nn.py 292.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
30
from .. import core
Y
Yu Yang 已提交
31 32

__all__ = [
X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
60
    'sequence_unpad',
X
Xin Pan 已提交
61 62 63 64 65 66 67 68
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
69
    'sequence_slice',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
100
    'roi_align',
X
Xin Pan 已提交
101 102 103 104
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
105
    'resize_nearest',
X
Xin Pan 已提交
106 107 108 109 110 111 112 113 114
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
115
    'margin_rank_loss',
X
Xin Pan 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
159
    'space_to_depth',
W
whs 已提交
160
    'affine_grid',
S
sneaxiy 已提交
161
    'sequence_reverse',
162
    'affine_channel',
M
minqiyang 已提交
163
    'hash',
D
dengkaipeng 已提交
164
    'grid_sampler',
G
gmcather 已提交
165 166
    'log_loss',
    'add_position_encoding',
Y
Yu Yang 已提交
167 168 169 170 171 172 173 174 175
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
176
       is_test=False,
177
       name=None):
Y
Yu Yang 已提交
178
    """
179
    **Fully Connected Layer**
Y
Yu Yang 已提交
180

181 182 183 184 185 186 187 188
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
189
    to the output as well.
C
caoying03 已提交
190

C
caoying03 已提交
191
    This process can be formulated as follows:
192 193 194

    .. math::

195
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
196 197 198

    In the above equation:

C
caoying03 已提交
199 200 201 202
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
203
    * :math:`Act`: The activation function.
C
caoying03 已提交
204
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
205 206

    Args:
R
ranqiu 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
222 223
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
224
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
225
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
226
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
227

228
    Returns:
F
fengjiayi 已提交
229
        Variable: The transformation result.
230 231

    Raises:
C
caoying03 已提交
232
        ValueError: If rank of the input tensor is less than 2.
233 234 235 236

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
237
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
238
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
239
    """
C
caoying03 已提交
240

C
caoying03 已提交
241
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
242 243 244 245

    dtype = helper.input_dtype()

    mul_results = []
246 247
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
248 249 250
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
251

Y
Yu Yang 已提交
252
        w = helper.create_parameter(
253
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
254
        tmp = helper.create_variable_for_type_inference(dtype)
255
        helper.append_op(
256 257 258
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
259
            outputs={"Out": tmp},
M
mozga-intel 已提交
260 261
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
262 263 264 265
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
266
    else:
X
Xin Pan 已提交
267
        pre_bias = helper.create_variable_for_type_inference(dtype)
268
        helper.append_op(
269 270 271
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
272
            attrs={"use_mkldnn": False})
273 274 275 276
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
277 278


279 280 281
def embedding(input,
              size,
              is_sparse=False,
282
              is_distributed=False,
283 284 285
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
286
    """
287 288
    **Embedding Layer**

289
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
290 291
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
292 293 294

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
295 296

    Args:
297 298 299 300 301
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
302
        is_distributed(bool): Whether to run lookup table from remote parameter server.
303 304
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
305
            with zeros whenever lookup encounters it in :attr:`input`. If
306
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
307 308
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
309
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
310

311 312 313
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
314

315 316
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
317

C
chengduoZH 已提交
318
          dict_size = len(dataset.ids)
319
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
320
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
321 322 323 324 325
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
326
    tmp = helper.create_variable_for_type_inference(dtype)
327 328
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
329 330 331 332 333
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
334 335 336 337 338
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
339 340 341
    return tmp


Y
yi.wu 已提交
342
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
343 344
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
345 346
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
347 348 349 350 351 352 353
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
354 355
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
356
    """
Y
yi.wu 已提交
357
    ${comment}
Y
Yibing Liu 已提交
358 359

    Args:
Y
yi.wu 已提交
360 361
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
362 363 364 365 366 367
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
368
        param_attr(ParamAttr|None): The parameter attribute for the learnable
369
                               hidden-hidden weights.
Y
Yibing Liu 已提交
370 371 372

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
373 374
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
375 376 377 378 379

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
380
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
381 382 383
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
384

385
                              1. `use_peepholes = False`
Y
yi.wu 已提交
386 387
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
388
                              2. `use_peepholes = True`
Y
yi.wu 已提交
389
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
390
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
391
                                 - The shape is (1 x 7D).
C
chengduo 已提交
392 393 394 395 396

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
397 398 399 400 401 402 403 404
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
405 406

    Returns:
Y
Yibing Liu 已提交
407 408
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
409

Y
Yibing Liu 已提交
410
    Examples:
Y
Yibing Liu 已提交
411 412
        .. code-block:: python

Y
Yibing Liu 已提交
413 414
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
415
                                           bias_attr=False)
Y
Yibing Liu 已提交
416 417
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
418
    """
C
chengduo 已提交
419
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
420
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
421
    size = size // 4
Y
Yu Yang 已提交
422 423 424 425 426 427 428 429
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
430 431 432 433
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
434 435 436 437 438 439 440 441 442 443
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
444 445 446

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
447
        inputs=inputs,
Y
Yu Yang 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
464 465 466 467 468 469 470 471 472 473 474
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
475 476
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
477 478 479
    """
    **Dynamic LSTMP Layer**

480 481 482 483 484 485
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
486 487 488 489 490

    The formula is as follows:

    .. math::

491
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
492

493
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
494

495
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
496

497
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
498

499
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
500

501
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
502

503
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
504

Y
Yibing Liu 已提交
505 506 507 508 509 510
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
511
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
512
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
513
          bias vector).
Y
Yibing Liu 已提交
514 515 516
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
517
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
518
    * :math:`h`: The hidden state.
519
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
520 521
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
522
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
523
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
524
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
525 526
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
527 528 529 530

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
531

Y
Yibing Liu 已提交
532 533 534 535 536 537 538 539 540 541 542 543
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
544
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
545 546
                               hidden-hidden weight and projection weight.

547 548
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
549 550
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
551 552
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
553
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
554 555 556 557 558

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
559
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
560 561 562 563 564 565
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
566
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
567 568 569
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
570
                                - The shape is (1 x 7D).
C
chengduo 已提交
571 572 573 574 575

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
576 577 578 579 580 581 582 583 584
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
585
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
586 587
                              default "tanh".
        proj_activation(str): The activation for projection output.
588
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
589 590
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
591 592
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
593 594

    Returns:
595 596 597 598
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
599 600

    Examples:
601

Y
Yibing Liu 已提交
602 603
        .. code-block:: python

604 605 606 607
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
608
            hidden_dim, proj_dim = 512, 256
609
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
610
                                     act=None, bias_attr=None)
611 612 613
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
614 615 616 617
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
618
    """
619

C
chengduo 已提交
620
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
621
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
622
    size = size // 4
Y
Yibing Liu 已提交
623 624 625 626 627 628 629 630 631 632
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
633 634 635 636 637 638
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
667 668 669 670 671 672 673 674 675
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
676
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
677

678
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
679
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
680

G
guosheng 已提交
681 682 683 684 685 686 687 688 689
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
690

G
guosheng 已提交
691
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
692

G
guosheng 已提交
693
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
694 695
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
696 697 698 699
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
700
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
701 702

    Args:
703 704
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
705
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
706
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
707 708
            is the hidden size.
        size(int): The dimension of the gru cell.
709
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
710 711
            hidden-hidden weight matrix. Note:

712
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
713
              :math:`D` is the hidden size.
714
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
715
              The first part are weights of the update gate and reset gate with
716
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
717
              candidate hidden state with shape :math:`(D \\times D)`.
718 719 720 721 722 723 724 725 726 727 728 729

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
730
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
731 732 733
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
734
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
735
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
736 737 738 739
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
740 741

    Returns:
G
guosheng 已提交
742
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
743
            and sequence length is the same with the input.
744

G
guosheng 已提交
745
    Examples:
746

G
guosheng 已提交
747 748
        .. code-block:: python

749 750 751 752
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
753
            hidden_dim = 512
754
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
755 756 757 758 759 760 761 762 763 764
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
765
    batch_size = input.shape[0]
G
guosheng 已提交
766
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
767
    if h_0:
G
guosheng 已提交
768
        assert h_0.shape == (
Y
Yancey 已提交
769 770 771
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
772

X
Xin Pan 已提交
773 774 775 776
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
795 796 797
def gru_unit(input,
             hidden,
             size,
798 799
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
800
             activation='tanh',
801
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
802
    """
803
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
804

805 806
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
807

808
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
809

810
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
811

812
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
813 814

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
815 816 817
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
818 819
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

820 821
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
822 823 824
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
825 826 827

    Args:
        input (Variable): The fc transformed input value of current step.
828
        hidden (Variable): The hidden value of gru unit from previous step.
829
        size (integer): The input dimension value.
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
851 852 853 854
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
855

856 857 858 859 860 861
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
862

863
             # assuming we have x_t_data and prev_hidden of size=10
864
             x_t = fluid.layers.fc(input=x_t_data, size=30)
865 866
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
867 868 869 870 871 872 873 874 875 876 877 878

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
879
    size = size // 3
Y
Yu Yang 已提交
880 881

    # create weight
882 883
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
884

X
Xin Pan 已提交
885 886 887
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
888
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
889
    # create bias
890
    if helper.bias_attr:
Y
Yu Yang 已提交
891 892 893
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
894
        inputs['Bias'] = bias
Y
Yu Yang 已提交
895 896 897

    helper.append_op(
        type='gru_unit',
898
        inputs=inputs,
Y
Yu Yang 已提交
899 900 901 902 903 904
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
905 906
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
907 908 909 910 911
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
912
@templatedoc()
913
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
914 915 916 917 918 919 920
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
921
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
922 923 924 925
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
926 927 928
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
929 930

