nn.py 261.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'conv2d',
    'softmax',
    'pool2d',
    'batch_norm',
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
dengkaipeng 已提交
84
    'spectral_norm',
X
Xin Pan 已提交
85 86 87 88 89 90 91
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'unsqueeze',
    'lod_reset',
    'image_resize',
    'resize_bilinear',
K
Kaipeng Deng 已提交
92
    'resize_trilinear',
93
    'resize_nearest',
X
Xin Pan 已提交
94 95 96 97 98 99 100 101 102 103 104 105
    'relu',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'gaussian_random',
    'sampling_id',
    'shape',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
M
minqiyang 已提交
106
    'hash',
D
dengkaipeng 已提交
107
    'grid_sampler',
G
gmcather 已提交
108
    'log_loss',
Q
Qiao Longfei 已提交
109
    'bilinear_tensor_product',
C
chengduo 已提交
110 111
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
112
    'temporal_shift',
H
heqiaozhi 已提交
113
    'continuous_value_model',
114
    'unfold',
C
cjt222 已提交
115
    'deformable_roi_pooling',
116
    'shard_index',
H
huangjun12 已提交
117
    'hard_swish',
K
Kaipeng Deng 已提交
118
    'mish',
119
    'uniform_random',
myq406450149's avatar
myq406450149 已提交
120
    'unbind',
Y
Yu Yang 已提交
121 122
]

123
OP_NAMEMAPPING = {
124 125 126 127 128 129 130 131
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
132
    'elementwise_mod': 'remainder',
133 134
}

Y
Yu Yang 已提交
135

136 137
def _get_reduce_dim(dim, input):
    """
138
    Internal function for reduce_sum, reduce_mean, reduce_prod.
139 140 141 142 143 144 145 146 147
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
148 149 150 151
                "The type of dim must be int, list, tuple or range, but received {}".format(
                    type(axis)
                )
            )
152 153 154 155 156 157 158 159 160 161
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


162
@dygraph_only
163 164 165
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
166 167 168 169
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
170
        op = getattr(_legacy_C_ops, op_name)
171 172 173
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
174 175
            op = getattr(
                _C_ops,
176 177
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
178 179 180
            out = op(x, y)

        if _in_legacy_dygraph():
181
            op = getattr(_legacy_C_ops, op_name)
182
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
183 184 185 186 187 188 189 190 191 192 193 194 195 196
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
197
    r"""
198 199
    :api_attr: Static Graph

200
    **Fully Connected Layer**
Y
Yu Yang 已提交
201

202 203 204
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
205
    which represents a fully connected weight matrix from each input unit to
206 207 208 209
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
210
    is not None, a bias variable will be created and added to the output.
211
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
212

213
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
214

215 216 217 218
    .. math::

        Out = Act({XW + b})

219
    When the input is a list of Tensor(or LoDTensor):
220 221 222

    .. math::

223
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
224 225 226

    In the above equation:

227 228 229
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
230
    * :math:`b`: The bias parameter created by this layer (if needed).
231
    * :math:`Act`: The activation function.
232
    * :math:`Out`: The output Tensor.
233 234 235

    .. code-block:: text

236 237 238 239 240 241 242 243 244 245 246 247 248 249
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
250 251 252 253 254 255 256 257 258 259 260 261 262
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
263
    Args:
264 265 266
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
267
        size(int): The number of output units in this layer, which also means the feature size of output
268 269
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
270
            two dimensions. If this happens, the multidimensional tensor will first be flattened
271 272
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
273
            dimensions will be flatten to form the first dimension of the final matrix (height of
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
289 290

    Raises:
291
        ValueError: If dimensions of the input Tensor is less than 2.
292 293 294 295

    Examples:
        .. code-block:: python

296
          import paddle.fluid as fluid
297 298
          import paddle
          paddle.enable_static()
299
          # when input is single tensor
300
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
301
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
302 303

          # when input are multiple tensors
304 305
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
306
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
307
    """
C
caoying03 已提交
308
    helper = LayerHelper("fc", **locals())
309
    check_type(input, 'input', (list, tuple, Variable), 'fc')
310 311
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
312
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
313
    dtype = helper.input_dtype()
314 315 316
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
317
    mul_results = []
318 319
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
320 321
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
322 323 324
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
325

326 327 328
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
329
        tmp = helper.create_variable_for_type_inference(dtype)
330 331 332 333 334 335
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
336 337 338 339
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
340
    else:
X
Xin Pan 已提交
341
        pre_bias = helper.create_variable_for_type_inference(dtype)
342 343 344 345 346 347
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
348 349 350 351
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
352 353


T
tangwei12 已提交
354
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
355 356 357 358 359 360 361 362 363
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
364
    r"""
365
    :api_attr: Static Graph
366

367 368 369 370 371 372 373 374 375 376 377 378
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

379
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
397

398 399 400 401
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
402

403
        Case 2:
404

405 406 407 408 409 410 411 412 413 414 415 416 417 418
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
419 420

    Args:
421 422 423 424 425 426
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
427
            affects the performance of the backwards gradient update. It is recommended to set
428
            True because sparse update is faster. But some optimizer does not support sparse update,
429
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
430 431 432 433 434
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
435
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
436 437 438 439 440 441
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
442
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
443
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
444
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
445 446 447
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
448

449
    Returns:
450
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
451

452 453
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
454

B
bdzhuxiaoning 已提交
455
          import paddle.fluid as fluid
456
          import numpy as np
457 458
          import paddle
          paddle.enable_static()
459

460 461
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
462
          # example 1
463 464 465 466 467 468 469 470 471
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
472
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
473 474 475
    """

    helper = LayerHelper('embedding', **locals())
476 477 478 479 480 481 482 483 484
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
485 486 487 488 489 490 491 492 493

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

494 495 496
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
497
    tmp = helper.create_variable_for_type_inference(dtype)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
516 517 518
    return tmp


519 520 521 522 523 524 525 526 527 528 529
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
530
    r"""
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
576
        'is_distributed': True,
577 578
    }
    # this is only for compatible with embedding op
579 580 581 582 583 584 585 586 587
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
588 589 590 591 592
    if len(outs) == 1:
        return outs[0]
    return outs


593 594 595 596 597 598 599 600 601 602 603
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
604
    r"""
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
650
        'is_distributed': True,
651 652
    }
    # this is only for compatible with embedding op
653 654 655 656 657 658 659 660 661
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
662
    if len(outs) == 1:
Y
yaoxuefeng 已提交
663 664 665 666
        return outs[0]
    return outs


667 668 669
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
703 704 705
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
706 707 708 709 710 711
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
712 713 714 715 716 717 718 719 720 721 722 723 724
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
725
    if len(outs) == 1:
726 727 728 729
        return outs[0]
    return outs


730 731 732
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
733
    r"""
H
hutuxian 已提交
734 735 736 737 738 739 740
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
741
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
742
            contains the IDs information.
743
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
744
            each embedding vector respectively.
745
        dtype(str): The dtype refers to the data type of output tensor. Only supports
H
hutuxian 已提交
746 747 748 749 750 751 752 753 754 755 756
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
757
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
758 759 760 761
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
762 763 764
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
765 766 767 768 769 770
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
771 772 773 774 775 776 777 778 779 780 781 782 783
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
784 785 786 787 788
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
789
@templatedoc()
790
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
791
    """
792 793
    :api_attr: Static Graph

Y
yuyang18 已提交
794 795 796 797 798
    Linear Chain CRF.

    ${comment}

    Args:
799
        input(${emission_type}): ${emission_comment}
Y
yuyang18 已提交
800
        label(${label_type}): ${label_comment}
801
        Length(${length_type}): ${length_comment}
802
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
803 804

    Returns:
D
dzhwinter 已提交
805 806
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
807
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
808

J
JesseyXujin 已提交
809 810 811
    Examples:
        .. code-block:: python

812 813
            import paddle.fluid as fluid
            import numpy as np
814 815
            import paddle
            paddle.enable_static()
816 817 818 819 820

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
821 822
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
823 824 825 826 827 828
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
829
                    learning_rate=0.01))
830 831 832
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
833
            exe.run(startup_program)
834 835 836 837 838
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
839
            print(loss)
840 841 842 843 844

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
845 846 847
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
848 849 850 851 852 853
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
854
                     name='crfw',
855 856 857 858 859 860
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
861

862 863 864
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
865
            ll=np.array([[3],[3],[4],[2]])
866 867
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
868
            print(loss2)
869 870 871 872 873
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

874 875 876
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
877

Y
yuyang18 已提交
878
    """
879 880 881
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'linear_chain_crf'
    )
882
    check_variable_and_dtype(label, 'label', ['int64'], 'linear_chain_crf')
Y
Yu Yang 已提交
883
    helper = LayerHelper('linear_chain_crf', **locals())
884
    size = input.shape[2] if length else input.shape[1]
885 886 887 888 889
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype(),
    )
X
Xin Pan 已提交
890
    alpha = helper.create_variable_for_type_inference(
891 892
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
893
    emission_exps = helper.create_variable_for_type_inference(
894 895
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
896
    transition_exps = helper.create_variable_for_type_inference(
897 898
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
899
    log_likelihood = helper.create_variable_for_type_inference(
900 901
        dtype=helper.input_dtype()
    )
902 903 904
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
905
        "Label": [label],
906 907
    }
    if length:
908
        this_inputs['Length'] = [length]
909 910 911 912 913 914 915 916 917 918
    helper.append_op(
        type='linear_chain_crf',
        inputs=this_inputs,
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood,
        },
    )
Y
Yu Yang 已提交
919 920 921 922

    return log_likelihood


W
wopeizl 已提交
923
@templatedoc()
924
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
925
    """
926
    :api_attr: Static Graph
927

W
wopeizl 已提交
928
    ${comment}
Y
yi.wu 已提交
929

W
wopeizl 已提交
930
    Args:
931
        input(Tensor): ${emission_comment}
Y
yi.wu 已提交
932

933 934
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
935
            used. See usage for details in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
Y
yuyang18 已提交
936

Y
Yibing Liu 已提交
937
        label(${label_type}, optional): ${label_comment}
938

Y
Yibing Liu 已提交
939
        length(${length_type}, optional): ${length_comment}
940

W
wopeizl 已提交
941
    Returns:
942
        Tensor: ${viterbi_path_comment}
Y
yi.wu 已提交
943

W
wopeizl 已提交
944 945
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
946

947 948
           import paddle
           paddle.enable_static()
949 950 951

           # LoDTensor-based example
           num_labels = 10
952 953 954
           feature = paddle.static.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
           emission = paddle.static.nn.fc(feature, size=num_labels)
955

956 957 958 959
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label,
                     param_attr=paddle.ParamAttr(name="crfw"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission,
                     param_attr=paddle.ParamAttr(name="crfw"))
960 961 962

           # Common tensor example
           num_labels, max_len = 10, 20
963 964 965 966
           feature = paddle.static.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = paddle.static.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = paddle.static.data(name='length', shape=[-1, 1], dtype='int64')
           emission = paddle.static.nn.fc(feature, size=num_labels,
967
                                      num_flatten_dims=2)
968

969 970 971 972
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
973
    """
974 975 976
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'crf_decoding'
    )
W
wopeizl 已提交
977 978 979
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
980 981
        dtype=core.VarDesc.VarType.INT64
    )
982 983 984
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
985 986 987 988 989
    helper.append_op(
        type='crf_decoding',
        inputs=inputs,
        outputs={"ViterbiPath": [viterbi_path]},
    )
Y
Yu Yang 已提交
990

W
wopeizl 已提交
991
    return viterbi_path
Y
Yu Yang 已提交
992 993


994
@deprecated(since="2.0.0", update_to="paddle.nn.functional.dropout")
995 996 997 998 999 1000 1001 1002
def dropout(
    x,
    dropout_prob,
    is_test=None,
    seed=None,
    name=None,
    dropout_implementation="downgrade_in_infer",
):
1003
    """
1004

1005 1006 1007 1008
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1009
    training. The dropout operator randomly sets (according to the given dropout
1010 1011 1012
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1013 1014
    dropout op can be removed from the program to make the program more efficient.

