 995
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
996 997 998 999
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
1000 1001
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
1002
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
1003
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
1004 1005
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
1006 1007 1008
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
1009
      .def("set_lod",
1010
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
1011
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
1012
             LoD new_lod;
1013 1014
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
1015 1016
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1017 1018
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1019
             self.set_lod(new_lod);
S
sneaxiy 已提交
1020 1021 1022 1023 1024
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
1025 1026 1027 1028
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1039
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1040
           )DOC")
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1052 1053
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1054 1055 1056 1057 1058
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1059
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1060 1061
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
1062
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
1063

L
Leo Chen 已提交
1064
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1065
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1066
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1067 1068

           Args:
L
Leo Chen 已提交
1069 1070 1071 1072
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1083 1084
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1085
           )DOC")
1086 1087 1088 1089 1090 1091 1092 1093
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1094 1095 1096 1097 1098
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1099 1100
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1111
           )DOC")
G
gongweibao 已提交
1112
      // Set above comments of set_lod.
1113 1114 1115 1116 1117 1118 1119 1120
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1121 1122
           },
           R"DOC(
L
Leo Chen 已提交
1123 1124
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1125 1126

           Returns:
L
Leo Chen 已提交
1127
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1139 1140 1141 1142 1143 1144 1145 1146
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1147
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1148 1149

           Returns:
L
Leo Chen 已提交
1150
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1162 1163 1164 1165 1166 1167 1168
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1169
           )DOC")
1170 1171 1172 1173 1174 1175
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
L
Leo Chen 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184
      .def("_as_type",
           [](const LoDTensor &self,
              paddle::framework::proto::VarType::Type type) {
             LoDTensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1197
#ifdef _WIN32
1198
      });
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1249

Q
qijun 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1261 1262
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1263 1264
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1265 1266
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1267
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1268 1269 1270 1271 1272 1273
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1274
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1275
      .def("rows", [](SelectedRows &self) {
1276 1277 1278 1279 1280
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1281
      });
Q
qijun 已提交
1282

1283
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1284 1285 1286

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1287
      .def(py::init<>())
1288
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1289
      .def("set_int",
1290 1291
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1292 1293 1294 1295 1296 1297 1298
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1299
      .def("get_tensor",
1300 1301
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1302 1303
           },
           py::return_value_policy::reference)
1304 1305 1306 1307
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1320 1321 1322
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1323 1324 1325 1326 1327
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1328 1329 1330
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1331 1332 1333
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1334
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1335 1336 1337 1338 1339
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1340
#endif
Y
Refine  
Yu Yang 已提交
1341 1342
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1343 1344 1345 1346
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1347 1348
             return self.GetMutable<framework::ReaderHolder>();
           },
1349
           py::return_value_policy::reference)
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1361 1362 1363 1364
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1365

S
sneaxiy 已提交
1366
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1367

S
sneaxiy 已提交
1368
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1382
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1383 1384 1385 1386 1387 1388
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1389 1390
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1391
      .def("var",
1392
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1393
             return self.Var(name);
Y
Yu Yang 已提交
1394
           },
S
sneaxiy 已提交
1395 1396
           py::arg("name"),
           R"DOC(
1397
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1398

1399
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1400
           current scope, the variable would be created. Otherwise,
1401
           return the existing variable.
S
sneaxiy 已提交
1402 1403

           Args:
1404 1405
               name (str): the variable name.

S
sneaxiy 已提交
1406
           Returns:
1407
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1408 1409 1410 1411
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1412
           Find variable named :code:`name` in the current scope or
1413
           its parent scope. Return None if not found. 
1414

S
sneaxiy 已提交
1415 1416
           Args:
               name (str): the variable name.
1417

S
sneaxiy 已提交
1418
           Returns:
1419
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1420
           )DOC",
1421
           py::return_value_policy::reference)
1422
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1423 1424 1425 1426 1427 1428
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1429
           py::return_value_policy::reference)
S
sneaxiy 已提交
1430 1431 1432
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1433 1434
           )DOC")
      .def("_kids", &Scope::kids);
1435

S
sneaxiy 已提交
1436 1437 1438 1439 1440 1441
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1442 1443
        R"DOC(
        Create a new scope.
1444