    """
Y
Yu Yang 已提交
931 932 933 934 935 936
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
937 938 939 940 941 942 943 944
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
960
@templatedoc()
961
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
962 963 964 965 966
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
967

Y
yuyang18 已提交
968
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
969

Y
yuyang18 已提交
970 971 972
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
973
        Variable: ${viterbi_path_comment}
974

Y
yi.wu 已提交
975 976 977 978 979
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
980
    """
Y
Yu Yang 已提交
981 982
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
983 984
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
985 986 987 988 989 990 991 992 993 994
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
995
@templatedoc()
F
fengjiayi 已提交
996
def cos_sim(X, Y):
Y
Yu Yang 已提交
997
    """
Y
yi.wu 已提交
998 999 1000
    ${comment}

    Args:
1001 1002
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1003

Y
yi.wu 已提交
1004
    Returns:
1005
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1006
    """
F
fengjiayi 已提交
1007
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1008 1009 1010
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1021 1022 1023 1024 1025
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1026
            dropout_implementation="downgrade_in_infer"):
1027 1028 1029 1030 1031
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1032
    training. The dropout operator randomly sets (according to the given dropout
1033 1034 1035 1036
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1037 1038
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1039 1040 1041 1042 1043 1044 1045
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1060

1061 1062

    Returns:
1063
        Variable: A tensor variable is the shape with `x`.
1064 1065

    Examples:
1066

1067 1068
        .. code-block:: python

1069 1070
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1071 1072
    """

F
fengjiayi 已提交
1073
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1074 1075 1076
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1077 1078 1079 1080

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1081 1082 1083 1084 1085
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1086 1087 1088 1089
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1090 1091
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1092
        })
1093 1094 1095
    return out


1096
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1097
    """
Y
Yibing Liu 已提交
1098 1099
    **Cross Entropy Layer**

1100 1101 1102
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1103 1104

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1105
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1106

Y
Yibing Liu 已提交
1107
        .. math::
Y
yangyaming 已提交
1108

Y
Yibing Liu 已提交
1109 1110 1111
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1112 1113
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1114 1115 1116 1117 1118

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1119
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1120 1121 1122
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1123 1124
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1125
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1126

Y
Yibing Liu 已提交
1127
    Args:
Y
yangyaming 已提交
1128
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1129 1130 1131 1132
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1133
        label (Variable|list): the ground truth which is a 2-D tensor. When
1134 1135 1136 1137
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1138
        soft_label (bool): a flag indicating whether to
1139
                                           interpretate the given labels as soft
1140
                                           labels. Default: `False`.
M
minqiyang 已提交
1141 1142
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1143
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1144 1145 1146 1147 1148

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1149 1150 1151 1152 1153
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1154 1155 1156 1157 1158 1159

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1160
    """
F
fengjiayi 已提交
1161
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1162
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1163 1164 1165 1166 1167
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1168 1169
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1170 1171 1172
    return out


F
fengjiayi 已提交
1173
def square_error_cost(input, label):
Y
Yu Yang 已提交
1174
    """
1175 1176
    **Square error cost layer**

1177 1178
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1193 1194
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1195 1196

    Returns:
G
guosheng 已提交
1197
        Variable: The tensor variable storing the element-wise squared error \
1198
                  difference of input and label.
1199 1200 1201 1202 1203 1204 1205 1206

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1207
    """
F
fengjiayi 已提交
1208
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1209
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1210 1211 1212 1213 1214 1215
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1216
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1217
    helper.append_op(
F
fengjiayi 已提交
1218 1219
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1220 1221 1222
    return square_out


Y
yi.wu 已提交
1223
@templatedoc()
Y
Yu Yang 已提交
1224 1225 1226 1227
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1228
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1229
    """
Y
yi.wu 已提交
1230
    **Chunk Evaluator**
Y
yi.wu 已提交
1231

Y
yangyaming 已提交
1232
    This function computes and outputs the precision, recall and
1233
    F1-score of chunk detection.
Y
yi.wu 已提交
1234

Y
yi.wu 已提交
1235 1236 1237 1238 1239 1240 1241 1242
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1243

Y
yi.wu 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1269

Y
yi.wu 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1294
    Args:
1295 1296 1297 1298 1299
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1300

Y
yi.wu 已提交
1301
    Returns:
Y
update  
yi.wu 已提交
1302 1303 1304
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1305

Y
yi.wu 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1318
    """
F
fengjiayi 已提交
1319
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1320 1321

    # prepare output
X
Xin Pan 已提交
1322 1323 1324 1325 1326 1327 1328
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1329 1330 1331 1332 1333 1334 1335 1336

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1337 1338 1339 1340
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1341 1342 1343
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1344 1345
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1346
        })
1347 1348
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1349 1350


1351
@templatedoc()
Y
Yu Yang 已提交
1352 1353 1354 1355 1356 1357 1358
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1359 1360
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1361 1362 1363 1364
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1365 1366 1367 1368 1369 1370 1371

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1385

1386 1387
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1388 1389 1390 1391 1392 1393 1394
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1395
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1406
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1407 1408 1409 1410 1411 1412
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1413
def sequence_softmax(input, use_cudnn=False, name=None):
1414 1415 1416
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1417
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1434 1435 1436
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1437

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1449 1450
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1451
    softmax_out = helper.create_variable_for_type_inference(dtype)
1452 1453 1454 1455 1456 1457 1458 1459
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1460
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1461
    """
1462
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1463
    has the same shape as the input.
Q
qiaolongfei 已提交
1464

1465 1466 1467 1468 1469 1470
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1471
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1472 1473 1474 1475 1476 1477 1478

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1479
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1480 1481 1482 1483 1484 1485 1486 1487

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1488 1489 1490
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1503 1504
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1505
    softmax_out = helper.create_variable_for_type_inference(dtype)
1506 1507 1508 1509 1510 1511 1512 1513
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1514 1515 1516
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1517 1518
           stride=1,
           padding=0,
1519
           dilation=1,
Y
Yu Yang 已提交
1520 1521 1522
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1523
           use_cudnn=True,
1524 1525
           act=None,
           name=None):
Y
Yu Yang 已提交
1526
    """
C
chengduoZH 已提交
1527
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1528 1529
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1530
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1531 1532 1533 1534 1535 1536 1537
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1538 1539 1540
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1541

1542
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1543

C
chengduoZH 已提交
1544 1545
    .. math::

C
refine  
chengduoZH 已提交
1546
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1547

T
tensor-tang 已提交
1548
    Where:
C
chengduoZH 已提交
1549

1550 1551 1552 1553 1554
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1555
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1556 1557 1558

    Example:

1559 1560
        - Input:

W
weixing02 已提交
1561
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1562

W
weixing02 已提交
1563
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1564

1565
        - Output:
T
tensor-tang 已提交
1566

W
weixing02 已提交
1567
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1568

C
chengduoZH 已提交
1569
        Where
1570 1571

        .. math::
C
chengduoZH 已提交
1572

W
weixing02 已提交
1573 1574
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1575 1576

    Args:
1577
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1578
        num_filters(int): The number of filter. It is as same as the output
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1607 1608
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1609 1610
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1611
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1612
            will be named automatically. Default: None
C
chengduoZH 已提交
1613 1614

    Returns:
G
guosheng 已提交
1615
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1616 1617
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1618
    Raises:
1619 1620
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1621

C
chengduoZH 已提交
1622 1623 1624
    Examples:
        .. code-block:: python

1625 1626
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1627 1628 1629
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1630
    assert param_attr is not False, "param_attr should not be False here."
1631
    l_type = 'conv2d'
X
xzl 已提交
1632 1633
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1634
        l_type = 'depthwise_conv2d'
1635 1636 1637 1638

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1639 1640 1641 1642 1643
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1644
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1645

C
chengduoZH 已提交
1646 1647 1648
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1649
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1650

C
chengduoZH 已提交
1651 1652
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1653 1654

    input_shape = input.shape
M
minqiyang 已提交
1655
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1656 1657

    def _get_default_param_initializer():
C
chengduo 已提交
1658 1659
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1660 1661 1662 1663 1664 1665 1666 1667
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1668
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1684
    helper.append_op(
1685
        type=l_type,
Y
Yu Yang 已提交
1686 1687 1688 1689 1690
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1691 1692 1693
        attrs={
            'strides': stride,
            'paddings': padding,
1694
            'dilations': dilation,
C
chengduoZH 已提交
1695
            'groups': groups,
1696
            'use_cudnn': use_cudnn,
1697
            'use_mkldnn': False,
C
chengduoZH 已提交
1698
        })
Y
Yu Yang 已提交
1699 1700 1701 1702 1703 1704

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1722 1723 1724 1725 1726 1727
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1737 1738
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1739 1740 1741
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1742
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1768
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1769 1770
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1771
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1772 1773
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1774
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1775 1776
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1777
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1778 1779 1780 1781 1782 1783
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1794 1795
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1796 1797
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1798
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1799
            will be named automatically. Default: None.
C
chengduoZH 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1812 1813
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1814 1815 1816
    """

    l_type = 'conv3d'
C
chengduo 已提交
1817
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1828
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1842 1843 1844
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1845 1846 1847 1848 1849 1850 1851 1852
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1853
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1868
            'use_mkldnn': False
C
chengduoZH 已提交
1869 1870
        })

1871
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1872 1873 1874 1875

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1876
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1877
    """
Y
yangyaming 已提交
1878 1879 1880
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1892
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1893 1894 1895 1896 1897
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1898
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1899 1900 1901 1902 1903 1904 1905