1015
    Args:
L
lvmengsi 已提交
1016
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
1017
        dropout_prob (float): Probability of setting units to zero.
1018
        is_test (bool): A flag indicating whether it is in test phrase or not.
1019
                        Default None, in dynamic graph, it use global tracer mode; in static graph, it means False.
1020 1021 1022
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
1023
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
1024 1025
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1026 1027
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1028
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1029 1030

                                           - train: out = input * mask
C
ceci3 已提交
1031
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1032 1033 1034

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1035
                                        2. upscale_in_train, upscale the outcome at training time
1036

H
haowang101779990 已提交
1037 1038
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1039

H
haowang101779990 已提交
1040 1041
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1042

M
minqiyang 已提交
1043

1044
    Returns:
L
lvmengsi 已提交
1045
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
1046 1047

    Examples:
1048

1049 1050
        .. code-block:: python

1051
            import paddle
1052
            import paddle.fluid as fluid
1053

1054
            paddle.enable_static()
L
lvmengsi 已提交
1055
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
1056
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
1057
    """
1058 1059
    if not isinstance(dropout_prob, (float, int, Variable)):
        raise TypeError(
1060 1061
            "dropout_prob argument should be a number(int|float) or Variable"
        )
1062
    # fast return for p == 0
1063
    if isinstance(dropout_prob, (int, float)) and dropout_prob == 0:
1064
        return x
1065

J
Jiabin Yang 已提交
1066
    if _non_static_mode():
1067 1068 1069
        if (
            seed is None or seed == 0
        ) and default_main_program().random_seed != 0:
1070
            seed = default_main_program().random_seed
1071 1072
        if is_test is None:
            is_test = not _dygraph_tracer()._train_mode
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
        out, mask = _legacy_C_ops.dropout(
            x,
            'dropout_prob',
            dropout_prob,
            'is_test',
            is_test,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
            'dropout_implementation',
            dropout_implementation,
        )
1086
        return out
1087

W
wanghuancoder 已提交
1088 1089 1090
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
1091 1092
        if isinstance(dropout_prob, Variable) and not dropout_prob.shape != [1]:
            raise TypeError(
1093 1094 1095 1096
                "Required dropout_prob.shape == [1] if type(dropout_prob) is Variable, but received dropout_prob.shape = {}".format(
                    dropout_prob.shape
                )
            )
W
wanghuancoder 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

F
fengjiayi 已提交
1106
    helper = LayerHelper('dropout', **locals())
1107 1108 1109
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'dropout'
    )
1110

X
Xin Pan 已提交
1111 1112
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
1113 1114
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
C
chengduo 已提交
1115

1116
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1117

1118 1119 1120 1121 1122 1123
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out], 'Mask': [mask]},
        attrs=attrs,
    )
1124 1125 1126
    return out


1127
@deprecated(since="2.0.0", update_to="paddle.nn.functional.softmax")
1128
def softmax(input, use_cudnn=True, name=None, axis=-1):
1129
    r"""
1130
    This operator implements the softmax layer. The calculation process is as follows:
1131

1132
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1133

1134 1135 1136 1137 1138 1139 1140
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1141

1142
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
1143
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1144

1145 1146 1147 1148 1149
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1150

1151
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1152

1153
    .. math::
1154

N
Noel 已提交
1155
        Out[i, j] = \\frac{\\exp(X[i, j])}{\\sum_j(exp(X[i, j])}
1156

1157
    Example:
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
1202
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]
1203

Q
qiaolongfei 已提交
1204
    Args:
N
Noel 已提交
1205
        input (Tensor): The input tensor. A multi-dimension ``Tensor`` with type float32 or float64.
1206
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
G
GaoWei8 已提交
1207
            library is installed. To improve performance, set use_cudnn to True by default.
1208
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1209
            will be named automatically. Default: None.
1210
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1211
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
N
Noel 已提交
1212
            input tensor. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1213 1214

    Returns:
N
Noel 已提交
1215
        Tensor: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1216 1217 1218 1219 1220

    Examples:

        .. code-block:: python

N
Noel 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
                                [3.0, 4.0, 5.0, 6.0],
                                [7.0, 8.0, 8.0, 9.0]],
                                [[1.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 7.0, 8.0],
                                [6.0, 7.0, 8.0, 9.0]]], dtype='float32')
            y = F.softmax(x, axis=1)
            print(y)
            # [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
            #   [0.01786798, 0.01786798, 0.04661262, 0.04661262],
            #   [0.97555870, 0.97555870, 0.93623954, 0.93623954]],
            #  [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
            #   [0.26762316, 0.26762316, 0.26762316, 0.26762316],
            #   [0.72747517, 0.72747517, 0.72747517, 0.72747517]]]
Q
qiaolongfei 已提交
1238 1239

    """
1240

H
hong 已提交
1241
    if in_dygraph_mode():
1242
        return _C_ops.softmax(input, axis)
H
hong 已提交
1243

J
Jiabin Yang 已提交
1244
    if _non_static_mode():
1245 1246 1247
        return _legacy_C_ops.softmax(
            input, 'axis', axis, 'use_cudnn', use_cudnn
        )
1248 1249 1250

    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
1251

1252
    helper = LayerHelper('softmax', **locals())
1253 1254 1255
    check_variable_and_dtype(
        input, 'input/x', ['float16', 'float32', 'float64'], 'softmax'
    )
1256

1257
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1258
    softmax_out = helper.create_variable_for_type_inference(dtype)
1259 1260 1261 1262 1263 1264
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs=attrs,
    )
1265 1266 1267
    return softmax_out


1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
1283
    r"""
1284 1285
    :api_attr: Static Graph

C
chengduoZH 已提交
1286
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1287
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1288
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1289
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1290 1291 1292 1293 1294 1295
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1296
    for more details.
1297 1298 1299
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1300

1301
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1302

C
chengduoZH 已提交
1303 1304
    .. math::

C
refine  
chengduoZH 已提交
1305
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1306

T
tensor-tang 已提交
1307
    Where:
C
chengduoZH 已提交
1308

L
liym27 已提交
1309
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1310 1311 1312 1313
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1314
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1315 1316 1317

    Example:

1318 1319
        - Input:

W
weixing02 已提交
1320
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1321

W
weixing02 已提交
1322
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1323

1324
        - Output:
T
tensor-tang 已提交
1325

W
weixing02 已提交
1326
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1327

C
chengduoZH 已提交
1328
        Where
1329 1330

        .. math::
C
chengduoZH 已提交
1331

W
weixing02 已提交
1332 1333
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1334 1335

    Args:
1336
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
L
lvmengsi 已提交
1337
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1338
        num_filters(int): The number of filter. It is as same as the output
1339
            image channel.
1340 1341
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
L
lvmengsi 已提交
1342 1343
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
1344 1345
        stride (int|tuple): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
L
lvmengsi 已提交
1346 1347
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1348
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1349 1350
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
1351 1352
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
L
lvmengsi 已提交
1353
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1354 1355 1356
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1357
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
1358 1359
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
L
lvmengsi 已提交
1360
            Default: dilation = 1.
1361 1362 1363 1364
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1365 1366 1367 1368 1369
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1370
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1371 1372 1373 1374 1375
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1376 1377
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1378 1379
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1380 1381
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
L
lvmengsi 已提交
1382
           None by default.
1383
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1384
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1385 1386
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1387 1388

    Returns:
1389 1390 1391
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
L
lvmengsi 已提交
1392
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1393

1394 1395 1396 1397 1398
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1399
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
1400 1401 1402 1403 1404 1405 1406
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1407 1408 1409
    Examples:
        .. code-block:: python

1410 1411
          import paddle
          paddle.enable_static()
1412

1413 1414 1415
          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
Y
Yu Yang 已提交
1416 1417
    """

1418 1419 1420
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
1421
    if len(input.shape) != 4:
1422 1423 1424 1425
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
1426
    num_channels = input.shape[1]
L
liym27 已提交
1427
    if not isinstance(use_cudnn, bool):
1428 1429 1430 1431
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
L
liym27 已提交
1432 1433 1434 1435

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1436 1437
            "Attr(data_format): %s." % str(data_format)
        )
L
liym27 已提交
1438

1439
    channel_last = data_format == "NHWC"
L
liym27 已提交
1440 1441 1442 1443
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
1444 1445
            "Received: %s." % (str(input.shape), str(num_channels))
        )
C
chengduo 已提交
1446
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1447

1448 1449 1450
    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
1451 1452
        raise ValueError(
            "the groups of input must be greater than 0, "
1453 1454
            "but received the groups of input is {}".format(groups)
        )
1455 1456 1457 1458 1459
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
1460 1461
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
1462 1463
        num_filter_channels = num_channels // groups

1464
    l_type = 'conv2d'
1465 1466 1467 1468 1469
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
1470
        l_type = 'depthwise_conv2d'
1471

1472 1473 1474 1475 1476
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
1477 1478
        l_type = 'depthwise_conv2d'

1479 1480
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
1481
        if num_channels == groups and num_channels == num_filters:
1482 1483 1484 1485
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

1486 1487 1488
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

C
chengduoZH 已提交
1489 1490
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1491
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1492

L
liym27 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1505 1506
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1507 1508 1509 1510 1511 1512
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1513 1514
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1515 1516 1517
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1518 1519 1520
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
1531 1532 1533
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
L
liym27 已提交
1534 1535
        if padding == "VALID":
            padding_algorithm = "VALID"
1536
            padding = [0, 0]
L
liym27 已提交
1537 1538
        elif padding == "SAME":
            padding_algorithm = "SAME"
1539
            padding = [0, 0]
L
liym27 已提交
1540 1541

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1542

M
minqiyang 已提交
1543
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1544 1545

    def _get_default_param_initializer():
C
chengduo 已提交
1546
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
1547 1548 1549 1550
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
1551 1552 1553
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
Y
Yu Yang 已提交
1554 1555 1556 1557 1558 1559
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
1560 1561
        default_initializer=_get_default_param_initializer(),
    )
Y
Yu Yang 已提交
1562

X
Xin Pan 已提交
1563
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1564

1565 1566 1567 1568 1569 1570
    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
1571 1572
        use_cudnn = False

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
1592

1593 1594 1595 1596
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1597 1598 1599 1600

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1601
@templatedoc()
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
def pool2d(
    input,
    pool_size=-1,
    pool_type="max",
    pool_stride=1,
    pool_padding=0,
    global_pooling=False,
    use_cudnn=True,
    ceil_mode=False,
    name=None,
    exclusive=True,
    data_format="NCHW",
):
Y
Yu Yang 已提交
1615
    """
1616

F
fengjiayi 已提交
1617
    ${comment}
1618 1619

    Args:
K
Kaipeng Deng 已提交
1620 1621 1622 1623 1624
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1625
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1626 1627
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1628
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1629 1630 1631
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1632 1633 1634 1635 1636 1637 1638
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1639
            Otherwise, the pool padding size will be a square of an int.
1640 1641 1642
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1643 1644 1645
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1646
        exclusive (bool): Whether to exclude padding points in average pooling
1647
                          mode, default is `true`.
1648
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
1649 1650
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1651

1652
    Returns:
K
Kaipeng Deng 已提交
1653
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1654 1655

    Raises:
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1668 1669 1670 1671 1672

    Examples:

        .. code-block:: python

1673
          import paddle.fluid as fluid
1674 1675 1676
          import paddle

          paddle.enable_static()
1677

K
Kaipeng Deng 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1721 1722 1723
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1724
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
1725 1726
            str(pool_type),
        )
C
chengduoZH 已提交
1727

C
chengduoZH 已提交
1728 1729
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1730
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
1731 1732
            "and be a valid value. Received pool_size: %s." % str(pool_size)
        )
1733 1734

    if not isinstance(use_cudnn, bool):
1735 1736 1737 1738
        raise TypeError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s." % str(use_cudnn)
        )
1739 1740 1741 1742

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1743 1744
            "Attr(data_format): %s." % str(data_format)
        )
C
chengduoZH 已提交
1745

C
chengduoZH 已提交
1746 1747 1748
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1760 1761
                        "is not supported." % str(padding)
                    )
1762 1763 1764 1765 1766 1767
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1768 1769
                        "is not supported." % str(padding)
                    )
1770 1771 1772
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1773

1774 1775
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
1787 1788
                % str(pool_padding)
            )
1789 1790
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1791
            pool_padding = [0, 0]
1792 1793 1794
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
1795 1796
                    "Received ceil_mode: True."
                )
1797 1798
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1799
            pool_padding = [0, 0]
1800 1801

    pool_padding = update_padding(pool_padding, data_format)
1802
    if in_dygraph_mode():
1803
        input = input._use_gpudnn(use_cudnn)
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
        return _C_ops.pool2d(
            input,
            pool_size,
            pool_stride,
            pool_padding,
            ceil_mode,
            exclusive,
            data_format,
            pool_type,
            global_pooling,
            False,
            padding_algorithm,
        )
1817 1818
    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1819
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1820
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1821