S
sneaxiy 已提交
1445 1446 1447
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1448 1449
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1450 1451
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1452 1453
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1454 1455 1456 1457
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1458 1459
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1460 1461
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1462 1463 1464
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1465 1466
    return ret_values;
  });
1467 1468 1469 1470 1471 1472 1473 1474
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1475
              res = op_checker->GetDefaultAttrsMap();
1476 1477 1478 1479
            }
          }
          return res;
        });
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1496 1497 1498
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1499 1500 1501 1502 1503
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1504 1505 1506
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1521
  m.def("prune", [](const ProgramDesc &origin,
1522
                    const std::set<std::string> &feeded_var_names,
1523
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1524
    ProgramDesc prog_with_targets(origin);
1525

1526
    for (const auto &t : targets) {
1527
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1528
    }
1529
    proto::ProgramDesc pruned_desc;
1530 1531 1532 1533
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1534
  });
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1552 1553 1554 1555
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1556 1557 1558
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1559 1560
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1561

Q
qijun 已提交
1562
  // clang-format off
Y
Yu Yang 已提交
1563
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1564 1565
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1566
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1567 1568
                    return new paddle::platform::CPUDeviceContext();
                  })
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1593
      .def_static("create",
D
dzhwinter 已提交
1594
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1595
                      -> paddle::platform::DeviceContext* {
1596
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1597 1598 1599 1600
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1601
#else
Q
qijun 已提交
1602
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1603
#endif
C
chengduoZH 已提交
1604 1605 1606 1607
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1608
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1609 1610 1611 1612
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1613 1614 1615 1616
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1617
// clang-format on
1618
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1619 1620
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1621
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1622 1623 1624 1625 1626

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1627
    The memory of CUDAPlace with different dev_id is not accessible.
1628 1629 1630 1631 1632 1633 1634 1635
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1636 1637 1638 1639

    Examples:
        .. code-block:: python

1640 1641 1642
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1643

1644 1645 1646
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1647 1648
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1649
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1650 1651 1652 1653 1654 1655 1656 1657
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1658 1659
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1660 1661 1662 1663 1664 1665 1666 1667
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1668 1669
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1670 1671 1672 1673
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1674 1675
             new (&self) platform::CUDAPlace(dev_id);
#else
1676 1677 1678 1679 1680 1681 1682 1683 1684
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1685 1686
#endif
           })
1687
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1688 1689
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1690 1691 1692 1693
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1694
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1695
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1696 1697
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1698 1699 1700
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1701
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1702
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1703

1704
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1705 1706 1707 1708 1709
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1710 1711 1712
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1751
#ifdef PADDLE_WITH_XPU
1752 1753 1754 1755 1756 1757 1758
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1759 1760 1761
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1762
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1763
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1764
#ifdef PADDLE_WITH_XPU
T
TTerror 已提交
1765 1766 1767 1768
  py::enum_<platform::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", platform::XPUVersion::XPU1)
      .value("XPU2", platform::XPUVersion::XPU2)
      .export_values();
1769
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1770 1771
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
T
taixiurong 已提交
1772 1773 1774 1775 1776 1777 1778 1779
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
    return platform::get_xpu_version(place.device) > platform::XPUVersion::XPU1;
  });
1780
#endif
1781

1782
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1783
    CPUPlace is a descriptor of a device.
1784
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1785 1786 1787 1788

    Examples:
        .. code-block:: python

1789 1790
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1791

1792 1793 1794
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1795 1796
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1797
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1798
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1799 1800 1801 1802
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1803
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1804
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1805

1806 1807
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1808 1809 1810 1811 1812 1813
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1814 1815 1816 1817

    Examples:
        .. code-block:: python

1818 1819
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1820

1821 1822 1823 1824
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1825
      .def("__init__",
S
sneaxiy 已提交
1826
           [](platform::CUDAPinnedPlace &self) {
1827
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1828 1829 1830
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1831
#endif
S
sneaxiy 已提交
1832
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1833
           })
S
sneaxiy 已提交
1834 1835 1836 1837
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1838 1839
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1840 1841
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1842 1843 1844 1845
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1846
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1847 1848
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1849
  // NPUPlace
1850
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1851 1852 1853 1854 1855 1856 1857 1858
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1859 1860 1861
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1893
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1908 1909
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1910 1911
      .def("__str__", string::to_string<const platform::NPUPlace &>);