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1906 1907
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1908

L
Luo Tao 已提交
1909 1910
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1911
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1912
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1913
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1914 1915 1916 1917 1918 1919 1920

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1921

Y
yangyaming 已提交
1922
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1923 1924 1925 1926 1927
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1928 1929
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1930
    """
F
fengjiayi 已提交
1931
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1932
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1933 1934
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1935 1936 1937 1938 1939 1940

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1941 1942
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1943

Y
yangyaming 已提交
1944 1945 1946 1947 1948
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1949 1950 1951
    return pool_out


C
add doc  
chengduoZH 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1971
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1972 1973 1974 1975 1976
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1977
def sequence_first_step(input):
L
Luo Tao 已提交
1978
    """
L
Luo Tao 已提交
1979
    This function gets the first step of sequence.
L
Luo Tao 已提交
1980 1981 1982 1983

    .. code-block:: text

       x is a 1-level LoDTensor:
1984
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1985 1986 1987 1988 1989
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1990
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1991
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1992

L
Luo Tao 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2002

Y
yangyaming 已提交
2003
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2004 2005 2006
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2007 2008 2009
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2010
def sequence_last_step(input):
L
Luo Tao 已提交
2011
    """
L
Luo Tao 已提交
2012
    This function gets the last step of sequence.
L
Luo Tao 已提交
2013 2014 2015 2016

    .. code-block:: text

       x is a 1-level LoDTensor:
2017
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2018 2019 2020 2021 2022
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2023
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2024
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2025

L
Luo Tao 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2035

Y
yangyaming 已提交
2036
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2037 2038 2039
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2040 2041 2042
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2043 2044 2045 2046
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2047
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2048 2049 2050 2051 2052
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2053

Y
Yibing Liu 已提交
2054 2055
	- Case:

2056
            Given the input Variable **input**:
2057

2058 2059 2060
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2061

2062
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2063

2064
            the output Variable will be
2065

2066 2067 2068
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2069 2070

    NOTE: The first dimension size of **input**, **offset** and **length**
2071
          should be equal. The **offset** should start from 0.
2072

Y
Yibing Liu 已提交
2073
    Args:
2074
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2075
                         sequences.
Y
Yibing Liu 已提交
2076 2077 2078 2079 2080 2081
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2082
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2093
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2094 2095 2096 2097
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2098
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2113
@templatedoc()
Y
Yu Yang 已提交
2114
def pool2d(input,
C
chengduoZH 已提交
2115 2116
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2117 2118
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2119
           global_pooling=False,
C
chengduoZH 已提交
2120
           use_cudnn=True,
2121
           ceil_mode=False,
2122 2123
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2124
    """
F
fengjiayi 已提交
2125
    ${comment}
2126 2127

    Args:
2128 2129 2130
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2131
                          feature, and W is the width of the feature.
2132
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2133
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2134
        pool_type: ${pooling_type_comment}
2135 2136
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2137 2138 2139
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2140
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2141
                        layer will be named automatically.
2142 2143
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
F
fengjiayi 已提交
2144

2145
    Returns:
F
fengjiayi 已提交
2146
        Variable: The pooling result.
F
fengjiayi 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2160 2161 2162 2163
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2164
                            global_pooling=False)
Y
Yu Yang 已提交
2165 2166 2167 2168 2169
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2170

C
chengduoZH 已提交
2171 2172 2173 2174 2175
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2176 2177 2178 2179
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2180 2181
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2182

C
Add doc  
chengduoZH 已提交
2183
    l_type = 'pool2d'
2184 2185

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2186
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2187
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2188 2189

    helper.append_op(
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2201 2202
            "use_mkldnn": False,
            "exclusive": exclusive,
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2216 2217
           name=None,
           exclusive=True):
2218 2219
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2220
    pooling configurations mentioned in input parameters.
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2233 2234
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
2235

2236
    Returns:
2237
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2238 2239 2240 2241 2242
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2243

C
chengduoZH 已提交
2244 2245 2246 2247 2248
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2249 2250 2251
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2252

C
chengduoZH 已提交
2253 2254
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2255

2256 2257
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2258
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2259
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2260 2261

    helper.append_op(
2262
        type=l_type,
Y
Yu Yang 已提交
2263 2264 2265 2266 2267 2268 2269
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2270
            "paddings": pool_padding,
2271
            "use_cudnn": use_cudnn,
2272
            "ceil_mode": ceil_mode,
2273 2274
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2287
               data_layout='NCHW',
Y
Yang Yang 已提交
2288
               in_place=False,
2289 2290
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2291
               moving_variance_name=None,
2292 2293
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2294
    """
Q
qiaolongfei 已提交
2295 2296 2297 2298
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2299

Q
qiaolongfei 已提交
2300
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2301

Q
qiaolongfei 已提交
2302 2303
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2304 2305 2306
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2319 2320

    Args:
Q
qiaolongfei 已提交
2321
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2322 2323 2324 2325
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2326 2327 2328 2329 2330 2331 2332 2333
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2334
        data_layout(string, default NCHW): NCHW|NHWC
2335
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2336 2337 2338 2339
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2340
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2341
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2342 2343

    Returns:
Q
qiaolongfei 已提交
2344
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2345 2346 2347 2348 2349 2350 2351

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2352
    """
C
chengduo 已提交
2353
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2376
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2377

2378 2379
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2380 2381 2382
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2383
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2384
        shape=param_shape,
2385 2386 2387 2388 2389 2390 2391
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2392
            trainable=False,
W
wanghaoshuang 已提交
2393
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2394
        shape=param_shape,
2395 2396
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2397 2398 2399 2400 2401 2402

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2403 2404 2405 2406
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2407

X
Xin Pan 已提交
2408 2409
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2427 2428 2429 2430
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2431
            "use_mkldnn": False,
2432
            "fuse_with_relu": fuse_with_relu
2433
        })
Y
Yu Yang 已提交
2434 2435 2436 2437

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2438
@templatedoc()
G
guosheng 已提交
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2449
    ${comment}
G
guosheng 已提交
2450 2451 2452

    The formula is as follows:

Y
yuyang18 已提交
2453
    ..  math::
G
guosheng 已提交
2454 2455 2456 2457 2458 2459 2460

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2461 2462 2463 2464 2465 2466 2467 2468
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2469

G
guosheng 已提交
2470 2471
    Args:
        input(Variable): The input tensor variable.
2472
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2473
            normalization. Default True.
2474
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2475 2476
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2477
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2478
            Default 1.
2479
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2480
            division by zero. Default 1e-05.
G
guosheng 已提交
2481
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2482 2483
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2484 2485
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2486
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2487 2488
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2489
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2490
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2491
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2492 2493 2494
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2495 2496

    Returns:
Y
yuyang18 已提交
2497
        ${y_comment}
G
guosheng 已提交
2498 2499 2500

    Examples:

Y
yuyang18 已提交
2501 2502 2503
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2519
    if shift:
G
guosheng 已提交
2520 2521 2522 2523 2524 2525
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2526 2527 2528 2529 2530
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2546 2547 2548 2549
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2550 2551 2552
                     padding=0,
                     stride=1,
                     dilation=1,
2553
                     groups=None,
C
caoying03 已提交
2554
                     param_attr=None,
2555
                     bias_attr=None,
C
chengduoZH 已提交
2556
                     use_cudnn=True,
2557
                     act=None,
C
caoying03 已提交
2558
                     name=None):
Y
Yu Yang 已提交
2559
    """
2560 2561 2562 2563 2564 2565 2566 2567
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2568 2569
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2570 2571 2572
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2573 2574 2575 2576 2577

    For each input :math:`X`, the equation is:

    .. math::

2578
        Out = \sigma (W \\ast X + b)
2579

2580
    Where:
2581 2582 2583

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2584 2585 2586 2587
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2588

2589 2590 2591 2592
    Example:

        - Input:

2593
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2594

2595
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2596 2597 2598

        - Output:

2599
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2600 2601

        Where
Y
Yu Yang 已提交
2602

2603 2604
        .. math::

2605 2606 2607 2608
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2609 2610

    Args:
2611 2612 2613 2614
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2615 2616 2617 2618
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2647
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2648 2649 2650
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2651
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2652
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2653 2654

    Returns:
2655
        Variable: The tensor variable storing the convolution transpose result.
2656 2657

    Raises:
2658 2659
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2660 2661 2662 2663

    Examples:
       .. code-block:: python

2664 2665
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2666
    """
C
chengduo 已提交
2667
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2668 2669 2670 2671 2672 2673 2674 2675
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2676 2677 2678
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2679 2680 2681
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2682

C
chengduoZH 已提交
2683 2684
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2685

Y
Yu Yang 已提交
2686 2687 2688 2689 2690
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2691

Y
Yu Yang 已提交
2692 2693
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2694

C
chengduoZH 已提交
2695
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2696
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2697
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2698
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2699
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2700 2701 2702
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2703

2704 2705 2706 2707 2708 2709 2710
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2711
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2712
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2713

Y
Yu Yang 已提交
2714 2715 2716
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2717
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2718
    helper.append_op(
2719
        type=op_type,
Y
Yu Yang 已提交
2720 2721
        inputs={'Input': [input],
                'Filter': [img_filter]},
2722
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2723
        attrs={
2724
            'output_size': output_size,
2725 2726 2727 2728 2729
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2730 2731
        })