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
    helper.append_op(
        type=op_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
1840 1841 1842 1843

    return pool_out


1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
def batch_norm(
    input,
    act=None,
    is_test=False,
    momentum=0.9,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    use_global_stats=False,
):
1860
    r"""
1861 1862
    :api_attr: Static Graph

Q
qiaolongfei 已提交
1863 1864
    **Batch Normalization Layer**

L
lvmengsi 已提交
1865
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
1866
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
1867

Q
qiaolongfei 已提交
1868
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
1869

Q
qiaolongfei 已提交
1870 1871
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
1872 1873 1874
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
1887

L
lvmengsi 已提交
1888
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
1889
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum)
L
lvmengsi 已提交
1890

1891

L
lvmengsi 已提交
1892
    moving_mean is global mean and moving_var is global variance.
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
1906
    Note:
1907
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use
L
lvmengsi 已提交
1908
        sync_batch_norm automatically.
1909
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
1910

1911
    Args:
1912
        input(Tensor): The rank of input Tensor can be 2, 3, 4, 5. The data type
L
lvmengsi 已提交
1913
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
1914
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
1915 1916
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
1917 1918
        momentum(float|Tensor, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Tensor with
1919
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
1920 1921 1922 1923 1924
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
1925 1926
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
1927
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
1928
	     If the Initializer of the param_attr is not set, the parameter is initialized
1929
	     with Xavier. Default: None.
C
chengduo 已提交
1930 1931
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
1932 1933
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
1934
	     Default: None.
1935
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
K
Kaipeng Deng 已提交
1936 1937 1938
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
1939
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
1940 1941 1942 1943
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
1944
            will save global mean with the string.
L
lvmengsi 已提交
1945
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
1946
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
1947
            will save global variance with the string.
1948 1949
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
1950 1951 1952 1953 1954
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
1955
    Returns:
1956
        A Tensor which is the result after applying batch normalization on the input,
1957
        has same shape and data type with input.
Q
qiaolongfei 已提交
1958 1959 1960 1961 1962

    Examples:

        .. code-block:: python

1963
            import paddle
1964

1965
            paddle.enable_static()
1966 1967 1968 1969 1970 1971 1972
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x=x, size=200)
            print(hidden1.shape)
            # [3, 200]
            hidden2 = paddle.static.nn.batch_norm(input=hidden1)
            print(hidden2.shape)
            # [3, 200]
Y
Yu Yang 已提交
1973
    """
1974 1975 1976
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
1977 1978
    helper = LayerHelper('batch_norm', **locals())

1979 1980 1981
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'batch_norm'
    )
1982
    dtype = helper.input_dtype()
1983

W
Wu Yi 已提交
1984 1985 1986 1987
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0),
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
    )

    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
2020 2021
    mean.stop_gradient = True

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
2032
    variance.stop_gradient = True
Y
Yu Yang 已提交
2033 2034 2035 2036

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
2037
    # variance and variance_out share the same memory
Y
Yu Yang 已提交
2038
    variance_out = variance
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

    if in_dygraph_mode():
        inputs_has_MomemtumTensor = False
        attrs_has_momentum = False
        tmp_tensor_type = core.eager.Tensor
        if isinstance(momentum, tmp_tensor_type):
            inputs_has_MomemtumTensor = True
        else:
            attrs_has_momentum = True

        attrs_ = ()
        if attrs_has_momentum:
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
            attrs_ = (
                'momentum',
                momentum,
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
2067
        else:
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
            attrs_ = (
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
2082
        if inputs_has_MomemtumTensor:
2083
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
                input,
                scale,
                bias,
                mean,
                variance,
                momentum,
                mean_out,
                variance_out,
                *attrs_,
            )
2094
        else:
2095
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
                input,
                scale,
                bias,
                mean,
                variance,
                None,
                mean_out,
                variance_out,
                *attrs_,
            )
2106

2107 2108 2109
        return dygraph_utils._append_activation_in_dygraph(
            batch_norm_out, act=act, use_mkldnn=False
        )
2110

2111 2112 2113
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2114
    saved_variance = helper.create_variable_for_type_inference(
2115 2116
        dtype=dtype, stop_gradient=True
    )
2117
    reserve_space = None
2118
    if not is_test:
2119
        reserve_space = helper.create_variable_for_type_inference(
2120 2121
            dtype=helper.input_dtype(), stop_gradient=True
        )
2122

2123 2124 2125
    batch_norm_out = (
        input if in_place else helper.create_variable_for_type_inference(dtype)
    )
Y
Yu Yang 已提交
2126

2127 2128 2129 2130 2131
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
2132 2133
        "Variance": variance,
        "MeanOut": mean_out,
2134
        "VarianceOut": variance_out,
2135 2136 2137 2138 2139 2140 2141
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
2142
        "use_global_stats": use_global_stats,
2143 2144 2145 2146 2147
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2148 2149 2150 2151 2152 2153

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
2154
        "SavedVariance": saved_variance,
2155 2156 2157 2158
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

2159 2160 2161
    helper.append_op(
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
    )
Y
Yu Yang 已提交
2162 2163 2164 2165

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2166
@templatedoc()
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
2178
    r"""
2179 2180
    :api_attr: Static Graph

2181 2182 2183 2184
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2185 2186 2187

    The formula is as follows:

Y
yuyang18 已提交
2188
    ..  math::
G
guosheng 已提交
2189

2190
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2191

2192
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2193

2194
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2195

2196 2197 2198 2199 2200
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2201

G
guosheng 已提交
2202
    Args:
2203
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
2204 2205 2206 2207 2208
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2209
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2210 2211 2212 2213
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2214 2215
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2216
            a default :code:`ParamAttr` would be added as scale. The
2217 2218
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2219 2220
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2221
            a default :code:`ParamAttr` would be added as bias. The
2222
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
2223
        act(str, optional): Activation to be applied to the output of layer normalization.
2224 2225
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2226 2227

    Returns:
2228
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2229 2230 2231

    Examples:

2232 2233
        .. code-block:: python

2234 2235
            import paddle
            paddle.enable_static()
2236 2237 2238
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
2239
    """
2240 2241 2242
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
2243
    helper = LayerHelper('layer_norm', **locals())
2244 2245 2246
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
2247 2248 2249 2250 2251 2252 2253
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
2254 2255 2256 2257 2258 2259 2260 2261 2262
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
2263
        inputs['Scale'] = scale
2264 2265
    else:
        if param_attr:
T
tianshuo78520a 已提交
2266
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
2267
    if shift:
2268 2269 2270 2271 2272 2273
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
2274
        inputs['Bias'] = bias
2275 2276
    else:
        if bias_attr:
T
tianshuo78520a 已提交
2277
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
2278 2279

    # create output
2280 2281 2282 2283 2284 2285
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2286
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2287

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
2298 2299 2300 2301

    return helper.append_activation(layer_norm_out)


D
dengkaipeng 已提交
2302
@templatedoc()
2303
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
2304
    r"""
2305 2306
    :api_attr: Static Graph

D
dengkaipeng 已提交
2307 2308
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
2309
    This operation calculates the spectral normalization value of weight parameters of
2310
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
2311 2312
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
2313

D
dengkaipeng 已提交
2314 2315 2316
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
2317
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
2318 2319

    Step 2:
T
tianshuo78520a 已提交
2320
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
2321 2322
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
2323

2324
    .. math::
D
dengkaipeng 已提交
2325 2326 2327 2328 2329 2330

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
2331
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
2332 2333 2334 2335

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
2336

D
dengkaipeng 已提交
2337
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
2338

2339

D
dengkaipeng 已提交
2340 2341 2342
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
2343
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
2344 2345 2346
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
2347 2348 2349
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
2350 2351

    Returns:
C
Chen Long 已提交
2352
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
2353
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
2354 2355

    Examples:
K
Kaipeng Deng 已提交
2356
       .. code-block:: python
D
dengkaipeng 已提交
2357

2358
            import paddle
K
Kaipeng Deng 已提交
2359

2360
            paddle.enable_static()
C
Chen Long 已提交
2361
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
2362
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
2363
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
2364 2365
    """
    helper = LayerHelper('spectral_norm', **locals())
2366 2367 2368
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
2369 2370 2371
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
2372
    dtype = weight.dtype
D
dengkaipeng 已提交
2373 2374

    # create intput and parameters
2375
    input_shape = weight.shape
2376
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
2377 2378 2379 2380 2381
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
2382 2383 2384
    h = input_shape[dim]
    w = np.prod(input_shape) // h

2385 2386 2387 2388 2389 2390
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
2391
    u.stop_gradient = True
2392 2393 2394 2395 2396 2397
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
2398
    v.stop_gradient = True
D
dengkaipeng 已提交
2399

2400 2401 2402 2403 2404 2405 2406
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
2407
    # create output
2408
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
2409

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
2422

2423
    return out
D
Dun 已提交
2424 2425


C
caoying03 已提交
2426
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2427
    """
2428

Y
yangyaming 已提交
2429
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2430 2431

    Args:
2432 2433 2434
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2435 2436
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2437 2438
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2439
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2440
            output Tensor. The result tensor will have one fewer dimension
2441 2442 2443 2444
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
2445 2446

    Returns:
2447 2448
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
2449

2450 2451
    Raises:
        TypeError, if out data type is different with the input data type.
2452

G
guosheng 已提交
2453 2454 2455
    Examples:
        .. code-block:: python

2456
            import paddle.fluid as fluid
2457 2458
            import paddle
            paddle.enable_static()
G
guosheng 已提交
2459 2460 2461
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2462
            # Each example is followed by the corresponding output tensor.
2463
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
2464 2465 2466 2467
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2468

2469
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
2470 2471
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2472
            # Each example is followed by the corresponding output tensor.
2473
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
2474 2475
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
2476

G
guosheng 已提交
2477
    """
2478 2479
    reduce_all, dim = _get_reduce_dim(dim, input)

2480
    if in_dygraph_mode():
2481
        return _C_ops.sum(input, dim, None, keep_dim)
2482
    elif _in_legacy_dygraph():
2483 2484 2485
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
2486
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
2487
    check_variable_and_dtype(
2488 2489 2490 2491 2492
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
2493
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
2494
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
2495 2496 2497 2498 2499 2500
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
2501
    return out
G
guosheng 已提交
2502 2503


C
caoying03 已提交
2504
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2505
    """
2506
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
2507 2508

    Args:
2509
        input (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
2510
        num_or_sections (int|list|tuple): If ``num_or_sections`` is int, then the ``num_or_sections``
2511
            indicates the number of equal sized sub-Tensors that the ``input``
2512
            will be divided into. If ``num_or_sections`` is a list or tuple, the length of it
2513 2514 2515 2516 2517
            indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            dimension orderly. The length of the list mustn't be larger than the ``input`` 's size of specified dim.
        dim (int|Tensor, optional): The dimension along which to split, it can be a scalar with type ``int`` or
            a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math:`dim < 0`,
            the dimension to split along is :math:`rank(input) + dim`. Default is -1.
2518
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
2519
            For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2520 2521

    Returns:
2522
        list(Tensor): The list of segmented Tensors.
G
guosheng 已提交
2523

2524
    Example:
G
guosheng 已提交
2525 2526
        .. code-block:: python

2527 2528
            import paddle.fluid as fluid

2529
            # input is a Tensor which shape is [3, 9, 5]
2530
            input = fluid.data(
2531 2532
                 name="input", shape=[3, 9, 5], dtype="float32")

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
2547

2548 2549 2550 2551 2552 2553
            # dim is negative, the real dim is (rank(input) + axis) which real
            # value is 1.
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
2554

G
guosheng 已提交
2555
    """
J
Jiabin Yang 已提交
2556
    if _non_static_mode():
2557 2558 2559
        num = None
        attrs = ()