1912 1913 1914
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
1915 1916 1917 1918
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1919
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1920
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1921
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1922 1923
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1924 1925
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1926 1927
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1928 1929
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1930 1931 1932 1933
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1934 1935
      .def("gpu_device_id",
           [](platform::Place &self) {
1936
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1937
           })
1938 1939 1940 1941
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1942 1943 1944 1945
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1946 1947
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1948 1949 1950 1951
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1952 1953 1954 1955
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1956
      .def("set_place",
D
dzhwinter 已提交
1957
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1958
             self = gpu_place;
C
chengduoZH 已提交
1959
           })
1960 1961 1962 1963 1964
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1965 1966 1967 1968
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1969 1970
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1971

Y
Yu Yang 已提交
1972
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
1987
      .def("run",
1988
           [](OperatorBase &self, const Scope &scope,
1989 1990 1991 1992
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1993 1994
      .def("run",
           [](OperatorBase &self, const Scope &scope,
1995 1996 1997 1998
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1999 2000
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2001 2002 2003 2004
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2005 2006
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2007 2008 2009 2010
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2011 2012 2013
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2014
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2015 2016
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2017 2018 2019 2020 2021 2022 2023
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2024 2025
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2026
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2027
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2028 2029 2030 2031
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2032

2033 2034 2035
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2036 2037 2038 2039 2040 2041 2042
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2043 2044
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2045

2046 2047
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2048
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2049
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2050
      .def("close", &Executor::Close)
2051 2052
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2053 2054
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2055 2056 2057 2058
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2059
             pybind11::gil_scoped_release release;
2060 2061 2062 2063 2064 2065 2066
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2067 2068 2069
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2070
              std::map<std::string, FetchType *> *fetch_targets,
2071 2072 2073 2074 2075 2076 2077 2078
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2079
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2080 2081 2082 2083 2084 2085 2086
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2097
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2098 2099
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2100
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2101 2102
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2103
      });
S
sneaxiy 已提交
2104

2105
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2106
      .def(py::init<>())
2107 2108 2109 2110 2111
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2112

2113
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2114 2115 2116
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2117
           [](StandaloneExecutor &self,
H
hong 已提交
2118
              const std::unordered_map<std::string, py::array> &input_dict,
2119
              std::vector<std::string> fetch_names) {
2120
             std::vector<framework::LoDTensor> feed_tensors;
2121
             std::vector<std::string> feed_names;
H
hong 已提交
2122 2123 2124 2125 2126

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2127 2128
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2129 2130
             }

2131 2132 2133 2134 2135 2136 2137 2138 2139
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2140
              const std::unordered_map<std::string, framework::LoDTensor>
2141 2142
                  &input_dict,
              std::vector<std::string> fetch_names) {
2143
             std::vector<framework::LoDTensor> feed_tensors;
2144 2145 2146 2147 2148 2149 2150
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2151 2152 2153 2154
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2155
             }
W
wanghuancoder 已提交
2156
             return py::cast(std::move(ret));
2157
           })
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2168 2169 2170
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2171
             std::vector<framework::LoDTensor> feed_tensors;
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2182
             framework::interpreter::CostInfo cost_info;
2183 2184 2185 2186 2187
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2188 2189
           });

D
dzhwinter 已提交
2190
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2191
  m.def("init_glog", framework::InitGLOG);
2192 2193
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2194
  m.def("init_devices", []() { framework::InitDevices(); });
2195

2196
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2197
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2198
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2199
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2200
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2201
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2202
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2203
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2204
  m.def("supports_bfloat16", SupportsBfloat16);
2205
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2206 2207
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2208
  m.def("op_supported_infos", OpSupportedInfos);
2209
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2210
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2211 2212 2213
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2233 2234 2235 2236 2237 2238 2239
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2249
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2250 2251
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2252
    return platform::GetGPUComputeCapability(place.device) >= 53;
2253 2254
  });
#endif
2255

S
Steffy-zxf 已提交
2256 2257 2258 2259 2260 2261
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2262 2263 2264 2265 2266
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2267
            return py::cast(BOOST_GET(LoDTensor, var));
2268
          } else {
2269
            return py::cast(BOOST_GET(LoDTensorArray, var));
2270 2271
          }
        });
2272
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2273

X
Xin Pan 已提交
2274 2275
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2276 2277 2278 2279
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2280
  BindCostModel(&m);
2281
  BindConstValue(&m);
2282
  BindGlobalValueGetterSetter(&m);
2283
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2284
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2285