2732 2733 2734
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2735 2736


2737
def conv3d_transpose(input,
Y
Yu Yang 已提交
2738 2739 2740
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2741 2742 2743
                     padding=0,
                     stride=1,
                     dilation=1,
2744
                     groups=None,
C
caoying03 已提交
2745
                     param_attr=None,
2746
                     bias_attr=None,
C
chengduoZH 已提交
2747
                     use_cudnn=True,
2748
                     act=None,
C
caoying03 已提交
2749
                     name=None):
Y
Yu Yang 已提交
2750
    """
2751
    **Convlution3D transpose layer**
2752

2753
    The convolution3D transpose layer calculates the output based on the input,
2754
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2755 2756 2757 2758 2759 2760
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2761 2762 2763
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2764 2765 2766 2767 2768

    For each input :math:`X`, the equation is:

    .. math::

2769
        Out = \sigma (W \\ast X + b)
2770 2771 2772

    In the above equation:

2773 2774
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2775 2776 2777 2778
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2779

2780 2781 2782 2783
    Example:

        - Input:

2784
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2785

2786
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2787 2788 2789

        - Output:

2790
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2791 2792

        Where
Y
Yu Yang 已提交
2793

2794 2795
        .. math::

2796 2797 2798
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2799 2800

    Args:
2801
        input(Variable): The input image with [N, C, D, H, W] format.
2802 2803 2804
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2805
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2806 2807
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2808
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2809 2810 2811
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2812 2813
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2814
        stride(int|tuple): The stride size. If stride is a tuple, it must
2815 2816
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2817
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2818 2819 2820
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2821 2822 2823 2824 2825
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2826 2827 2828 2829 2830 2831 2832 2833 2834
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2835 2836
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2837 2838
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2839 2840
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2841 2842

    Returns:
2843
        Variable: The tensor variable storing the convolution transpose result.
2844 2845

    Raises:
2846 2847
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2848 2849 2850 2851

    Examples:
       .. code-block:: python

2852 2853
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2854
    """
C
chengduo 已提交
2855
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2856 2857
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2858
    if not isinstance(input, Variable):
2859
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2860 2861
    input_channel = input.shape[1]

2862 2863 2864
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2865

C
chengduoZH 已提交
2866 2867 2868
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2869 2870 2871 2872 2873 2874
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2875 2876 2877
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2878

2879
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2880
                         padding[0] - 1) // dilation[0] + 1
2881
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2882
                         padding[1] - 1) // dilation[1] + 1
2883
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2884
                         padding[2] - 1) // dilation[2] + 1
2885
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2886
    else:
2887 2888
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2889

2890
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2891
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2892 2893 2894
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2895
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2896
    helper.append_op(
2897
        type=l_type,
Y
Yu Yang 已提交
2898 2899
        inputs={'Input': [input],
                'Filter': [img_filter]},
2900
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2901 2902 2903 2904
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2905
            'groups': groups,
C
chengduoZH 已提交
2906 2907
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2908

2909 2910
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2911
    return out
Y
yangyaming 已提交
2912 2913


Y
yangyaming 已提交
2914
def sequence_expand(x, y, ref_level=-1, name=None):
2915
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2916 2917 2918 2919
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2920 2921 2922 2923 2924

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2925
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2926
                x.data = [[a], [b], [c], [d]]
2927 2928 2929
                x.dims = [4, 1]

            y is a LoDTensor:
2930 2931
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2932

Y
yangyaming 已提交
2933
            ref_level: 0
2934

Y
yangyaming 已提交
2935
            then output is a 1-level LoDTensor:
2936
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2937
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2938 2939 2940 2941
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2942
                x.data = [[a], [b], [c]]
2943 2944 2945
                x.dims = [3, 1]

            y is a LoDTensor:
2946
                y.lod = [[2, 0, 3]]
2947

Y
yangyaming 已提交
2948
            ref_level: -1
2949

Y
yangyaming 已提交
2950 2951 2952
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2953 2954 2955
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2956 2957
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2958
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2959
                        will be named automatically.
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2970
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2971
    """
Y
yangyaming 已提交
2972
    helper = LayerHelper('sequence_expand', input=x, **locals())
2973
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2974
    tmp = helper.create_variable_for_type_inference(dtype)
2975
    helper.append_op(
Y
yangyaming 已提交
2976 2977 2978 2979 2980
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2981
    return tmp
2982 2983


C
chengduo 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3040
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3041 3042 3043 3044 3045 3046 3047 3048
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3049
@templatedoc()
3050
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3051 3052 3053 3054 3055
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3056 3057 3058
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3059
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3060 3061 3062 3063
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3064 3065 3066
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3067

F
fengjiayi 已提交
3068
    Returns:
M
minqiyang 已提交
3069
        Variable: The padded sequence batch and the original lengths before
3070
                  padding. All sequences has the same length.
M
minqiyang 已提交
3071

F
fengjiayi 已提交
3072 3073 3074 3075 3076 3077 3078
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3079
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3080
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3081 3082 3083 3084 3085
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3086 3087
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3088 3089 3090 3091

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3092 3093 3094 3095 3096 3097
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3098 3099
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3100
        attrs={'padded_length': maxlen})
3101
    return out, length
F
fengjiayi 已提交
3102 3103


3104
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3105
    """
3106
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3107

3108 3109
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3119 3120 3121
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3122
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3123 3124 3125 3126 3127 3128

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3129
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3130 3131 3132 3133 3134 3135

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3136 3137
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3152
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3164 3165 3166 3167 3168 3169 3170 3171 3172
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3173 3174
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3175 3176 3177

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3178 3179

    This layer does the search in beams for one time step. Specifically, it
3180 3181 3182 3183 3184 3185
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3186

3187 3188 3189 3190 3191 3192 3193 3194
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3195

3196
    Args:
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3222

3223
    Returns:
3224 3225
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3226 3227 3228 3229

    Examples:
        .. code-block:: python

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3247 3248 3249 3250
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3251 3252 3253
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3254 3255 3256 3257 3258

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3259
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3277 3278 3279 3280 3281 3282 3283
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3284

3285 3286 3287 3288 3289 3290 3291 3292 3293
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3294

3295 3296 3297 3298 3299 3300
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3301

3302 3303 3304 3305 3306 3307 3308 3309
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3310 3311
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3327 3328 3329 3330
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3331
              param_attr=None,
C
caoying03 已提交
3332 3333
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3334 3335 3336 3337
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3338
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3339

3340
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3341

3342
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3343

3344
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3345 3346 3347

            h_t & = o_t tanh(c_t)

3348 3349 3350 3351 3352 3353
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3354 3355 3356

        .. math::

3357
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3358 3359 3360 3361 3362 3363 3364 3365

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3366
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3367 3368

    Args:
Y
yangyaming 已提交
3369 3370 3371 3372 3373 3374
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3375
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3388 3389
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3390 3391

    Returns:
Y
yangyaming 已提交
3392
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3393 3394

    Raises:
3395 3396 3397 3398
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3399 3400 3401 3402 3403 3404

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3405
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3406
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3407
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3424
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3425 3426 3427 3428
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3429 3430
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3431 3432 3433
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3434
    size = cell_t_prev.shape[1]
3435
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3436 3437
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3438
                param_attr=param_attr,
3439
                bias_attr=bias_attr)
Y
yangyaming 已提交
3440
    dtype = x_t.dtype
X
Xin Pan 已提交
3441 3442
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3452
    return h, c
G
guosheng 已提交
3453 3454


C
caoying03 已提交
3455
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3456
    """
Y
yangyaming 已提交
3457
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3458 3459 3460

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3461
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3462 3463
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3464 3465
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3466
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3467
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3468
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3469 3470
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3471 3472 3473

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3474

G
guosheng 已提交
3475 3476 3477 3478 3479 3480
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3481
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3482 3483 3484 3485
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3486 3487 3488 3489

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3490
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3491 3492 3493
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3494 3495
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3496
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3497 3498
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3499 3500 3501 3502 3503
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3504
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3505 3506 3507 3508
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3509 3510


C
caoying03 已提交
3511
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3512
    """
Y
Yibing Liu 已提交
3513
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3514 3515 3516

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3517 3518 3519
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3520
            must be in the range :math:`[-rank(input), rank(input))`. If
3521
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3522
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3523 3524
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3525
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3526
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3527
                       will be named automatically.
G
guosheng 已提交
3528 3529

    Returns:
Y
Yibing Liu 已提交
3530
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3531

G
guosheng 已提交
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3542 3543
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3544 3545 3546 3547 3548 3549 3550

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3551 3552
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3553
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3554 3555
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3556 3557 3558 3559 3560
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3561
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3562 3563 3564 3565
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3566 3567


C
caoying03 已提交
3568
def reduce_max(input, dim=None, keep_dim=False, name=None):
3569
    """
Y
yangyaming 已提交
3570
    Computes the maximum of tensor elements over the given dimension.
3571 3572 3573

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3574
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3575 3576 3577
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3578
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3579 3580
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3581
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3582 3583
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3584 3585 3586

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3587

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3599 3600 3601 3602 3603 3604 3605

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3606 3607
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3608
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3609 3610
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3611 3612 3613 3614 3615
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3616
            'dim': dim if dim != None else [0],
3617 3618 3619 3620 3621 3622
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3623
def reduce_min(input, dim=None, keep_dim=False, name=None):
3624
    """
Y
yangyaming 已提交
3625
    Computes the minimum of tensor elements over the given dimension.
3626 3627 3628

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3629
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3630 3631 3632
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3633
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3634 3635
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3636
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3637 3638
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3639 3640 3641

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3642

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3654 3655 3656 3657 3658 3659 3660

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3661 3662
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3663
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3664 3665
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3666 3667 3668 3669 3670
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3671
            'dim': dim if dim != None else [0],
3672 3673 3674 3675
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3676 3677