S
songyouwei 已提交
2560 2561
        if isinstance(dim, Variable):
            dim = dim.numpy()
2562
            dim = dim.item(0)
W
wangzhen38 已提交
2563
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
S
songyouwei 已提交
2564
        dim = (len(input.shape) + dim) if dim < 0 else dim
2565
        attrs += ('axis', dim)
2566 2567 2568

        if isinstance(num_or_sections, int):
            num = num_or_sections
2569
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
2570
        elif isinstance(num_or_sections, (list, tuple)):
2571
            num = len(num_or_sections)
L
Leo Chen 已提交
2572
            if utils._contain_var(num_or_sections):
2573 2574
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
2575 2576 2577
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
2578
                attrs += ('sections', list(num_or_sections))
L
Leo Chen 已提交
2579
            else:
2580
                attrs += ('sections', list(num_or_sections))
2581 2582
        else:
            raise TypeError(
2583
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
2584 2585
                "received %s." % (type(num_or_sections))
            )
2586
        if in_dygraph_mode():
C
Charles-hit 已提交
2587 2588 2589 2590
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
2591 2592
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
2593
            _legacy_C_ops.split(input, out, *attrs)
2594
            return out
L
Leo Chen 已提交
2595

2596
    check_variable_and_dtype(
2597 2598 2599 2600 2601
        input,
        'input',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'split',
    )
2602 2603 2604 2605
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
2606

G
guosheng 已提交
2607
    helper = LayerHelper('split', **locals())
2608

G
guosheng 已提交
2609
    input_shape = input.shape
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
2621
                assert isinstance(dim_size, int)
2622 2623 2624
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
2625 2626 2627
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2628 2629
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
2630 2631 2632
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2633 2634 2635 2636 2637 2638 2639
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
W
wangzhen38 已提交
2640
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
2641 2642 2643
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
2644 2645
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
2646
        if isinstance(dim, int) and input_shape[dim] > 0:
2647 2648 2649 2650 2651 2652
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
G
guosheng 已提交
2653 2654
        num = num_or_sections
    else:
2655
        if isinstance(dim, int) and input_shape[dim] > 0:
2656 2657 2658
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
2659
        num = len(num_or_sections)
2660
        attrs['sections'] = list(
2661 2662 2663 2664 2665
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
L
Leo Chen 已提交
2666
        if utils._contain_var(num_or_sections):
2667
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
2668 2669
                num_or_sections
            )
2670

G
guosheng 已提交
2671
    outs = [
X
Xin Pan 已提交
2672
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
2673 2674
        for i in range(num)
    ]
2675 2676 2677
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
G
guosheng 已提交
2678
    return outs
C
caoying03 已提交
2679 2680 2681


def l2_normalize(x, axis, epsilon=1e-12, name=None):
2682
    r"""
2683

R
ruri 已提交
2684
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
2685 2686
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2687
    .. math::
2688 2689

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2690 2691 2692 2693 2694

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2695
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float16, float32 or float64.
2696
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
2697 2698
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
2699
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
2700
            the default value is 1e-12.
2701
    name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
2702

C
caoying03 已提交
2703
    Returns:
R
ruri 已提交
2704
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
2705 2706

    Examples:
2707

2708 2709
    .. code-block:: python
        :name: code-example1
2710

2711
        import paddle
2712

2713 2714
        X = paddle.randn(shape=[3, 5], dtype='float64')
        out = paddle.fluid.layers.l2_normalize(X, axis=-1)
G
Guoxia Wang 已提交
2715
        print(out)
R
ruri 已提交
2716

2717 2718 2719
        # [[ 0.21558504  0.56360189  0.47466096  0.46269539 -0.44326736]
        #  [-0.70602414 -0.52745777  0.37771788 -0.2804768  -0.04449922]
        #  [-0.33972208 -0.43014923  0.31772556  0.76617881 -0.10761525]]
2720

C
caoying03 已提交
2721
    """
F
fengjiayi 已提交
2722 2723
    if len(x.shape) == 1:
        axis = 0
J
Jiabin Yang 已提交
2724
    if _non_static_mode():
2725 2726 2727
        if in_dygraph_mode():
            out, _ = _C_ops.norm(x, 1 if axis is None else axis, epsilon, False)
        elif _in_legacy_dygraph():
2728 2729 2730
            _, out = _legacy_C_ops.norm(
                x, 'axis', 1 if axis is None else axis, 'epsilon', epsilon
            )
2731 2732 2733
        return out

    check_variable_and_dtype(x, "X", ("float16", "float32", "float64"), "norm")
C
caoying03 已提交
2734

2735
    helper = LayerHelper("l2_normalize", **locals())
X
Xin Pan 已提交
2736 2737
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
2738 2739 2740 2741 2742 2743 2744 2745 2746
    helper.append_op(
        type="norm",
        inputs={"X": x},
        outputs={"Out": out, "Norm": norm},
        attrs={
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
        },
    )
C
caoying03 已提交
2747
    return out
2748 2749


S
ShenLiang 已提交
2750
@deprecated(since="2.0.0", update_to="paddle.matmul")
S
sneaxiy 已提交
2751
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
2752
    """
Y
ying 已提交
2753 2754 2755 2756
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2757

C
chengduoZH 已提交
2758
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2759
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2760

2761 2762 2763 2764 2765
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2766
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2767

C
chengduoZH 已提交
2768
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2769
      performs in the following way.
G
guosheng 已提交
2770

2771
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2772
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2773
        last two dimensions and a batched matrix multiply supporting broadcast
2774
        applies on the two tensors.
G
guosheng 已提交
2775

Y
ying 已提交
2776 2777
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2778
    removed after matrix multiplication.
G
guosheng 已提交
2779 2780 2781

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2782 2783 2784
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
2785
        alpha (float): The scale of output. Default 1.0.
2786
        name(str|None): A name for this layer(optional). If set None, the layer
2787
            will be named automatically.
G
guosheng 已提交
2788 2789

    Returns:
石晓伟 已提交
2790
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
2791

G
guosheng 已提交
2792 2793 2794
    Examples:
        .. code-block:: python

2795
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2796
            # x: [B, ..., M, K], y: [B, ..., K, N]
2797
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2798

2799
            # x: [B, M, K], y: [B, K, N]
2800
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2801

2802
            # x: [B, M, K], y: [K, N]
2803
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2804

2805
            # x: [M, K], y: [K, N]
2806
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2807 2808

            # x: [B, M, K], y: [K]
2809
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
2810

2811
            # x: [K], y: [K]
2812
            # fluid.layers.matmul(x, y)  # out: [1]
2813

Y
ying 已提交
2814
            # x: [M], y: [N]
2815 2816
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

2817
            import paddle
2818
            import paddle.fluid as fluid
2819 2820
            paddle.enable_static()

2821 2822 2823
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
2824
    """
J
Jiabin Yang 已提交
2825
    if _non_static_mode():
S
ShenLiang 已提交
2826
        out = _varbase_creator(dtype=x.dtype)
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
        _legacy_C_ops.matmul(
            x,
            y,
            out,
            'transpose_X',
            transpose_x,
            'transpose_Y',
            transpose_y,
            'alpha',
            float(alpha),
        )
S
ShenLiang 已提交
2838 2839 2840 2841 2842
        return out

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
2843 2844 2845
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul'
            )
S
ShenLiang 已提交
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
2859 2860 2861 2862 2863 2864
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1), (
                "After performing an optional transpose, Input X's width should be "
                "equal to Y's width for multiplication "
                "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                % (x_shape, y_shape)
            )
S
ShenLiang 已提交
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
2876 2877
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                    )
S
ShenLiang 已提交
2878

W
wanghuancoder 已提交
2879 2880 2881 2882 2883 2884
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

S
ShenLiang 已提交
2885 2886 2887 2888
    __check_input(x, y)

    helper = LayerHelper('matmul', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2889 2890 2891 2892 2893 2894
    helper.append_op(
        type='matmul',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
S
ShenLiang 已提交
2895
    return out
2896 2897


2898
def topk(input, k, name=None):
Q
qingqing01 已提交
2899
    """
2900
    :alias_main: paddle.topk
2901 2902
        :alias: paddle.topk,paddle.tensor.topk,paddle.tensor.search.topk
        :old_api: paddle.fluid.layers.topk
2903

2904
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
2905 2906
    for the last dimension.

2907 2908
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
2909 2910 2911 2912

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
2913 2914
    .. code-block:: text

2915 2916 2917 2918 2919
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
2920 2921 2922 2923
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

2924
          Output:
F
fengjiayi 已提交
2925
            The first output:
2926 2927
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
2928 2929 2930 2931
                      [10, 25],
                      [6, 10]]

            The second output:
2932 2933
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
2934 2935 2936
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
2937
    Args:
2938 2939 2940 2941
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
2942 2943

    Returns:
2944 2945
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
2946

F
fengjiayi 已提交
2947
    Raises:
2948
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
2949 2950 2951 2952

    Examples:
        .. code-block:: python

2953
            import paddle.fluid as fluid
2954
            import paddle.fluid.layers as layers
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
2968
    """
J
Jiabin Yang 已提交
2969
    if _non_static_mode():
2970
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
2971
        out, indices = _legacy_C_ops.top_k(input, 'k', _k)
2972 2973 2974
        out.stop_gradient = True
        indices.stop_gradient = True
        return out, indices
2975

2976 2977
    inputs = {"X": [input]}
    attrs = {}
S
songyouwei 已提交
2978 2979 2980 2981 2982
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}

2983 2984 2985 2986
    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

2987 2988 2989 2990 2991 2992
    helper.append_op(
        type="top_k",
        inputs=inputs,
        outputs={"Out": [values], "Indices": [indices]},
        attrs=attrs,
    )
Q
qingqing01 已提交
2993 2994 2995 2996 2997
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


2998 2999 3000
def ctc_greedy_decoder(
    input, blank, input_length=None, padding_value=0, name=None
):
3001
    r"""
S
SunGaofeng 已提交
3002
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
3003

S
SunGaofeng 已提交
3004
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
3005 3006 3007
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3008

S
SunGaofeng 已提交
3009
    This op is implemented in two modes: lod and padding, either of them can be used.
3010
    The input can be either LoDTensor or Tensor, corresponding to lod and padding
S
SunGaofeng 已提交
3011 3012
    mode respectively.

3013 3014 3015 3016 3017
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
3018
        (1) for lod mode:
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3030
        input.lod = [[4, 4]]
M
minqiyang 已提交
3031

W
whs 已提交
3032
        Computation:
3033

W
whs 已提交
3034 3035 3036 3037 3038 3039
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
3040 3041 3042 3043 3044

        output.data = [[2],
                       [1],
                       [3]]

3045
        output.lod = [[2, 1]]
3046

S
SunGaofeng 已提交
3047
        (2) for padding mode:
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
3064
        step2: Change the argmax result to use padding mode, then argmax result is
3065 3066 3067 3068 3069 3070 3071 3072 3073
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
3074
    Parameters:
3075

3076 3077
        input(Variable): the probabilities of variable-length sequences. When in lod mode,
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1]
Y
ying 已提交
3078
                         where Lp is the sum of all input sequences' length and
3079 3080
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
3081
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
3082
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
3083
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
3084
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
3085 3086
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
3087
        padding_value(int): padding value.
3088 3089 3090
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
3091 3092

    Returns:
S
SunGaofeng 已提交
3093 3094 3095 3096 3097
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

3098
        For padding mode, returns a tuple of (output, output_length), which was described as below:
S
SunGaofeng 已提交
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

3110 3111 3112 3113

    Examples:
        .. code-block:: python

3114
            # for lod mode
S
SunGaofeng 已提交
3115
            import paddle.fluid as fluid
S
SunGaofeng 已提交
3116
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
3117
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
3118 3119

            # for padding mode
S
SunGaofeng 已提交
3120 3121
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
3122 3123 3124
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
3125
    """
3126 3127 3128
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'ctc_greedy_decoder'
    )
3129

3130
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3131
    _, topk_indices = topk(input, k=1)
3132 3133

    # ctc align op
X
Xin Pan 已提交
3134
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
3135 3136

    if input_length is None:
3137 3138 3139 3140 3141 3142
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True, "blank": blank},
        )
3143 3144 3145
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
3146
        ctc_input = paddle.squeeze(topk_indices, [2])
3147

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input], "InputLength": [input_length]},
            outputs={"Output": [ctc_out], "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value,
            },
        )
3158
        return ctc_out, ctc_out_len
3159 3160


3161 3162 3163 3164 3165 3166 3167 3168 3169
def im2sequence(
    input,
    filter_size=1,
    stride=1,
    padding=0,
    input_image_size=None,
    out_stride=1,
    name=None,
):
3170
    r"""
3171 3172
    :api_attr: Static Graph