Y
Yu Yang 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2295
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2296
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2297 2298 2299

    Examples:
        .. code-block:: python
2300

Z
Zeng Jinle 已提交
2301 2302 2303 2304
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2305 2306
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2307 2308 2309 2310 2311 2312
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2313 2314 2315 2316
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2317 2318 2319
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2320 2321 2322 2323 2324 2325
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2326 2327
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2328 2329 2330 2331 2332 2333
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2356

2357 2358 2359 2360 2361 2362 2363 2364
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2365
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2366 2367
                 res[i] = py::cast(std::move(data));
               } else {
2368
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2384
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2385 2386 2387 2388 2389 2390 2391 2392
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2393
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2394 2395 2396 2397 2398 2399 2400 2401 2402
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2403 2404
        )DOC")
      .def("_move_to_list",
2405
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2406 2407 2408 2409
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2410
                 if (data_is_lod_tensor(self[i][j])) {
2411
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2412 2413
                   tmp[j] = py::cast(std::move(var));
                 } else {
2414
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2415 2416 2417 2418 2419 2420
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2430
  m.def("op_support_gpu", OpSupportGPU);
2431
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2432
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2433 2434 2435 2436 2437 2438 2439 2440
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2441 2442 2443 2444 2445 2446 2447
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2473
      });
D
dangqingqing 已提交
2474

2475
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2476 2477 2478
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2479 2480 2481 2482
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2483
#endif
P
peizhilin 已提交
2484
#endif
Y
Yu Yang 已提交
2485

2486 2487
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2488
  m.def("npu_finalize", []() {
2489 2490
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2491 2492 2493
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2494
      platform::NPUDeviceGuard guard(devices[i]);
2495 2496 2497 2498
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2519 2520 2521 2522 2523 2524
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2525 2526 2527 2528
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2529
      .value("kAll", platform::ProfilerState::kAll)
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2541
  m.def("set_tracer_option", platform::SetTracerOption);
2542 2543
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2544
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2545
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2546
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2547 2548 2549 2550 2551
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
W
wuhuanzhou 已提交
2552
    callable.inc_ref();
2553 2554 2555 2556 2557 2558 2559 2560
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2561
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2562 2563 2564
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2565

2566 2567
  m.def("size_of_dtype", framework::SizeOfType);

2568
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2569 2570
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2571 2572
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2573
#endif  // PADDLE_WITH_CUDA
2574 2575
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2576

2577 2578 2579
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2580 2581
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2582
      .def("has", &ir::Pass::Has)
2583 2584 2585
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2586
           })
2587
      .def(
2588
          "set",
2589 2590 2591
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2592 2593
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2594 2595
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2610 2611
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2612
        self.Apply(graph.get());
F
flame 已提交
2613
      });
2614

X
fix  
Xin Pan 已提交
2615 2616
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2631
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2632
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2633 2634 2635 2636
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2637 2638 2639
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2640 2641 2642
    Examples:
        .. code-block:: python

2643 2644 2645 2646 2647 2648 2649 2650 2651
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2652

2653 2654
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2655

2656
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2657 2658
          sgd_optimizer.minimize(avg_loss)

2659
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2660 2661
          exec_strategy.num_threads = 4

2662 2663 2664
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2665 2666
        )DOC");

2667 2668 2669 2670
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2671

Y
yuyang18 已提交
2672
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2673 2674 2675 2676 2677
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2678
          },
2679 2680
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2681 2682 2683 2684 2685 2686 2687
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2701
      .def_property(
2702 2703
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2704
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2705 2706 2707
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2708 2709 2710 2711 2712
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2713 2714 2715
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2716 2717
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2718 2719 2720 2721 2722 2723 2724
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2725 2726 2727 2728
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2729
                because the temp variable's shape maybe the same between two iterations.
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2740

2741 2742 2743 2744 2745 2746 2747
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2748
              )DOC")
Q
Qiao Longfei 已提交
2749 2750 2751 2752 2753 2754 2755 2756 2757
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2770
              )DOC")
2771 2772 2773 2774 2775 2776 2777 2778
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2779 2780 2781 2782 2783
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2784

Y
yuyang18 已提交
2785
  exec_strategy.def_property(
Y
yuyang18 已提交
2786 2787 2788 2789 2790 2791 2792
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2793 2794
      });

C
chengduo 已提交
2795 2796 2797 2798
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2799 2800 2801
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2802 2803 2804
    Examples:
        .. code-block:: python