3678 3679 3680 3681 3682 3683
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3684
        dim (list|int|None): The dimensions along which the product is performed. If
3685 3686
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3687 3688
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3689 3690 3691
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3692
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3693
            layer will be named automatically.
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3708
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3709
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3710 3711 3712 3713 3714 3715 3716

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3717 3718
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3719
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3720 3721
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3722 3723 3724 3725 3726
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3727
            'dim': dim if dim != None else [0],
3728 3729 3730 3731 3732 3733
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3734
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3735
    """
C
caoying03 已提交
3736
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3737 3738 3739

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3740 3741 3742 3743 3744
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3745
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3746
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3747
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3748 3749
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3750 3751

    Returns:
D
dzhwinter 已提交
3752
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3762 3763
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3779
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3802
    .. math::
3803 3804

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3805 3806 3807 3808 3809

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3810
        x(Variable|list): The input tensor to l2_normalize layer.
3811
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3812 3813
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3814
        epsilon(float): The epsilon value is used to avoid division by zero, \
3815
            the defalut value is 1e-10.
3816
        name(str|None): A name for this layer(optional). If set None, the layer \
3817
            will be named automatically.
C
caoying03 已提交
3818 3819

    Returns:
3820
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3821 3822

    Examples:
3823

C
caoying03 已提交
3824 3825
        .. code-block:: python

3826 3827 3828 3829
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3830 3831
    """

F
fengjiayi 已提交
3832 3833
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3834 3835
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3836 3837
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3838
    helper.append_op(
3839 3840 3841 3842
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3843
        attrs={
3844 3845
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3846 3847
        })
    return out
3848 3849


S
sneaxiy 已提交
3850
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3851
    """
Y
ying 已提交
3852 3853 3854 3855
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3856

C
chengduoZH 已提交
3857
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3858
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3859

3860 3861 3862 3863 3864
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3865
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3866

C
chengduoZH 已提交
3867
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3868
      performs in the following way.
G
guosheng 已提交
3869

3870
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3871
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3872
        last two dimensions and a batched matrix multiply supporting broadcast
3873
        applies on the two tensors.
G
guosheng 已提交
3874

Y
ying 已提交
3875 3876
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3877
    removed after matrix multiplication.
G
guosheng 已提交
3878 3879 3880

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3881 3882 3883
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3884
        alpha (float): The scale of output. Default 1.0.
3885
        name(str|None): A name for this layer(optional). If set None, the layer
3886
            will be named automatically.
G
guosheng 已提交
3887 3888

    Returns:
3889
        Variable: The product Tensor variable.
G
guosheng 已提交
3890

G
guosheng 已提交
3891 3892 3893
    Examples:
        .. code-block:: python

3894
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3895 3896
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3897

3898 3899
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3900

3901 3902
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3903

3904 3905
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3906 3907 3908 3909

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3910 3911
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3912

Y
ying 已提交
3913
            # x: [M], y: [N]
3914
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3915
    """
Y
ying 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3928
            y_shape = y_shape + [1]
Y
ying 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3945
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3946
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3947
    helper.append_op(
3948 3949 3950 3951
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3952 3953 3954
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3955
            'alpha': float(alpha),
S
sneaxiy 已提交
3956
        })
3957
    return out
3958 3959


3960
def topk(input, k, name=None):
Q
qingqing01 已提交
3961 3962 3963 3964
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3965
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3966 3967 3968 3969 3970 3971
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3993 3994 3995
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3996
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3997
                 of input.
3998
        name(str|None): A name for this layer(optional). If set None, the layer
3999
                       will be named automatically.
F
fengjiayi 已提交
4000
                       Default: None
Q
qingqing01 已提交
4001 4002

    Returns:
4003 4004 4005
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4006
        within the last dimension of input.
Q
qingqing01 已提交
4007

F
fengjiayi 已提交
4008 4009
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4010 4011 4012 4013 4014 4015 4016

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4017 4018
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4030
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4031
    """
Y
ying 已提交
4032 4033 4034 4035 4036 4037 4038 4039 4040
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4041

Y
ying 已提交
4042
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4043

4044
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4045 4046
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4047
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4048

4049
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4050 4051
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4052

4053 4054 4055
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4056
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4057
                          the length of reference string.
4058
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4059
                                     calculating edit distance.
4060
        name (str): The name of this layer. It is optional.
4061

W
wanghaoshuang 已提交
4062
    Returns:
W
wanghaoshuang 已提交
4063
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4064 4065 4066 4067 4068

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4069
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4070
            cost = fluid.layers.edit_distance(input=x,label=y)
4071
    """
4072
    helper = LayerHelper("edit_distance", **locals())
4073

4074
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4075
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4076 4077
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4078 4079 4080 4081 4082

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4083
            attrs={"tokens": ignored_tokens})
4084 4085 4086 4087 4088
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4089
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4090
            attrs={"tokens": ignored_tokens})
4091 4092
        label = erased_label

4093
    # edit distance op
X
Xin Pan 已提交
4094 4095
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4096 4097 4098 4099
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4100 4101
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4102 4103
        attrs={"normalized": normalized})

4104
    return edit_distance_out, sequence_num
4105 4106 4107 4108 4109


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4110

Y
ying 已提交
4111 4112 4113 4114
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4132
        input.lod = [[4, 4]]
4133 4134 4135 4136 4137 4138 4139

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4140
        output.lod = [[2, 1]]
4141 4142 4143

    Args:

Y
ying 已提交
4144 4145 4146 4147 4148 4149 4150 4151 4152
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4153
        name (str): The name of this layer. It is optional.
4154 4155

    Returns:
4156
        Variable: CTC greedy decode result. If all the sequences in result were
4157
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4158 4159 4160 4161 4162

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4163

4164
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4165
    """
4166
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4167
    _, topk_indices = topk(input, k=1)
4168 4169

    # ctc align op
X
Xin Pan 已提交
4170
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4171 4172 4173
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4174
        outputs={"Output": [ctc_out]},
4175 4176
        attrs={"merge_repeated": True,
               "blank": blank})
4177
    return ctc_out
4178 4179


F
fengjiayi 已提交
4180
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4181
    """
4182 4183
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4184
    to compute Connectionist Temporal Classification (CTC) loss.
4185 4186
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4187 4188 4189
    input tensor.

    Args:
4190
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4191 4192 4193 4194
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4195
       label (Variable): The ground truth of variable-length sequence,
4196 4197 4198
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4199 4200
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4201 4202 4203
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4204
         follewed by a mean_op.
W
wanghaoshuang 已提交
4205 4206

    Returns:
4207 4208
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4209 4210

    Examples:
4211

W
wanghaoshuang 已提交
4212
        .. code-block:: python
4213

4214 4215 4216
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4217 4218

    """
F
fengjiayi 已提交
4219
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4220 4221
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4222 4223 4224 4225 4226 4227 4228 4229 4230
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4246 4247 4248
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4249 4250 4251 4252 4253
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4254

4255
            out.lod  = [[0, 1, 3]]
4256 4257 4258 4259

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4260 4261 4262 4263 4264 4265 4266
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4267 4268 4269

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4270 4271

    Returns:
4272

4273 4274 4275 4276 4277
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4278
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4279
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4280 4281
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4282
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4283 4284 4285 4286 4287 4288
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4289 4290


4291 4292 4293 4294
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4295 4296 4297 4298 4299 4300
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4301 4302
        num_neg_samples=None,
        name=None):
4303 4304 4305 4306 4307 4308 4309
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4310 4311
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4312
            sample is 1.0.
C
chengduo 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4322
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4323 4324
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4325

4326
    Returns:
Y
Yibing Liu 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4354
    """
Y
Yang Yu 已提交
4355 4356 4357
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4358 4359

    dim = input.shape[1]
Y
Yang Yu 已提交
4360 4361 4362 4363 4364 4365
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4379 4380 4381
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4382

Y
Yang Yu 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4392 4393 4394

    helper.append_op(
        type='nce',
C
chengduo 已提交
4395
        inputs=inputs,
Y
Yang Yu 已提交
4396 4397 4398 4399 4400 4401
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4402
    return cost / (num_neg_samples + 1)
4403 4404


C
chengduo 已提交
4405 4406 4407 4408 4409 4410
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4411 4412
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4413
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4423

W
weixing02 已提交
4424
    Args:
M
minqiyang 已提交
4425
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4426 4427 4428 4429 4430
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4442 4443 4444 4445 4446 4447 4448 4449

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4450 4451 4452
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4453 4454 4455 4456
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4457 4458
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4459 4460
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4461
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4462 4463 4464 4465 4466
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4467 4468 4469 4470 4471 4472 4473 4474
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4475 4476
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4477
        inputs=inputs,
W
weixing02 已提交
4478 4479 4480 4481 4482 4483
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4484
def transpose(x, perm, name=None):
Y
ying 已提交
4485 4486 4487 4488 4489 4490 4491
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4492 4493 4494
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4495 4496 4497 4498 4499 4500 4501

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4502 4503 4504 4505
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4506
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4507 4508
    """

Y
fix ci.  
ying 已提交
4509
    if len(perm) != len(x.shape):
Y
ying 已提交
4510 4511 4512
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4513 4514 4515 4516 4517 4518
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4519 4520

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4521 4522
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4523
    helper.append_op(
4524
        type='transpose2',
Y
fix ci.  
ying 已提交
4525
        inputs={'X': [x]},
4526 4527
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4528 4529
        attrs={'axis': perm})
    return out
4530 4531