3173
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
3174 3175 3176
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
3177 3178
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3179 3180 3181

    .. math::

L
Liufang Sang 已提交
3182 3183 3184 3185
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
3186

L
Liufang Sang 已提交
3187
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
3188

L
Liufang Sang 已提交
3189 3190
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
3191

L
Liufang Sang 已提交
3192 3193 3194
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
3195

L
Liufang Sang 已提交
3196 3197
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
3198

L
Liufang Sang 已提交
3199 3200 3201 3202 3203
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
3204
            padding_up = padding_down = padding_left = padding_right = padding.
L
Liufang Sang 已提交
3205
            Default is 0.
3206

L
Liufang Sang 已提交
3207 3208 3209 3210
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
3211
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
3212 3213 3214 3215 3216
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
3217 3218 3219

    Returns:
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \
L
Liufang Sang 已提交
3220 3221 3222
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3250 3251 3252
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

3265
            output.dims = {8, 8}
3266

3267
            output.lod = [[4, 4]]
3268

T
Tink_Y 已提交
3269
    Examples:
3270 3271 3272

        .. code-block:: python

B
Bai Yifan 已提交
3273
            import paddle.fluid as fluid
3274 3275
            import paddle
            paddle.enable_static()
L
Liufang Sang 已提交
3276
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
3277
                                     dtype='float32')
3278
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
3279 3280
                input=data, stride=[1, 1], filter_size=[2, 2])

3281 3282

    """
3283 3284 3285
    assert (
        not _non_static_mode()
    ), "sequence layer is not supported in dygraph mode yet."
W
wanghaoshuang 已提交
3286

3287 3288
    check_variable_and_dtype(input, 'input', ['float32'], 'im2sequence')

W
wanghaoshuang 已提交
3289 3290 3291 3292 3293 3294 3295 3296 3297
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
3298
    inputs = {"X": input}
3299
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
3300 3301 3302 3303 3304
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
3305
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
3306
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
3307 3308 3309
    helper.append_op(
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
3310
    return out
3311 3312


Y
yuyang18 已提交
3313
@templatedoc()
3314
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
3315
    """
3316 3317
    :api_attr: Static Graph

Y
yuyang18 已提交
3318
    ${comment}
3319 3320

    Args:
Y
yuyang18 已提交
3321
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
3322 3323
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3324 3325 3326 3327 3328
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
3329
        ${out_comment}.
3330 3331

    Examples:
B
Bai Yifan 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
3344 3345
    """
    helper = LayerHelper('row_conv', **locals())
3346
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
3347
    dtype = helper.input_dtype()
3348
    filter_shape = [future_context_size + 1, input.shape[-1]]
3349 3350 3351
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
3352
    out = helper.create_variable_for_type_inference(dtype)
3353 3354 3355 3356 3357
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
3358
    return helper.append_activation(out)
3359 3360


Y
yuyang18 已提交
3361
@templatedoc()
3362
def multiplex(inputs, index, name=None):
3363
    """
Y
yuyang18 已提交
3364

3365
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
3366

3367
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
3368

3369
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
3370

3371
    For Example:
L
lujun 已提交
3372

3373
            .. code-block:: text
L
lujun 已提交
3374

3375
                Given:
L
lujun 已提交
3376

3377 3378 3379 3380
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
3381

3382
                index = [[3],[0],[1],[2]]
L
lujun 已提交
3383

3384 3385 3386 3387
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
3388 3389


3390
    Args:
3391 3392 3393 3394 3395
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
3396
    Returns:
3397
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
3398 3399

    Examples:
3400

X
xuezhong 已提交
3401 3402
        .. code-block:: python

3403
            import paddle
3404 3405 3406
            import numpy as np
            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
3407 3408 3409
            inputs = [paddle.to_tensor(img1), paddle.to_tensor(img2)]
            index = paddle.to_tensor(np.array([[1], [0]]).astype(np.int32))
            res = paddle.multiplex(inputs, index)
3410
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
3411

3412
    """
3413 3414

    if _in_legacy_dygraph():
3415
        return _legacy_C_ops.multiplex(index, inputs)
3416
    if in_dygraph_mode():
3417
        return _C_ops.multiplex(inputs, index)
3418 3419
    helper = LayerHelper('multiplex', **locals())

3420 3421 3422
    check_type(inputs, 'inputs', (list), 'multiplex')
    if len(inputs) < 2:
        raise ValueError(
3423 3424
            "inputs should be a list object with at least 2 elements."
        )
3425
    for id, x in enumerate(inputs):
3426 3427 3428 3429 3430 3431
        check_variable_and_dtype(
            x,
            'input[' + str(id) + ']',
            ['float32', 'float64', 'int32', 'int64'],
            'multiplex',
        )
3432
    check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex')
3433 3434

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
3435 3436 3437 3438 3439
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs, 'Ids': index},
        outputs={'Out': [out]},
    )
3440
    return out
X
xuezhong 已提交
3441 3442


3443 3444
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
3445

Y
Yibing Liu 已提交
3446 3447
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
3448
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
3449
    and then sums all the losses. So the shape of output Variable is
3450
    [batch_size, 1].
3451

3452 3453
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3454
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3455
            A LoDTensor or Tensor with type float32.
3456
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
3457
            L1 loss op with same shape as :attr:`x`.
3458
            A LoDTensor or Tensor with type float32.
3459
        inside_weight (Variable|None):  A tensor with rank at least 2. This
3460 3461
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
3462
            by this tensor element by element.
3463
            A Tensor with type float32.
3464
        outside_weight (Variable|None): A tensor with rank at least 2. This
3465 3466
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
3467
            element by element.
3468
            A Tensor with type float32.
3469
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
3470 3471
           scalar with default value 1.0.

3472
    Returns:
3473
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
3474 3475 3476 3477

    Examples:
        .. code-block:: python

3478
            import paddle.fluid as fluid
3479
            import numpy as np
3480 3481
            import paddle
            paddle.enable_static()
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
3493

3494 3495 3496 3497
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

3498
    """
3499 3500
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'smooth_l1_loss')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'smooth_l1_loss')
3501

3502
    helper = LayerHelper('smooth_l1_loss', **locals())
3503

X
Xin Pan 已提交
3504 3505
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight,
        },
        outputs={'Diff': diff, 'Out': loss},
        attrs={'sigma': sigma if sigma is not None else 1.0},
    )
3517
    return loss
3518 3519


3520
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
3521
def one_hot(input, depth, allow_out_of_range=False):
3522
    """
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
3561
                        [0., 1., 0., 0.],
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
3574
            The second dimension in X is 5, which is greater than depth.
3575 3576
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
3577 3578

    Args:
3579 3580 3581
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
3582
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
3583
            is word id, depth is generally the dictionary size.
3584
        allow_out_of_range(bool): A bool value indicating whether the input
3585 3586 3587 3588
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
3589 3590

    Returns:
3591
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
3592 3593

    Examples:
C
caoying03 已提交
3594
        .. code-block:: python
3595

3596
            import paddle
3597
            import paddle.fluid as fluid
3598 3599
            paddle.enable_static()

3600 3601 3602
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
3603
    """
J
Jiabin Yang 已提交
3604
    if _non_static_mode():
S
songyouwei 已提交
3605 3606 3607
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
3608 3609
                1,
            ), "depth of type Variable should have shape [1]"
3610
            depth = depth.item(0)
3611 3612 3613
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
3614 3615
        out.stop_gradient = True
        return out
3616

3617
    helper = LayerHelper("one_hot", **locals())
3618
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
3619
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
3620
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
3621

3622 3623
    if not isinstance(depth, Variable):
        # user attribute
3624
        inputs = {'X': input}
Y
Yi Liu 已提交
3625
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
3626
    else:
3627 3628 3629
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
3630 3631 3632
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
3633
    one_hot_out.stop_gradient = True
3634
    return one_hot_out
Y
Yu Yang 已提交
3635 3636


Y
Yu Yang 已提交
3637
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3638
    """
3639 3640
    :api_attr: Static Graph

3641 3642
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
3643
    and the step size is 1.
Y
Yu Yang 已提交
3644 3645

    Args:
Y
Yibing Liu 已提交
3646 3647 3648
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
3649

3650
    Returns:
Y
Yibing Liu 已提交
3651
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
3652 3653 3654 3655

    Examples:
        .. code-block:: python

3656
           import paddle.fluid as fluid
3657 3658
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
3659
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
3660
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
3661 3662
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3663 3664
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3665
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
3666 3667 3668 3669
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
3670 3671
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
3672
    if is_new_var:
3673 3674 3675
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
3676
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
3677 3678
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3679
            outputs={'Out': [counter]},
3680 3681
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
3682 3683 3684
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3685 3686


3687
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
3688
    """
3689
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
3690 3691
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
3692

M
minqiyang 已提交
3693
    For example:
H
haowang101779990 已提交
3694 3695 3696

    .. code-block:: text

M
minqiyang 已提交
3697
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
3698
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
3699

Y
Yibing Liu 已提交
3700
    Args:
3701
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
3702
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
3703
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
3704 3705

    Returns:
3706
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
3707 3708 3709 3710

    Examples:
        .. code-block:: python

3711 3712 3713
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
3714

Y
Yibing Liu 已提交
3715
    """
J
Jiabin Yang 已提交
3716
    if _non_static_mode():
L
Leo Chen 已提交
3717 3718 3719
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
3720
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
3721 3722 3723 3724 3725
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
3726
        if _in_legacy_dygraph():
3727
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
3728
            return out
3729
        return _C_ops.unsqueeze(input, axes)
3730 3731

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
3759
        if utils._contain_var(axes):
3760
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
3761 3762 3763
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
3764 3765
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
3766 3767 3768 3769 3770 3771
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
3772

3773 3774
    return out

3775

Y
yangyaming 已提交
3776
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3777
    """
Y
Yibing Liu 已提交
3778
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
3779 3780 3781 3782
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
3783
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
3784 3785 3786 3787 3788 3789

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
3790
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
3791 3792 3793
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

3794
            target_lod: [4, 2]
Y
yangyaming 已提交
3795 3796

            then we get a 1-level LoDTensor:
3797
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
3798 3799 3800 3801 3802 3803
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
3804
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
3805 3806 3807 3808
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
3809
                y.data = [[2, 4]]
Y
yangyaming 已提交
3810 3811 3812
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
3813
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
3814 3815 3816 3817 3818 3819
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
3820
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
3821 3822 3823 3824
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
3825
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
3826 3827 3828 3829
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
3830
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
3831 3832 3833 3834
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
3835
        x (Variable): Input variable which could be a Tensor or LoDTensor.
3836
                      The data type should be int32, int64, float32 or float64.
3837 3838
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
3839 3840
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
3841
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
3842 3843

    Returns:
Y
Yibing Liu 已提交
3844
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
3845 3846

    Raises:
Y
Yibing Liu 已提交
3847
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
3848 3849 3850 3851

    Examples:
        .. code-block:: python

3852
            import paddle.fluid as fluid
3853 3854 3855
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
3856
    """
3857 3858 3859
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
3860
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
3861
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
3862
    if y is not None:
3863
        check_type(y, 'y', (Variable), 'lod_reset')
3864 3865 3866 3867
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
3868
    elif target_lod is not None:
3869 3870 3871 3872 3873 3874
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
3875
    else:
3876 3877 3878 3879
        raise ValueError("y and target_lod should not be both none.")
    return out


3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
def image_resize(
    input,
    out_shape=None,
    scale=None,
    name=None,
    resample='BILINEAR',
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
3891
    """
3892

R
ruri 已提交
3893
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
3894

3895 3896
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or a 4-D Tensor of the shape (num_batches, channels, in_h, in_w)
3897 3898
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
T
tianshuo78520a 已提交
3899
    and the resizing only applies on the three dimensions(depth, height and width).
3900

3901
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
3902 3903
    future and only use :attr:`out_shape` instead.

3904
    Supporting resample methods:
3905
        'LINEAR' : Linear interpolation
Q
update  
qiaolongfei 已提交
3906

3907
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
3908

K
Kaipeng Deng 已提交
3909 3910
        'TRILINEAR' : Trilinear interpolation

3911
        'NEAREST' : Nearest neighbor interpolation
3912

3913
        'BICUBIC' : Bicubic interpolation
3914 3915

    Linear interpolation is the method of using a line connecting two known quantities
3916
    to determine the value of an unknown quantity between the two known quantities.
3917

3918
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
3919
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
3920
    direction) on input tensor.
3921 3922 3923 3924 3925

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
3926 3927
    again in the other direction.