2805
            import os
2806 2807 2808 2809
            import paddle
            import paddle.static as static

            paddle.enable_static()
2810

2811 2812
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2813

2814 2815 2816 2817
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2818

2819
            build_strategy = static.BuildStrategy()
2820 2821
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2822 2823
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2824
            program = program.with_data_parallel(loss_name=loss.name,
2825 2826
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2827
)DOC");
Y
yuyang18 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
2840
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
2841 2842 2843 2844
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2845 2846 2847 2848
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2849
            self.reduce_ = strategy;
C
chengduo 已提交
2850
          },
2851
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2852 2853
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2854
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2855 2856
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2857
                Default is 'AllReduce'.
F
flame 已提交
2858 2859 2860 2861

                Examples:
                    .. code-block:: python

2862 2863 2864 2865 2866 2867 2868
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2869
                  )DOC")
Y
yuyang18 已提交
2870 2871 2872 2873 2874
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2875 2876 2877 2878
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2879
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2880
          },
2881
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2882
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2883 2884
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2885
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2886 2887 2888 2889

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2890 2891
                        import numpy
                        import os
2892 2893 2894 2895
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2896 2897

                        use_cuda = True
2898 2899
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2900 2901

                        # NOTE: If you use CPU to run the program, you need
2902
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2903 2904 2905 2906 2907 2908
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2909
                            places = static.cpu_places()
C
chengduo 已提交
2910
                        else:
2911
                            places = static.cuda_places()
C
chengduo 已提交
2912

2913 2914 2915 2916
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2917

2918
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2919

2920
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2921
                        build_strategy.gradient_scale_strategy = \
2922 2923 2924
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2925
                                          loss_name=loss.name, build_strategy=build_strategy,
2926
                                          places=places)
C
chengduo 已提交
2927 2928 2929 2930 2931 2932

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2933 2934
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2935
                   )DOC")
Y
yuyang18 已提交
2936 2937 2938 2939
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2940 2941 2942 2943
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2944
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2945
          },
2946
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2947
                writing the SSA Graph to file in the form of graphviz.
2948
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2949 2950 2951 2952

                Examples:
                    .. code-block:: python

2953 2954 2955 2956
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2957

2958 2959
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2960
                    )DOC")
S
sneaxiy 已提交
2961 2962 2963 2964 2965 2966
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2967 2968 2969 2970
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2971 2972
            self.enable_sequential_execution_ = b;
          },
2973 2974
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2975 2976 2977 2978

                Examples:
                    .. code-block:: python

2979 2980 2981 2982 2983 2984
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2985 2986
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2987 2988 2989 2990 2991 2992
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2993 2994 2995 2996
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2997 2998
            self.remove_unnecessary_lock_ = b;
          },
2999 3000
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3001 3002 3003 3004

                Examples:
                    .. code-block:: python

3005 3006 3007 3008 3009 3010
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3011 3012
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3013 3014 3015 3016
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3017
#ifdef WIN32
3018
            PADDLE_THROW(platform::errors::Unavailable(
3019
                "Distribution mode is not supported on Windows platform."));
3020
#endif
3021 3022
            self.num_trainers_ = num_trainers;
          })
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3035 3036 3037 3038 3039 3040
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3041 3042 3043 3044 3045 3046
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3047
      .def_property("use_hierarchical_allreduce",
3048 3049 3050 3051 3052 3053
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3054
      .def_property("hierarchical_allreduce_inter_nranks",
3055 3056 3057 3058 3059 3060 3061
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3062 3063 3064 3065 3066 3067
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3068 3069 3070 3071
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3072 3073
            self.fuse_elewise_add_act_ops_ = b;
          },
3074
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3075
                to fuse elementwise_add_op and activation_op,
3076
                it may make the execution faster. Default is False.
F
flame 已提交
3077 3078 3079 3080

                Examples:
                    .. code-block:: python

3081 3082 3083 3084 3085 3086
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3087 3088
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3089 3090 3091 3092
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3093
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3094
                              platform::errors::PreconditionNotMet(
3095 3096
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3097 3098 3099 3100 3101 3102 3103 3104 3105
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3106 3107 3108 3109 3110 3111
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3112 3113
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3139 3140 3141 3142
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3143
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3144
                              platform::errors::PreconditionNotMet(
3145 3146
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3157 3158 3159 3160 3161 3162
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3163 3164
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3165 3166 3167 3168 3169 3170
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3171 3172 3173 3174
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3175 3176
            self.fuse_relu_depthwise_conv_ = b;
          },
3177
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3178 3179 3180
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3181
                Default is False.
F
flame 已提交
3182 3183 3184 3185