4532 4533 4534 4535 4536 4537 4538
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4539
    """
4540 4541 4542 4543 4544 4545 4546
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4575 4576 4577 4578 4579 4580 4581 4582 4583
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4584 4585 4586
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4587 4588 4589 4590 4591
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4619 4620 4621
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4634
            output.dims = {8, 8}
4635

4636
            output.lod = [[4, 4]]
4637

D
dzhwinter 已提交
4638
     Examples:
4639 4640 4641

        .. code-block:: python

4642 4643
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4644 4645

    """
W
wanghaoshuang 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4656 4657 4658 4659 4660 4661 4662
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4663
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4664
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4665
    helper.append_op(
4666
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4667
    return out
4668 4669


Y
yuyang18 已提交
4670
@templatedoc()
4671
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4672 4673
    """
    ${comment}
4674 4675

    Args:
Y
yuyang18 已提交
4676
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4677 4678
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4679 4680 4681 4682 4683
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4684
        ${out_comment}.
4685 4686

    Examples:
Y
yuyang18 已提交
4687 4688 4689 4690
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4691 4692 4693 4694 4695 4696
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4697
    out = helper.create_variable_for_type_inference(dtype)
4698 4699 4700 4701 4702
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4703
    return helper.append_activation(out)
4704 4705


Y
yuyang18 已提交
4706
@templatedoc()
4707 4708
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4709 4710 4711 4712 4713 4714 4715
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4716 4717

    Args:
Y
yuyang18 已提交
4718 4719
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4720 4721

    Returns:
Y
yuyang18 已提交
4722
        ${out_comment}.
4723 4724
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4725 4726 4727 4728 4729

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4730
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4731 4732 4733 4734 4735 4736
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4737 4738


4739 4740 4741
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4742 4743
                               ignore_index=-100,
                               numeric_stable_mode=False):
4744 4745
    """
    **Softmax With Cross Entropy Operator.**
4746

4747 4748 4749 4750
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4751

4752 4753 4754
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4755

4756 4757 4758
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4759

4760
    The equation is as follows:
4761

4762
    1) Hard label (one-hot label, so every sample has exactly one class)
4763

4764 4765 4766 4767
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4768

4769 4770 4771
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4772

4773 4774 4775 4776
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
        
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4789 4790 4791 4792 4793 4794 4795 4796
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4797 4798
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4799
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4800 4801 4802 4803 4804 4805 4806
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
                                    When soft_label is True or CPU is used, 
                                    the algorithm is always numerically stable. 
                                    Note that the speed may be slower when use 
                                    stable algorithm. Default: False
4807

4808 4809 4810 4811 4812 4813 4814 4815 4816
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4817 4818
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4819 4820
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4821 4822
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4823 4824 4825 4826 4827 4828
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4829 4830 4831 4832 4833
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4834 4835 4836 4837 4838
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4839 4840
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4841
    For each instance, it computes the smooth L1 loss element by element first
4842
    and then sums all the losses. So the shape of ouput Variable is
4843
    [batch_size, 1].
4844

4845 4846
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4847
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4848
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4849
            L1 loss op with same shape as :attr:`x`.
4850
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4851 4852
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4853
            by this tensor element by element.
4854
        outside_weight (Variable|None): A tensor with rank at least 2. This
4855 4856
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4857
            element by element.
4858
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4859 4860
           scalar with default value 1.0.

4861
    Returns:
4862
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4863 4864 4865 4866 4867

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4868 4869
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4870
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4871
            out = fluid.layers.smooth_l1(x=fc, y=label)
4872
    """
4873

4874
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4875 4876
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4889 4890 4891 4892


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4893
    This layer creates the one-hot representations for input indices.
4894 4895

    Args:
Y
Yibing Liu 已提交
4896 4897
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4898 4899

    Returns:
Y
Yibing Liu 已提交
4900
        Variable: The one-hot representations of input.
4901 4902

    Examples:
C
caoying03 已提交
4903
        .. code-block:: python
4904

Y
Yibing Liu 已提交
4905 4906
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4907 4908
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4909
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4910 4911 4912 4913 4914 4915
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4916 4917


Y
Yu Yang 已提交
4918
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4919
    """
Y
yi.wu 已提交
4920 4921 4922
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4923 4924 4925 4926 4927 4928

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4929 4930
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4931 4932 4933 4934 4935 4936

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4937 4938
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4939 4940
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4941 4942 4943 4944 4945
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4946
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4947
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4948 4949
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4950 4951
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4952 4953 4954
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4955 4956


4957
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4958
    """
C
caoying03 已提交
4959 4960
    Gives a new shape to the input Tensor without changing its data.

4961 4962 4963 4964 4965
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4966

4967
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4968

4969 4970 4971 4972
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4973
    2. 0 means the actual dimension value is going to be copied from the
4974 4975 4976 4977
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4978 4979

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4980
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4981
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4982

4983
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4984 4985
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4986 4987
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4988
    dimensions.
C
caoying03 已提交
4989

4990
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4991 4992 4993 4994
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4995 4996

    Args:
4997
        x(variable): The input tensor.
C
caoying03 已提交
4998 4999
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5000 5001 5002 5003 5004
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5005 5006
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5007 5008 5009 5010 5011 5012 5013
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5014
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5015

5016
    Returns:
G
guosheng 已提交
5017 5018 5019 5020
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5021

X
Xin Pan 已提交
5022 5023 5024
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5025 5026
    Examples:
        .. code-block:: python
G
guosheng 已提交
5027

5028
            data = fluid.layers.data(
5029
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5030
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5031
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5032 5033 5034
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5035
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5036 5037 5038 5039 5040
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5041

5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5057
    helper = LayerHelper("reshape2", **locals())
5058 5059
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5060
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5061
    helper.append_op(
5062
        type="reshape2",
X
Xin Pan 已提交
5063
        inputs=inputs,
D
dzhwinter 已提交
5064
        attrs={"shape": shape},
5065 5066
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5067

D
dzhwinter 已提交
5068
    return helper.append_activation(out)
5069

5070

5071
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5072
    """
M
minqiyang 已提交
5073 5074 5075
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5076
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5077

Y
Yibing Liu 已提交
5078 5079
    Examples:
    Case 1:
M
minqiyang 已提交
5080
      Given
Y
Yibing Liu 已提交
5081 5082 5083 5084 5085 5086 5087 5088
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5089
        and
Y
Yibing Liu 已提交
5090 5091 5092
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5093

Y
Yibing Liu 已提交
5094
    Args:
5095
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5096
        axes (list): List of integers, indicating the dimensions to be squeezed.
5097
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5098 5099 5100 5101 5102 5103 5104 5105

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5106
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5107 5108
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5109 5110
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5111
    helper.append_op(
5112
        type="squeeze2",
5113
        inputs={"X": input},
Y
Yibing Liu 已提交
5114
        attrs={"axes": axes},
5115 5116
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5117

5118 5119 5120
    return out


5121
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5122
    """
M
minqiyang 已提交
5123 5124 5125
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5126

M
minqiyang 已提交
5127 5128
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5129
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5130

Y
Yibing Liu 已提交
5131
    Args:
5132
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5133
        axes (list): List of integers, indicating the dimensions to be inserted.
5134
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5135 5136 5137 5138 5139 5140 5141 5142

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5143
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5144 5145
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5146 5147
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5148
    helper.append_op(
5149
        type="unsqueeze2",
5150
        inputs={"X": input},
Y
Yibing Liu 已提交
5151
        attrs={"axes": axes},
5152 5153
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5154

5155 5156
    return out

5157

Y
yangyaming 已提交
5158
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5159
    """
Y
Yibing Liu 已提交
5160
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5161 5162 5163 5164
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5165
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5166 5167 5168 5169 5170 5171

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5172
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5173 5174 5175
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5176
            target_lod: [4, 2]
Y
yangyaming 已提交
5177 5178

            then we get a 1-level LoDTensor:
5179
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5180 5181 5182 5183 5184 5185
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5186
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5187 5188 5189 5190
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5191
                y.data = [[2, 4]]
Y
yangyaming 已提交
5192 5193 5194
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5195
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5196 5197 5198 5199 5200 5201
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5202
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5203 5204 5205 5206
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5207
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5208 5209 5210 5211
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5212
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5213 5214 5215 5216 5217
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5218
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5219
                           from :attr:`y`.
Y
yangyaming 已提交
5220
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5221
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5222 5223

    Returns:
Y
Yibing Liu 已提交
5224
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5225 5226

    Raises:
Y
Yibing Liu 已提交
5227
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5228 5229 5230 5231 5232 5233 5234 5235 5236

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5237
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5263
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5292 5293
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5306 5307 5308
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5322 5323 5324 5325


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5326
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5327
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5328

G
guosheng 已提交
5329 5330 5331 5332
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5355
                         The length of :attr:paddings must be
G
guosheng 已提交
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5366

G
guosheng 已提交
5367 5368 5369 5370 5371 5372
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5373
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5374 5375 5376 5377 5378 5379 5380
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5381 5382


C
chengduo 已提交
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5453
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5454 5455 5456 5457 5458 5459 5460 5461 5462
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5463 5464 5465 5466 5467 5468 5469
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5470 5471
    called label-smoothing regularization (LSR).