3928 3929 3930
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
3931
    The linear interpolation is performed on three directions.
3932

3933 3934 3935 3936
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
K
Kaipeng Deng 已提交
3937

3938
    Align_corners and align_mode are optional parameters,the calculation method
3939 3940 3941 3942
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
3943
    .. code-block:: text
3944

T
Tink_Y 已提交
3945
        For scale:
3946

T
Tink_Y 已提交
3947
            if align_corners = True && out_size > 1 :
3948

T
Tink_Y 已提交
3949
              scale_factor = (in_size-1.0)/(out_size-1.0)
3950

T
Tink_Y 已提交
3951
            else:
3952

T
Tink_Y 已提交
3953
              scale_factor = float(in_size/out_size)
3954 3955


T
Tink_Y 已提交
3956
        Nearest neighbor interpolation:
3957

T
Tink_Y 已提交
3958 3959
          if:
              align_corners = False
3960

T
Tink_Y 已提交
3961 3962
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3963

T
Tink_Y 已提交
3964 3965
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
3966

T
Tink_Y 已提交
3967 3968
          else:
              align_corners = True
3969

T
Tink_Y 已提交
3970 3971
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3972

T
Tink_Y 已提交
3973 3974
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
3975

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
        linear interpolation:

          if:
              align_corners = False , align_mode = 0

              input : (N,C,W_in)
              output: (N,C,W_out) where:

              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,W_in)
              output: (N,C,H_out,W_out) where:

              W_out = W_{in} * scale_{factor}

T
Tink_Y 已提交
3993 3994 3995 3996
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
3997

T
Tink_Y 已提交
3998 3999
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4000

T
Tink_Y 已提交
4001 4002
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
4003

T
Tink_Y 已提交
4004
          else:
4005

T
Tink_Y 已提交
4006 4007
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4008

T
Tink_Y 已提交
4009 4010
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
4011

K
Kaipeng Deng 已提交
4012 4013 4014 4015
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
4016

K
Kaipeng Deng 已提交
4017 4018
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
4019

K
Kaipeng Deng 已提交
4020 4021 4022 4023 4024 4025
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
4026

K
Kaipeng Deng 已提交
4027 4028 4029 4030
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
4031

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
K
Kaipeng Deng 已提交
4044 4045
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
4046

4047

4048 4049
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
4050

4051
    For details of nearest neighbor interpolation, please refer to Wikipedia:
4052
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
4053

4054
    For details of bilinear interpolation, please refer to Wikipedia:
4055
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
4056

4057
    For details of trilinear interpolation, please refer to Wikipedia:
K
Kaipeng Deng 已提交
4058
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
4059

4060 4061
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
4062

R
ruri 已提交
4063
    Parameters:
4064
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
4065
                          its data format is specified by :attr:`data_format`.
4066
        out_shape (list|tuple|Variable|None): Output shape of image resize
4067 4068
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
4069
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
4070
             If a Tensor Variable, its dimensions size should be a 1.
4071 4072 4073
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
4074
             Default: None.
4075 4076
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4077
        resample(str): The resample method. It supports 'LINEAR', 'BICUBIC', 'BILINEAR', 'TRILINEAR'
K
Kaipeng Deng 已提交
4078
                       and 'NEAREST' currently. Default: 'BILINEAR'
4079 4080 4081
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
4082
                                :attr:`out_shape` and :attr:`scale` specifying
4083 4084
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4085 4086 4087 4088 4089
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4090
                                errors would be occurred in graph constructing stage.
4091
                                Default: None
4092 4093
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
4094 4095
                               corner pixels.
                               Default: True
4096 4097
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the fomula in the
                            the example code above, it can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 ,
4098
                            can be \'1\' for src_idx = scale*dst_index.
4099
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4100
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
4101
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
4102
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
4103
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
4104 4105

    Returns:
4106
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
4107 4108
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
4109

4110 4111 4112
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
4113 4114
        ValueError: The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR',
                    'TRILINEAR', 'BICUBIC' or 'NEAREST' currently.
4115
        ValueError: 'LINEAR' only support 3-D tensor.
4116
        ValueError: 'BICUBIC', 'BILINEAR' and 'NEAREST' only support 4-D tensor.
K
Kaipeng Deng 已提交
4117
        ValueError: 'TRILINEAR' only support 5-D tensor.
4118
        ValueError: One of out_shape and scale must not be None.
4119
        ValueError: out_shape length should be 1 for input 3-D tensor.
K
Kaipeng Deng 已提交
4120 4121
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
4122
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
4123
        TypeError: align_corners should be a bool value
4124
        ValueError: align_mode can only be '0' or '1'
4125
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
4126

4127 4128
    Examples:
        .. code-block:: python
4129

4130 4131 4132 4133 4134 4135
            #declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
4136

4137 4138
            #1
            output = fluid.layers.image_resize(input=input,out_shape=[12,12])
R
ruri 已提交
4139

4140 4141 4142 4143 4144
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])
R
ruri 已提交
4145

4146 4147 4148 4149 4150
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)
R
ruri 已提交
4151

4152 4153 4154 4155 4156
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.image_resize(input=input,scale=scale_tensor)
R
ruri 已提交
4157

4158 4159 4160
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4161

4162
            input_data = np.random.rand(2,3,6,10).astype("float32")
4163

4164
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4165 4166 4167
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4168

4169
            print(output_data[0].shape)
4170

4171 4172 4173 4174 4175 4176 4177 4178
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
4179

4180 4181
            #imperative mode
            import paddle.fluid.dygraph as dg
4182

4183 4184 4185 4186
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.image_resize(input=input, out_shape=[12,12])
                print(output.shape)
4187

4188
                # [2L, 3L, 12L, 12L]
4189

4190
    """
4191
    resample_methods = {
4192
        'LINEAR': 'linear',
4193
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
4194
        'TRILINEAR': 'trilinear',
4195
        'NEAREST': 'nearest',
4196
        'LINEAR': 'linear',
4197
    }
4198
    resample = resample.upper()
4199 4200
    if resample not in resample_methods:
        raise ValueError(
4201
            "The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR', 'TRILINEAR' "
4202 4203
            "or 'NEAREST' currently."
        )
4204
    resample_type = resample_methods[resample]
4205

4206 4207 4208
    if resample == 'LINEAR' and len(input.shape) != 3:
        raise ValueError("'LINER only support 3-D tensor.")
    elif resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
K
Kaipeng Deng 已提交
4209
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
4210
    elif resample == 'TRILINEAR' and len(input.shape) != 5:
K
Kaipeng Deng 已提交
4211 4212
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

4213 4214 4215 4216 4217
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

4218
    if out_shape is None and scale is None:
4219
        raise ValueError("One of out_shape and scale must not be None.")
4220
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
4221
    dtype = helper.input_dtype()
4222

4223
    if len(input.shape) == 3 and data_format not in ['NCW', 'NWC']:
4224
        raise ValueError(
4225 4226 4227 4228
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
4229
    elif len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
4230
        raise ValueError(
4231 4232 4233 4234
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
4235 4236
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
4237 4238 4239 4240
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
4241

4242
    def _is_list_or_turple_(data):
4243
        return isinstance(data, list) or isinstance(data, tuple)
4244

4245
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
4246
        data_layout = 'NCHW'
4247
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
4248 4249
        data_layout = 'NHWC'

4250
    inputs = {"X": input}
D
dengkaipeng 已提交
4251
    attrs = {
4252 4253 4254
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
4255 4256
        "interp_method": resample_type,
        "align_corners": align_corners,
4257
        "align_mode": align_mode,
4258
        "data_layout": data_layout,
D
dengkaipeng 已提交
4259 4260
    }

4261
    if out_shape is not None:
4262
        if isinstance(out_shape, Variable) and not _non_static_mode():
4263
            out_shape.stop_gradient = True
4264
            inputs['OutSize'] = out_shape
4265
        else:
4266 4267 4268 4269 4270 4271 4272 4273
            if _non_static_mode():
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
                else:
                    out_shape = list(out_shape)
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
4274
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
4275
                raise TypeError(
4276 4277
                    "out_shape should be a list or tuple or Variable."
                )
4278 4279 4280 4281 4282 4283
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
4284 4285 4286
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
4297
                        assert isinstance(dim, int)
4298
                        temp_out = helper.create_variable_for_type_inference(
4299 4300 4301 4302 4303
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
4304 4305 4306 4307
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

4308 4309
            if len(input.shape) == 3:
                if len(out_shape) != 1:
4310 4311 4312
                    raise ValueError(
                        "out_shape length should be 1 for " "input 3-D tensor."
                    )
4313 4314 4315 4316 4317 4318
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
            elif len(input.shape) == 4:
K
Kaipeng Deng 已提交
4319
                if len(out_shape) != 2:
4320 4321 4322
                    raise ValueError(
                        "out_shape length should be 2 for " "input 4-D tensor."
                    )
4323 4324 4325 4326 4327 4328 4329
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
4330 4331
            if len(input.shape) == 5:
                if len(out_shape) != 3:
4332 4333 4334
                    raise ValueError(
                        "out_shape length should be 3 for " "input 5-D tensor."
                    )
4335 4336 4337 4338 4339 4340 4341 4342 4343
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
4344

4345
    else:
4346 4347 4348
        if _non_static_mode() and isinstance(scale, Variable):
            scale = scale.numpy()
        elif isinstance(scale, Variable):
4349 4350
            scale.stop_gradient = True
            inputs["Scale"] = scale
4351
        elif isinstance(scale, float) or isinstance(scale, int):
4352
            if scale <= 0:
4353
                raise ValueError("Attr(scale) should be greater than zero.")
4354
            attrs['scale'] = float(scale)
4355 4356
        else:
            raise TypeError(
4357 4358
                "Attr(scale)'s type should be float, int or Variable."
            )
4359

4360
    if isinstance(actual_shape, Variable):
4361 4362 4363 4364 4365
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
4366 4367 4368
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")
4369 4370 4371 4372 4373 4374 4375 4376 4377

    if _non_static_mode():
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
4378
            out = _legacy_C_ops.linear_interp(input, actual_shape, *dy_attr)
4379
        elif resample_type == "bilinear":
4380
            out = _legacy_C_ops.bilinear_interp(input, actual_shape, *dy_attr)
4381
        elif resample_type == "trilinear":
4382
            out = _legacy_C_ops.trilinear_interp(input, actual_shape, *dy_attr)
4383
        elif resample_type == "nearest":
4384
            out = _legacy_C_ops.nearest_interp(input, actual_shape, *dy_attr)
4385
        elif resample_type == "bicubic":
4386
            out = _legacy_C_ops.bicubic_interp(input, actual_shape, *dy_attr)
4387 4388
        return out

X
Xin Pan 已提交
4389
    out = helper.create_variable_for_type_inference(dtype)
4390 4391 4392 4393 4394 4395
    helper.append_op(
        type='{}_interp'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
4396
    return out
F
stash  
fengjiayi 已提交
4397 4398


4399
@templatedoc(op_type="bilinear_interp")
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
def resize_bilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
4410
    """
4411

R
ruri 已提交
4412
    This op resizes the input by performing bilinear interpolation based on given
4413
    output shape which specified by actual_shape, out_shape and scale
4414 4415
    in priority order.

4416
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in
4417 4418
    the future and only use :attr:`out_shape` instead.

4419 4420 4421 4422
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
4423 4424
    again in the other direction.