                Examples:
                    .. code-block:: python

3186 3187 3188 3189 3190 3191
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3192 3193
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3194 3195 3196
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3197
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3198 3199
                    },
                    [](BuildStrategy &self, bool b) {
3200 3201 3202 3203
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3204 3205
                      self.fuse_broadcast_ops_ = b;
                    },
3206
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3207 3208 3209 3210
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3211 3212 3213 3214 3215
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3216 3217 3218 3219 3220 3221
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3222 3223
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3224 3225
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3226
                      return self.fuse_all_optimizer_ops_ == true ||
3227
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3228 3229
                    },
                    [](BuildStrategy &self, bool b) {
3230 3231 3232 3233
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3234 3235
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3236 3237 3238 3239
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3240 3241 3242 3243
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3244 3245
            self.sync_batch_norm_ = b;
          },
3246
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3247 3248 3249
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3250 3251
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3252 3253 3254 3255

                Examples:
                    .. code-block:: python

3256 3257 3258 3259 3260 3261
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3262 3263
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3264 3265
      .def_property(
          "memory_optimize",
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3276
              self.memory_optimize_ = paddle::none;
3277 3278 3279
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3280
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3281 3282
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3283 3284
            }
          },
3285
          R"DOC((bool, optional): memory opitimize aims to save total memory
3286
                consumption, set to True to enable it.
3287

3288 3289 3290
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3305 3306 3307
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3308 3309 3310
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3311
              PADDLE_THROW(platform::errors::Unavailable(
3312
                  "Distribution mode is not supported on Windows platform."));
3313 3314 3315 3316 3317
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3318 3319 3320
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3321
      .def_property(
D
dzhwinter 已提交
3322 3323 3324
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3325 3326 3327 3328
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3329 3330
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3331 3332
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3333
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3334
          },
C
chengduo 已提交
3335
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3336 3337 3338 3339 3340 3341 3342
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3343 3344 3345 3346
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3347 3348 3349 3350 3351 3352 3353 3354 3355
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3356 3357 3358 3359 3360 3361
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3362 3363 3364 3365 3366 3367 3368
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3369 3370 3371 3372 3373 3374
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3375
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3376
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3377 3378 3379 3380 3381
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3382

3383 3384 3385 3386 3387 3388
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3389
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3390
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3391
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3392
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3393 3394 3395 3396
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3397 3398 3399 3400 3401
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3402 3403 3404
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3405 3406 3407 3408
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3409 3410
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3411 3412 3413 3414 3415 3416 3417 3418
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3419
               return py::cast(
3420
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3421 3422
             } else {
               return py::cast(std::move(
3423
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3424
             }
3425 3426
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3427

D
dongdaxiang 已提交
3428
  BindFleetWrapper(&m);
3429
  BindIO(&m);
T
Thunderbrook 已提交
3430

T
Thunderbrook 已提交
3431 3432
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3433
#endif
T
Thunderbrook 已提交
3434
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3435
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3436
#endif
3437
  BindGlooWrapper(&m);
H
hutuxian 已提交
3438
  BindBoxHelper(&m);
H
hutuxian 已提交
3439 3440 3441
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3442
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3443
  BindNCCLWrapper(&m);
3444 3445 3446
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3447
#endif
F
flame 已提交
3448 3449
  BindGraph(&m);
  BindNode(&m);
3450
  BindPass(&m);
F
flame 已提交
3451
  BindInferenceApi(&m);
3452
  BindCompatible(&m);
3453
  BindDataset(&m);
Y
yaoxuefeng 已提交
3454
  BindGenerator(&m);
3455 3456 3457
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3458
  BindAscendDevice(&m);
3459
#endif
Y
Yanghello 已提交
3460 3461 3462
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3463

T
tangwei12 已提交
3464
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3465 3466
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3467
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3468 3469
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3470 3471 3472 3473 3474
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3475 3476 3477 3478
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3479
  BindSparseShardingTools(&m);
3480
#endif
L
Luo Tao 已提交
3481
}
3482
}  // namespace pybind
3483
}  // namespace paddle