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5495
                              be :math:`(1, class\_num)`.
5496 5497
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5498
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5518
    smooth_label = helper.create_variable_for_type_inference(dtype)
5519 5520 5521 5522 5523 5524 5525
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5526 5527


Y
yi.wu 已提交
5528
@templatedoc()
5529 5530
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5531
    ${comment}
5532 5533

    Args:
Y
yi.wu 已提交
5534 5535
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5536 5537 5538
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5539 5540

    Returns:
Y
update  
yi.wu 已提交
5541
        Variable: ${out_comment}.
5542 5543

    Examples:
5544 5545
        .. code-block:: python

5546
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5547 5548 5549
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5550 5551
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5564 5565


J
jerrywgz 已提交
5566 5567 5568 5569 5570 5571
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5572 5573
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5590 5591 5592
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5593 5594 5595 5596 5597 5598
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5599
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5640 5641
        .. code-block:: python

W
whs 已提交
5642 5643 5644 5645
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5646
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5647 5648 5649 5650 5651 5652
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5653 5654


5655 5656 5657 5658
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5659 5660
                 resample='BILINEAR',
                 actual_shape=None):
5661
    """
Q
qiaolongfei 已提交
5662
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5663

5664
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5665 5666 5667
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5668

5669
        'BILINEAR' : Bilinear interpolation
5670
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5671

5672
    Args:
5673
        input (Variable): The input tensor of image resize layer,
5674 5675
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5676
        out_shape(list|tuple|Variable|None): Output shape of image resize
5677 5678
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5679
        scale(float|None): The multiplier for the input height or width.
5680 5681 5682
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5683 5684
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5685 5686
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST' 
                       currently.
5687
                       Default: 'BILINEAR'
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
5701 5702

    Returns:
Q
update  
qiaolongfei 已提交
5703 5704
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5705

5706 5707 5708 5709 5710 5711 5712 5713
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
        ValueError: The 'resample' of image_resize can only be 'BILINEAR' 
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5714 5715 5716
    Examples:
        .. code-block:: python

5717
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5718
    """
5719 5720 5721 5722
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5723 5724
    if resample not in resample_methods:
        raise ValueError(
5725
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5726
        )
5727
    if out_shape is None and scale is None:
5728
        raise ValueError("One of out_shape and scale must not be None.")
5729
    helper = LayerHelper('interpolate', **locals())
5730
    dtype = helper.input_dtype()
5731 5732 5733 5734

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5735 5736 5737
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5738
    if out_shape is not None:
5739 5740 5741 5742
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
5743
            inputs['OutSize'] = out_shape
5744 5745 5746 5747 5748 5749 5750 5751
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
5752 5753 5754 5755
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5756 5757 5758 5759 5760
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
5761
    out = helper.create_variable_for_type_inference(dtype)
5762
    helper.append_op(
5763
        type='interpolate',
5764
        inputs=inputs,
5765
        outputs={"Out": out},
5766 5767 5768 5769 5770
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_methods[resample]
        })
5771
    return out
F
stash  
fengjiayi 已提交
5772 5773


5774
@templatedoc(op_type="interpolate")
5775 5776 5777 5778 5779
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
5780
    """
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
    Resize input by performing bilinear interpolation based on given 
    output shape which specified by actual_shape, out_shape and scale 
    in priority order.

    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5793 5794 5795 5796 5797

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5798

Y
yuyang18 已提交
5799 5800 5801 5802 5803
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5817 5818 5819

    Returns:
        ${out_comment}.
5820 5821
    """

5822
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
5823 5824


5825
@templatedoc(op_type="interpolate")
5826 5827 5828 5829 5830
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
5831
    """
5832 5833 5834 5835 5836 5837 5838
    Resize input by performing nearest neighbor interpolation in both the
    3rd dimention(in height direction) and the 4th dimention(in width 
    direction) based on given output shape which specified by actual_shape, 
    out_shape and scale in priority order.

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5839 5840 5841 5842 5843

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5844

Y
yuyang18 已提交
5845 5846 5847 5848 5849
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5863 5864 5865

    Returns:
        ${out_comment}.
5866 5867
    """

5868
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
5869 5870 5871 5872


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5873 5874 5875
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5876 5877 5878 5879 5880 5881 5882
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5883
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5884

5885
    Returns:
Q
update  
qiaolongfei 已提交
5886
        Variable: The output is a 4-D tensor of the shape
5887
        (num_batches, channls, out_h, out_w).
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5898 5899 5900
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5901 5902 5903
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5904 5905
def gather(input, index):
    """
Q
qiaolongfei 已提交
5906 5907
    **Gather Layer**

5908
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5909 5910 5911 5912
    of X indexed by `index` and concatenate them together.

    .. math::

5913
        Out = X[Index]
W
whs 已提交
5914 5915 5916 5917 5918 5919 5920


    .. code-block:: text


                Given:

5921 5922
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5933
        input (Variable): The source input with rank>=1.
W
whs 已提交
5934 5935 5936 5937 5938 5939
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5940

W
whs 已提交
5941 5942 5943 5944 5945 5946
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5947
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5948 5949 5950 5951 5952 5953 5954 5955
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5987
    out = helper.create_variable_for_type_inference(dtype)
5988 5989 5990 5991 5992 5993 5994 5995 5996
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6047
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6048 6049 6050 6051 6052 6053 6054 6055 6056
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6070

6071 6072 6073
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6074
    """
F
stash  
fengjiayi 已提交
6075
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6076
    dtype = x.dtype
X
Xin Pan 已提交
6077
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6078
    if seed is None:
6079
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6080
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6081
    if isinstance(seed, int):
F
fengjiayi 已提交
6082 6083 6084 6085 6086
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6087 6088 6089 6090
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6091
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6092 6093
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6094 6095
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6096
    return out
W
whs 已提交
6097 6098


6099
def log(x, name=None):
W
wanghaoshuang 已提交
6100 6101 6102 6103 6104
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6105
        Out = \\ln(x)
W
wanghaoshuang 已提交
6106 6107

    Args:
6108
        x (Variable): Input tensor.
6109 6110
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6111 6112 6113 6114 6115 6116 6117 6118

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6119
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6120 6121
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6122
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6123
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6124
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6125 6126 6127
    return out


6128
def relu(x, name=None):
W
wanghaoshuang 已提交
6129 6130
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6131
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6132 6133 6134 6135
    the tensor elementwise.

    .. math::

6136
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6137 6138

    Args:
6139
        x (Variable): The input tensor.
6140 6141
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6142 6143 6144 6145 6146 6147 6148 6149

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6150
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6151 6152
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6153
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6154
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6155
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6156
    return out
6157 6158


W
whs 已提交
6159 6160 6161
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6162 6163 6164 6165
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6166
    .. math::
6167 6168

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6169

6170
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6171 6172 6173 6174 6175
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6176
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6177
                           Its shape should be the same as input.
6178
        num_classes (int): The possible number of labels.
W
whs 已提交
6179 6180 6181 6182

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6183
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6184 6185 6186 6187

    Examples:

        .. code-block:: python
6188

W
whs 已提交
6189 6190 6191 6192
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6193 6194 6195
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6196 6197
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6198 6199
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6200
        outputs={
W
whs 已提交
6201 6202 6203
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6204 6205 6206
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6281
                    isinstance(shape, Variable)):
6282 6283 6284 6285 6286
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6287
    out = helper.create_variable_for_type_inference(x.dtype)
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6305 6306


W
whs 已提交
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6425 6426 6427 6428 6429 6430 6431 6432
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6433

6434 6435
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6436

6437 6438 6439 6440
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6441

6442 6443 6444 6445 6446
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6447 6448 6449

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6485
    out = helper.create_variable_for_type_inference("float32")
6486 6487 6488 6489 6490 6491 6492 6493

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6494 6495


M
minqiyang 已提交
6496 6497
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6498
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6499
    which compares left score and right score passed in.
M
minqiyang 已提交
6500
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6501 6502 6503 6504 6505 6506

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6507
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6508 6509
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6510
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6511 6512 6513
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6514
       Variable: The ranking loss.
M
minqiyang 已提交
6515
    Raises:
M
minqiyang 已提交
6516
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6517 6518 6519 6520 6521 6522 6523
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6524
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6525 6526 6527 6528 6529 6530
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6531 6532
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6558

W
whs 已提交
6559 6560
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6561

W
whs 已提交
6562
      Case 0:
M
minqiyang 已提交
6563

W
whs 已提交
6564 6565 6566
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6567

W
whs 已提交
6568 6569 6570
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6571

W
whs 已提交
6572
      Case 1:
M
minqiyang 已提交
6573

W
whs 已提交
6574 6575
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6576

W
whs 已提交
6577 6578 6579
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6580

W
whs 已提交
6581
      Case 2:
M
minqiyang 已提交
6582

W
whs 已提交
6583 6584
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6585

W
whs 已提交
6586 6587 6588
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6589 6590


W
whs 已提交
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6617
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6646
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6669
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6692
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6716
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6741
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6765
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6766 6767 6768 6769 6770 6771 6772 6773
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6788
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6789
                        will be named automatically.
J
jerrywgz 已提交
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6817
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6818 6819 6820 6821 6822 6823 6824 6825 6826
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6841
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6864
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6886
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6887 6888 6889 6890 6891 6892 6893 6894
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6908

6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6919 6920
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6936
        ValueError: If axis is not in range [0, rank(x)].
6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6953 6954
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6955
    helper.append_op(
6956
        type='flatten2',
6957
        inputs={"X": x},
6958 6959
        outputs={'Out': out,
                 'XShape': x_shape},
6960 6961
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6962 6963


C
chenweihang 已提交
6964
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6965
    """
C
chenweihang 已提交
6966
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6967
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6968 6969
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6970

C
chenweihang 已提交
6971 6972 6973 6974
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6975
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6976 6977 6978 6979 6980 6981
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6982
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6983 6984 6985
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6986 6987 6988
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7000 7001
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7002 7003 7004 7005 7006 7007
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7008
    return out
7009

7010

S
sneaxiy 已提交
7011 7012 7013 7014 7015 7016 7017 7018 7019
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7020