4425
    For details of bilinear interpolation, please refer to Wikipedia:
4426
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
4427

4428
    Align_corners and align_mode are optional parameters,the calculation
4429 4430 4431 4432
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
4433
    .. code-block:: text
4434

T
Tink_Y 已提交
4435
        For scale:
4436

T
Tink_Y 已提交
4437
            if align_corners = True && out_size > 1 :
4438

T
Tink_Y 已提交
4439
              scale_factor = (in_size-1.0)/(out_size-1.0)
4440

T
Tink_Y 已提交
4441
            else:
4442

4443
              scale_factor = float(in_size/out_size)
4444

T
Tink_Y 已提交
4445 4446 4447 4448
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
4449

T
Tink_Y 已提交
4450 4451
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4452

T
Tink_Y 已提交
4453 4454
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
4455

T
Tink_Y 已提交
4456
          else:
T
tink2123 已提交
4457

T
Tink_Y 已提交
4458 4459 4460 4461
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
4462

R
ruri 已提交
4463 4464
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
4465
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
4466
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
4467 4468
            layer, the shape is (out_h, out_w).Default: None. If a list, each
            element can be an integer or a Tensor Variable with shape: [1]. If a
4469
            Tensor Variable, its dimension size should be 1.
4470
        scale(float|Variable|None): The multiplier for the input height or width. At
4471 4472
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
4473
             Default: None.
4474 4475 4476
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
4477
                                :attr:`out_shape` and :attr:`scale` specifying
4478 4479
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4480 4481 4482 4483 4484
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4485
                                errors would be occurred in graph constructing stage.
4486
                                Default: None
4487 4488
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
4489
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4490 4491 4492
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
4493
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
4494 4495

    Returns:
4496
        Variable: 4-D tensor(NCHW or NHWC).
4497

4498 4499
    Examples:
        .. code-block:: python
4500

4501 4502 4503 4504 4505 4506
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
4507

4508 4509
            #1
            output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])
R
ruri 已提交
4510

4511 4512 4513 4514 4515
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])
R
ruri 已提交
4516

4517 4518 4519 4520 4521
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
4522

4523 4524 4525 4526 4527
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)
R
ruri 已提交
4528

4529 4530 4531
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4532

4533
            input_data = np.random.rand(2,3,6,10).astype("float32")
4534

4535
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4536 4537 4538
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4539

4540
            print(output_data[0].shape)
4541

4542 4543 4544 4545 4546 4547 4548 4549
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
4550

4551 4552
            #imperative mode
            import paddle.fluid.dygraph as dg
4553

4554 4555 4556 4557
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
                print(output.shape)
4558

4559
                # [2L, 3L, 12L, 12L]
4560

4561 4562
    """

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'BILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
4574 4575


K
Kaipeng Deng 已提交
4576
@templatedoc(op_type="trilinear_interp")
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
def resize_trilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCDHW',
):
K
Kaipeng Deng 已提交
4587
    """
4588

R
ruri 已提交
4589
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
4590 4591 4592
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

4593
    **Warning:** the parameter :attr:`actual_shape` will be deprecated
4594 4595
    in the future and only use :attr:`out_shape` instead.

4596 4597 4598
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
4599 4600 4601 4602 4603
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

4604
    Align_corners and align_mode are optional parameters,the calculation
K
Kaipeng Deng 已提交
4605 4606 4607 4608 4609 4610 4611
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
4612

K
Kaipeng Deng 已提交
4613 4614 4615
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
4616

K
Kaipeng Deng 已提交
4617
            else:
4618 4619

              scale_factor = float(in_size/out_size)
K
Kaipeng Deng 已提交
4620 4621 4622 4623

        Bilinear interpolation:

          if:
4624

K
Kaipeng Deng 已提交
4625
              align_corners = False , align_mode = 0
4626

K
Kaipeng Deng 已提交
4627 4628
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
4629

K
Kaipeng Deng 已提交
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
4643
    Parameters:
4644 4645
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
4646
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
4647
        scale(float|Variable|None): The multiplier for the input depth, height or width.
4648 4649
             At least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
K
Kaipeng Deng 已提交
4650
             Default: None.
R
ruri 已提交
4651
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
4652 4653 4654 4655 4656 4657
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4658 4659 4660 4661 4662
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4663
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
4664 4665 4666
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
4667
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4668 4669 4670
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
4671 4672

    Returns:
4673
        Variable: A 5-D Tensor(NCDHW or NDHWC)
K
Kaipeng Deng 已提交
4674 4675 4676

    Examples:
        .. code-block:: python
4677

4678 4679 4680 4681 4682 4683
            #declarative mode
            import paddle.fluid as fluid
            import paddle
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,8,10])
R
ruri 已提交
4684

4685 4686
            #1
            output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])
R
ruri 已提交
4687

4688 4689 4690 4691 4692
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])
R
ruri 已提交
4693

4694 4695 4696 4697 4698
            #3
            #x = np.array([3,12,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
4699

4700 4701 4702 4703 4704
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)
R
ruri 已提交
4705

4706 4707 4708
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4709

4710
            input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
4711

4712
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4713 4714 4715
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4716

4717
            print(output_data[0].shape)
R
ruri 已提交
4718

4719 4720 4721 4722 4723 4724 4725 4726
            #1
            # (2, 3, 12, 12, 12)
            #2
            # (2, 3, 12, 2, 4)
            #3
            # (2, 3, 3, 12, 12)
            #4
            # (2, 3, 3, 4, 5)
R
ruri 已提交
4727

4728 4729
            #imperative mode
            import paddle.fluid.dygraph as dg
4730

4731 4732 4733 4734
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
                print(output.shape)
4735

4736
                # [2L, 3L, 12L, 12L, 12L]
4737 4738 4739



K
Kaipeng Deng 已提交
4740 4741
    """

4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'TRILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
K
Kaipeng Deng 已提交
4753 4754


4755
@templatedoc(op_type="nearest_interp")
4756 4757 4758 4759 4760 4761 4762 4763 4764
def resize_nearest(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    data_format='NCHW',
):
4765
    """
4766

R
ruri 已提交
4767
    This op resizes the input by performing nearest neighbor interpolation in both the
4768
    height direction and the width direction based on given output shape
4769
    which is specified by actual_shape, out_shape and scale in priority order.
4770

4771
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
4772 4773
    future and only use :attr:`out_shape` instead.

4774 4775
    Example:

T
Tink_Y 已提交
4776 4777 4778
    .. code-block:: text

        For scale:
4779

T
Tink_Y 已提交
4780 4781
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
4782

T
Tink_Y 已提交
4783
            else:
4784

T
Tink_Y 已提交
4785
              scale_factor = float(in_size/out_size)
4786

T
Tink_Y 已提交
4787
        Nearest neighbor interpolation:
4788

T
Tink_Y 已提交
4789 4790
          if:
              align_corners = False
4791

T
Tink_Y 已提交
4792 4793
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4794

T
Tink_Y 已提交
4795 4796
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
4797

T
Tink_Y 已提交
4798 4799
          else:
              align_corners = True
4800

T
Tink_Y 已提交
4801 4802
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4803

T
Tink_Y 已提交
4804 4805
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
4806 4807


4808
    For details of nearest neighbor interpolation, please refer to Wikipedia:
4809
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
4810

R
ruri 已提交
4811
    Parameters:
4812 4813
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
4814
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
4815
        scale(float|Variable|None): The multiplier for the input height or width. At
4816 4817 4818
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
             Default: None.
R
ruri 已提交
4819
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4820
        actual_shape(Variable): An optional input to specify output shape
4821 4822
                                dynamically. If provided, image resize
                                according to this given shape rather than
4823
                                :attr:`out_shape` and :attr:`scale` specifying
4824 4825
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4826 4827 4828 4829 4830
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4831
                                errors would be occurred in graph constructing stage.
4832
                                Default: None
4833
        align_corners(bool): ${align_corners_comment}
4834
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4835 4836 4837
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
4838 4839

    Returns:
4840
        Variable: 4-D tensor(NCHW or NHWC).
4841 4842 4843

    Examples:
        .. code-block:: python
4844

4845 4846 4847 4848 4849
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
4850

4851
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
4852

4853 4854
            #1
            output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])
R
ruri 已提交
4855

4856 4857 4858 4859 4860
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])
R
ruri 已提交
4861

4862 4863 4864 4865 4866
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)
R
ruri 已提交
4867

4868 4869 4870 4871 4872
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)
R
ruri 已提交
4873

4874 4875 4876
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4877

4878
            input_data = np.random.rand(2,3,6,10).astype("float32")
4879

4880
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4881 4882 4883
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4884

4885
            print(output_data[0].shape)
R
ruri 已提交
4886

4887 4888 4889 4890 4891 4892 4893 4894
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
4895

4896 4897
            #imperative mode
            import paddle.fluid.dygraph as dg
4898

4899 4900 4901 4902
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
                print(output.shape)
R
ruri 已提交
4903

4904
                # [2L, 3L, 12L, 12L]
4905 4906 4907



4908 4909
    """

4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format,
    )
4921 4922


4923
@deprecated(since="2.0.0", update_to="paddle.nn.functional.relu")
4924
def relu(x, name=None):
W
wanghaoshuang 已提交
4925
    """
Z
zhupengyang 已提交
4926
    ${comment}
W
wanghaoshuang 已提交
4927 4928

    Args:
Z
zhupengyang 已提交
4929 4930 4931 4932
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
4933 4934

    Returns:
Z
zhupengyang 已提交
4935
        Variable: ${out_comment}
W
wanghaoshuang 已提交
4936 4937 4938 4939 4940

    Examples:

        .. code-block:: python

4941
            import paddle.fluid as fluid
Z
zhupengyang 已提交
4942 4943 4944 4945 4946 4947 4948
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
4949
                #  [1.  2.6]]"""
4950 4951

    if in_dygraph_mode():
W
wanghuancoder 已提交
4952
        return _C_ops.relu(x)
4953 4954
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
4955

4956 4957
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

4958
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
4959
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
4960
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
4961
    out = helper.create_variable_for_type_inference(dtype)
4962 4963 4964
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out}
    )
W
wanghaoshuang 已提交
4965
    return out
4966 4967


G
fix  
gongweibao 已提交
4968 4969 4970
from paddle.fluid.framework import convert_np_dtype_to_dtype_


4971
@deprecated(since="2.0.0", update_to="paddle.normal")
G
gongweibao 已提交
4972
@templatedoc()
4973 4974 4975
def gaussian_random(
    shape, mean=0.0, std=1.0, seed=0, dtype='float32', name=None
):
G
fix  
gongweibao 已提交
4976
    """
4977 4978
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
4979 4980

    Args:
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        mean(float|int, optional): Mean of the output tensor, default is 0.0.
        std(float|int, optional): Standard deviation of the output tensor, default
            is 1.0.
        seed(int, optional): ${seed_comment}
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
G
fix  
gongweibao 已提交
4996 4997

    Returns:
4998 4999
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
5000

5001
    Examples:
5002
       .. code-block:: python
5003

5004
            import paddle
5005
            import paddle.fluid as fluid
5006
            paddle.enable_static()
5007 5008

            # example 1:
5009
            # attr shape is a list which doesn't contain Tensor.
5010
            result_1 = fluid.layers.gaussian_random(shape=[3, 4])
5011 5012 5013
            # [[-0.31261674,  1.8736548,  -0.6274357,   0.96988016],
            #  [-0.12294637,  0.9554768,   1.5690808,  -1.2894802 ],
            #  [-0.60082096, -0.61138713,  1.5345167,  -0.21834975]]
5014 5015

            # example 2:
5016 5017 5018
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
5019
            result_2 = fluid.layers.gaussian_random(shape=[dim_1, dim_2])
5020 5021
            # [[ 0.51398206, -0.3389769,   0.23597084],
            #  [ 1.0388143,  -1.2015356,  -1.0499583 ]]
5022 5023

            # example 3:
5024
            # attr shape is a Tensor, the data type must be int64 or int32.
5025 5026
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
            result_3 = fluid.layers.gaussian_random(var_shape)
5027 5028 5029 5030
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.12310527,  0.8187662,   1.923219  ]
            #  [ 0.70721835,  0.5210541,  -0.03214082]]
5031

5032
       .. code-block:: python
5033

5034 5035
           # declarative mode
           # required: skiptest
5036 5037
           import numpy as np
           from paddle import fluid
5038

5039
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
5040

5041 5042 5043 5044
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
5045

5046 5047
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
5048

5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
5059

5060 5061 5062
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
5063
               x_np = x.numpy()
5064 5065 5066
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
5067
    """
5068 5069
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
5070

5071 5072 5073
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
5074
        return _C_ops.gaussian(
5075 5076
            shape, float(mean), float(std), seed, dtype, place
        )
5077 5078

    if _in_legacy_dygraph():
5079
        shape = utils.convert_shape_to_list(shape)
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
        return _legacy_C_ops.gaussian_random(
            'shape',
            shape,
            'mean',
            float(mean),
            'std',
            float(std),
            'seed',
            seed,
            'dtype',
            dtype,
        )
5092 5093 5094

    check_type(shape, 'shape', (list, tuple, Variable), 'gaussian_random/randn')
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'gaussian_random/randn')
5095 5096

    inputs = {}
5097 5098 5099 5100
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
5101
        'dtype': dtype,
5102
        'use_mkldnn': False,
5103
    }
5104 5105 5106
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='gaussian_random/randn'
    )
5107