S
sneaxiy 已提交
7021
    .. math::
7022

S
sneaxiy 已提交
7023 7024 7025
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7026
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7027 7028 7029 7030
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7031 7032 7033
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7034 7035
    Returns:
        Variable: The output sequence mask.
7036

S
sneaxiy 已提交
7037 7038
    """

Q
qingqing01 已提交
7039
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7040
    if name is None:
X
Xin Pan 已提交
7041
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7042
    else:
X
Xin Pan 已提交
7043
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7044

Q
qingqing01 已提交
7045 7046 7047
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7048 7049
        outputs={'Y': out},
        attrs={
7050
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7051 7052 7053
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7054 7055


X
Xin Pan 已提交
7056
def stack(x, axis=0):
S
sneaxiy 已提交
7057 7058 7059 7060
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7061 7062 7063 7064 7065 7066 7067

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7068
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7069
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7070 7071

    Args:
7072
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7073
        axis (int|None): The axis along which all inputs are stacked.
7074

S
sneaxiy 已提交
7075 7076
    Returns:
        Variable: The stacked variable.
7077

S
sneaxiy 已提交
7078 7079
    """

X
Xin Pan 已提交
7080 7081 7082 7083 7084 7085
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7086
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7087
    helper.append_op(
S
sneaxiy 已提交
7088 7089
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7090

X
Xin Pan 已提交
7091
    return out
D
dzhwinter 已提交
7092 7093 7094 7095 7096 7097 7098


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7099

D
dzhwinter 已提交
7100 7101 7102
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7103
    raised.
D
dzhwinter 已提交
7104 7105

    Args:
M
minqiyang 已提交
7106
        x (Variable): Input variable.
D
dzhwinter 已提交
7107 7108
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7109

D
dzhwinter 已提交
7110 7111
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7112

D
dzhwinter 已提交
7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7124
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7125 7126 7127 7128 7129 7130 7131 7132

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7145

W
whs 已提交
7146 7147 7148 7149
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7150

W
whs 已提交
7151
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7152

W
whs 已提交
7153
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7154

W
whs 已提交
7155 7156 7157 7158
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7159

W
whs 已提交
7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7176
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7177 7178 7179 7180 7181 7182
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7183 7184


G
fix  
gongweibao 已提交
7185 7186 7187
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7188
@templatedoc()
G
fix  
gongweibao 已提交
7189 7190 7191 7192 7193 7194 7195 7196 7197
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7198
    ${comment}
G
fix  
gongweibao 已提交
7199 7200

    Args:
G
gongweibao 已提交
7201 7202 7203
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7204
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7205 7206 7207
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7208 7209
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7210
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7211 7212 7213 7214

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7215
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7232 7233


G
gongweibao 已提交
7234
@templatedoc()
X
Xin Pan 已提交
7235
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7236
    """
G
gongweibao 已提交
7237
    ${comment}
G
fix  
gongweibao 已提交
7238 7239

    Args:
G
gongweibao 已提交
7240 7241 7242 7243
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7244 7245 7246
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7247
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7248 7249 7250 7251

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7252
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7253 7254 7255 7256 7257 7258 7259 7260 7261 7262
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7263
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7264 7265 7266 7267 7268
        })

    return out


G
gongweibao 已提交
7269
@templatedoc()
G
fix  
gongweibao 已提交
7270
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7271
    """
G
gongweibao 已提交
7272
    ${comment}
G
fix  
gongweibao 已提交
7273 7274

    Args:
G
gongweibao 已提交
7275 7276 7277 7278
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7279
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7280 7281

    Returns:
G
gongweibao 已提交
7282
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7283 7284 7285 7286

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7287
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7299
@templatedoc()
G
fix  
gongweibao 已提交
7300 7301 7302 7303 7304 7305 7306 7307 7308
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7309
    ${comment}
G
fix  
gongweibao 已提交
7310 7311

    Args:
G
gongweibao 已提交
7312 7313
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7314
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7315 7316 7317 7318
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7319
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7320 7321

    Returns:
G
gongweibao 已提交
7322
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7323 7324 7325
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7326
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7345
@templatedoc()
X
Xin Pan 已提交
7346
def sum(x):
G
fix  
gongweibao 已提交
7347
    """
G
gongweibao 已提交
7348
    ${comment}
G
fix  
gongweibao 已提交
7349 7350

    Args:
G
gongweibao 已提交
7351
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7352 7353

    Returns:
G
gongweibao 已提交
7354
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7355 7356 7357
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7358 7359
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7360 7361 7362 7363
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7364
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7365 7366 7367 7368

    return out


G
gongweibao 已提交
7369
@templatedoc()
G
fix  
gongweibao 已提交
7370 7371
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7372
    ${comment}
G
fix  
gongweibao 已提交
7373 7374

    Args:
G
gongweibao 已提交
7375 7376 7377 7378
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7379 7380

    Returns:
G
gongweibao 已提交
7381
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7382 7383 7384 7385

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7386 7387
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7399
@templatedoc()
G
fix  
gongweibao 已提交
7400 7401
def shape(input):
    """
G
gongweibao 已提交
7402
    ${comment}
G
fix  
gongweibao 已提交
7403 7404

    Args:
G
gongweibao 已提交
7405
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7406 7407

    Returns:
G
gongweibao 已提交
7408
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7409 7410 7411 7412

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7413 7414
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7415
    helper.append_op(
G
fix  
gongweibao 已提交
7416
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7417 7418

    return out
G
merge  
gongweibao 已提交
7419 7420


S
sneaxiy 已提交
7421 7422 7423 7424 7425 7426 7427 7428
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7429 7430
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7431
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7432 7433 7434
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7435

S
sneaxiy 已提交
7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7447
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7448 7449 7450 7451 7452 7453 7454 7455
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7456
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7457
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7458 7459 7460 7461 7462 7463

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7464
    if name is None:
X
Xin Pan 已提交
7465
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7466 7467 7468
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7469 7470 7471 7472 7473 7474 7475 7476 7477 7478

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7479
    return helper.append_activation(out)
S
sneaxiy 已提交
7480 7481


X
Xin Pan 已提交
7482
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7483 7484 7485
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7486
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7487 7488 7489
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7490
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7491 7492 7493
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7494
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7495 7496 7497
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7498
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7499 7500 7501
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7502
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7503 7504 7505
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7506
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7518 7519
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7520
        ])
M
minqiyang 已提交
7521 7522


7523
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7524 7525
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7526 7527
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7528 7529 7530

    if out is None:
        if name is None:
X
Xin Pan 已提交
7531
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7547
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7566
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7585
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7604
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7639 7640 7641 7642
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7671 7672 7673 7674
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7675 7676 7677 7678 7679 7680 7681 7682

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7701
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7731
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7732 7733 7734 7735 7736 7737 7738 7739 7740
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7741 7742
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7765
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7795
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
M
minqiyang 已提交
7806 7807


J
JiabinYang 已提交
7808
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
7809
    """
J
JiabinYang 已提交
7810
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
J
JiabinYang 已提交
7811
    
J
JiabinYang 已提交
7812
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the 
J
JiabinYang 已提交
7813
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension. 
J
JiabinYang 已提交
7814
    The attr blocksize indicates the input block size.
J
JiabinYang 已提交
7815 7816
    
    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according 
J
JiabinYang 已提交
7817
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
7818 7819 7820
    
    space_to_depth is used to This operation is useful for resizing the activations between convolutions 
    (but keeping all data)
J
JiabinYang 已提交
7821

J
JiabinYang 已提交
7822 7823 7824 7825 7826 7827 7828
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The depth of the output tensor is block_size * block_size * input channel 
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
7829
    Args:
J
JiabinYang 已提交
7830
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
7831
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
7832 7833

    Returns:
J
JiabinYang 已提交
7834
        Variable: The output LoDtensor.
J
JiabinYang 已提交
7835 7836

    Raises:
J
JiabinYang 已提交
7837
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
7838 7839 7840 7841 7842 7843

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
7844
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
7845
                x=data, blocksize=2)
J
JiabinYang 已提交
7846 7847
    """

J
JiabinYang 已提交
7848
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
7849

J
JiabinYang 已提交
7850 7851
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
7852 7853

    if name is None:
J
JiabinYang 已提交
7854 7855
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
7856 7857 7858 7859 7860
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
7861
        type="space_to_depth",
J
JiabinYang 已提交
7862
        inputs={"X": x},
J
JiabinYang 已提交
7863
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
7864
        outputs={"Out": out})
J
JiabinYang 已提交
7865 7866
    return out

J
JiabinYang 已提交
7867

S
sneaxiy 已提交
7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7882
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7893 7894


7895 7896 7897 7898 7899 7900
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7901

7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7921
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7934 7935


M
minqiyang 已提交
7936 7937
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
7938 7939
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
7940 7941
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
7980
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7981
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7982 7983 7984 7985 7986 7987 7988 7989 7990

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
7991 7992
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7993 7994
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7995 7996 7997 7998 7999 8000 8001
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8002 8003


D
dengkaipeng 已提交
8004
@templatedoc()
8005 8006
def grid_sampler(x, grid, name=None):
    """
8007 8008 8009 8010 8011 8012 8013
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8052 8053

    Args:
8054 8055 8056
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8057 8058

    Returns:
8059 8060 8061 8062 8063 8064 8065 8066 8067 8068
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8069 8070 8071 8072 8073 8074 8075 8076 8077
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8078
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8079 8080
    ipts = {'X': x, 'Grid': grid}

8081
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8082 8083 8084
    return out


G
gmcather 已提交
8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out