5108 5109
    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_variable_for_type_inference(dtype)
5110 5111 5112
    helper.append_op(
        type='gaussian_random', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
G
fix  
gongweibao 已提交
5113 5114 5115 5116

    return out


G
gongweibao 已提交
5117
@templatedoc()
G
fix  
gongweibao 已提交
5118
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
5119
    """
R
ruri 已提交
5120
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
5121

R
ruri 已提交
5122 5123 5124 5125
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
5126
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time.
G
fix  
gongweibao 已提交
5127
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
5128 5129

    Returns:
R
ruri 已提交
5130
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
5131

5132 5133 5134
    Examples:
        .. code-block:: python

5135
            import paddle.fluid as fluid
R
ruri 已提交
5136
            x = fluid.data(
5137 5138
                name="X",
                shape=[13, 11],
R
ruri 已提交
5139
                dtype='float32')
5140

Y
Yibing Liu 已提交
5141
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
5142 5143 5144
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
5145
    out = helper.create_variable_for_type_inference(dtype)
5146 5147 5148 5149 5150 5151
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min, 'max': max, 'seed': seed},
    )
G
fix  
gongweibao 已提交
5152 5153 5154 5155 5156 5157

    return out


def shape(input):
    """
5158
    :alias_main: paddle.shape
5159 5160
        :alias: paddle.shape,paddle.tensor.shape,paddle.tensor.attribute.shape
        :old_api: paddle.fluid.layers.shape
5161

C
chengduozh 已提交
5162 5163
    **Shape Layer**

C
fix doc  
chengduozh 已提交
5164
    Get the shape of the input.
G
fix  
gongweibao 已提交
5165

5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
    .. code-block:: text

        Case1:
            Given N-D Tensor:
                input = [ [1, 2, 3, 4], [5, 6, 7, 8] ]

            Then:
                input.shape = [2, 4]

        Case2:
            Given SelectedRows:
                input.rows = [0, 4, 19]
                input.height = 20
                input.value = [ [1, 2], [3, 4], [5, 6] ]  # inner tensor
            Then:
                input.shape = [3, 2]

G
fix  
gongweibao 已提交
5183
    Args:
5184
        input (Variable): The input can be N-D Tensor or SelectedRows with data type bool, float16, float32, float64, int32, int64.
5185
                          If input variable is type of SelectedRows, returns the shape of it's inner tensor.
G
fix  
gongweibao 已提交
5186 5187

    Returns:
5188
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
5189

5190 5191 5192
    Examples:
        .. code-block:: python

5193
            import paddle.fluid as fluid
5194
            import numpy as np
W
Wilber 已提交
5195 5196
            import paddle
            paddle.enable_static()
5197

5198
            inputs = fluid.data(name="x", shape=[3, 100, 100], dtype="float32")
5199 5200 5201 5202 5203 5204 5205 5206 5207
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
5208
    """
5209
    if in_dygraph_mode():
5210
        out = _C_ops.shape(input)
5211 5212 5213
        out.stop_gradient = True
        return out
    if _in_legacy_dygraph():
5214
        out = _legacy_C_ops.shape(input)
W
Wilber 已提交
5215 5216 5217
        out.stop_gradient = True
        return out

5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
    check_variable_and_dtype(
        input,
        'input',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'shape',
    )
G
fix  
gongweibao 已提交
5233
    helper = LayerHelper('shape', **locals())
5234
    out = helper.create_variable_for_type_inference(dtype='int32')
5235 5236 5237 5238 5239 5240
    helper.append_op(
        type='shape',
        inputs={'Input': input},
        outputs={'Out': out},
        stop_gradient=True,
    )
G
fix  
gongweibao 已提交
5241 5242

    return out
G
merge  
gongweibao 已提交
5243 5244


S
sneaxiy 已提交
5245 5246 5247 5248
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
5249

S
sneaxiy 已提交
5250 5251
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
5252
    check_variable_and_dtype(
5253 5254 5255 5256 5257
        x,
        'x',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
5258
    check_variable_and_dtype(
5259 5260 5261 5262 5263
        y,
        'y',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
5264

S
sneaxiy 已提交
5265 5266
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
5267
    name = helper.kwargs.get('name', None)
5268
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
5269

5270 5271 5272 5273 5274 5275
    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
S
sneaxiy 已提交
5276 5277 5278
    return helper.append_activation(out)


X
Xin Pan 已提交
5279
def elementwise_add(x, y, axis=-1, act=None, name=None):
5280
    """
5281

5282
    Examples:
5283

5284
        .. code-block:: python
5285

5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_add(x, y)
            # z = x + y
5299

5300 5301 5302 5303
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5304

5305
            print(z_value) # [3., 8., 6.]
5306 5307


5308
        .. code-block:: python
5309

5310 5311 5312
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5313

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=1)
            # z = x + y
5324

5325 5326
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5327

5328 5329
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5330

5331
            print(z_value) # z.shape=[2,3,4,5]
5332 5333


5334
        ..  code-block:: python
5335

5336 5337 5338
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5339

5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=3)
            # z = x + y
5350

5351 5352
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5353

5354 5355 5356
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5357 5358

    """
J
Jiabin Yang 已提交
5359
    if _non_static_mode():
5360
        return _elementwise_op_in_dygraph(
5361 5362 5363 5364 5365
            x,
            y,
            axis=axis,
            act=act,
            op_name='elementwise_add',
5366 5367
            use_mkldnn=_global_flags()["FLAGS_use_mkldnn"],
        )
5368

S
sneaxiy 已提交
5369 5370 5371
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


5372
@deprecated(since="2.0.0", update_to="paddle.divide")
X
Xin Pan 已提交
5373
def elementwise_div(x, y, axis=-1, act=None, name=None):
5374
    """
5375

5376
    Examples:
5377

5378
        .. code-block:: python
5379

5380 5381 5382
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5383

5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_div(x, y)
            # z = x / y
5394

5395 5396 5397 5398
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5399

5400
            print(z_value) # [2., 0.6, 2.]
5401 5402


5403
        .. code-block:: python
5404

5405 5406 5407
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5408

5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=1)
            # z = x / y
5419

5420 5421
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5422

5423 5424
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5425

5426
            print(z_value) # z.shape=[2,3,4,5]
5427 5428


5429
        ..  code-block:: python
5430

5431 5432 5433
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5434

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=3)
            # z = x / y
5445

5446 5447
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5448

5449 5450 5451
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5452 5453

    """
J
Jiabin Yang 已提交
5454
    if _non_static_mode():
5455 5456 5457
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div'
        )
5458

S
sneaxiy 已提交
5459 5460 5461
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
5462
def elementwise_sub(x, y, axis=-1, act=None, name=None):
5463
    """
5464

5465
    Examples:
5466

5467
        .. code-block:: python
5468

5469 5470 5471
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5472

5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y)
            # z = x - y
5483

5484 5485 5486 5487
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5488

5489
            print(z_value) # [1., -2., 2.]
5490 5491


5492
        .. code-block:: python
5493

5494 5495 5496
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5497

5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=1)
            # z = x - y
5508

5509 5510
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5511

5512 5513
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5514

5515
            print(z_value) # z.shape=[2,3,4,5]
5516 5517


5518
        ..  code-block:: python
5519

5520 5521 5522
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5523

5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=3)
            # z = x - y
5534

5535 5536
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5537

5538 5539 5540
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5541 5542

    """
J
Jiabin Yang 已提交
5543
    if _non_static_mode():
5544 5545 5546
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub'
        )
5547

S
sneaxiy 已提交
5548 5549 5550
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


5551
@deprecated(since="2.0.0", update_to="paddle.multiply")
X
Xin Pan 已提交
5552
def elementwise_mul(x, y, axis=-1, act=None, name=None):
5553
    """
5554

5555
    Examples:
5556

5557
        .. code-block:: python
5558

5559 5560 5561
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5562

5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y)
            # z = x * y
5573

5574 5575 5576 5577
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5578

5579
            print(z_value) # [2., 15., 8.]
5580 5581


5582
        .. code-block:: python
5583

5584 5585 5586
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5587

5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=1)
            # z = x * y
5598

5599 5600
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5601

5602 5603
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
5604

5605
            print(z_value) # z.shape=[2,3,4,5]
5606 5607


5608
        ..  code-block:: python
5609

5610 5611 5612
            import paddle.fluid as fluid
            import numpy as np
            import paddle
5613

5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=3)
            # z = x * y
5624

5625 5626
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
5627

5628 5629 5630
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
5631

5632
    """
J
Jiabin Yang 已提交
5633
    if _non_static_mode():
5634 5635 5636
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul'
        )
5637

S
sneaxiy 已提交
5638 5639 5640 5641
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


for func in [
5642 5643 5644 5645
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    elementwise_mul,
5646 5647
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
5648 5649

    # insert the c++ doc string on top of python doc string
5650 5651 5652 5653 5654
    func.__doc__ = (
        _generate_doc_string_(
            op_proto,
            additional_args_lines=[
                "axis (int32, optional): If X.dimension != Y.dimension, \
5655 5656
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
5657
                "act (string, optional): Activation applied to the output. \
5658
            Default is None. Details: :ref:`api_guide_activations_en` ",
5659
                "name (string, optional): Name of the output. \
5660
            Default is None. It's used to print debug info for developers. Details: \
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
            :ref:`api_guide_Name` ",
            ],
            skip_attrs_set={
                "x_data_format",
                "y_data_format",
                "axis",
                "use_quantizer",
                "mkldnn_data_type",
                "Scale_x",
                "Scale_y",
                "Scale_out",
            },
        )
        + """\n"""
        + str(func.__doc__)
    )
5677

5678 5679 5680
    doc_list = func.__doc__.splitlines()

    for idx, val in enumerate(doc_list):
5681 5682 5683 5684 5685
        if (
            val.startswith("Warning: ")
            and val.endswith(" instead.")
            and "and will be removed in future versions." in val
        ):
5686 5687 5688 5689
            doc_list.insert(0, doc_list.pop(idx))
            func.__doc__ = "\n" + "\n".join(i for i in doc_list)
            break

5690
for func in []:
S
sneaxiy 已提交
5691 5692 5693 5694
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
5695
            "act (basestring|None): Activation applied to the output.",
5696 5697 5698 5699 5700 5701
            "name (basestring|None): Name of the output.",
        ],
    )
    func.__doc__ = (
        func.__doc__
        + """
5702 5703 5704

Examples:
  .. code-block:: python
5705

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
    """
        % (
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
        )
    )
M
minqiyang 已提交
5746 5747


5748
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
5749
    if _non_static_mode():
5750
        op = getattr(_legacy_C_ops, op_name)
5751 5752 5753 5754
        if binary_op:
            return op(x, y)
        else:
            return op(x)
5755
    check_variable_and_dtype(
5756 5757
        x,
        "x",
5758
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
5759 5760
        op_name,
    )
5761
    if y is not None:
5762
        check_variable_and_dtype(
5763 5764
            y,
            "y",
5765
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
5766 5767
            op_name,
        )
5768
    if out is not None:
5769
        check_type(out, "out", Variable, op_name)
5770

M
minqiyang 已提交
5771 5772
    helper = LayerHelper(op_name, **locals())

5773 5774 5775
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
5776 5777
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
5778 5779

    if out is None:
5780
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
5781 5782

    if binary_op:
5783 5784 5785
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
5786 5787 5788 5789 5790 5791
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


5792 5793 5794
@templatedoc()
def clip(x, min, max, name=None):
    """
5795
        :old_api: paddle.fluid.layers.clip
5796

5797 5798 5799 5800
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
5801 5802
        min(float): ${min_comment}
        max(float): ${max_comment}
5803 5804
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
5805
                             For more information, please refer to :ref:`api_guide_Name`
5806 5807

    Returns:
S
SunGaofeng 已提交
5808 5809 5810 5811
        ${out_comment}

    Return Type:
        ${out_type}
5812 5813 5814 5815

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5816
            import paddle.fluid as fluid
S
SunGaofeng 已提交
5817
            input = fluid.data(
5818 5819
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
5820 5821 5822
    """

    helper = LayerHelper("clip", **locals())
5823
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
5824 5825

    if name is None:
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
5852 5853 5854
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
5855 5856

    Returns:
5857
        Tensor:
W
wangguanzhong 已提交
5858

5859
        out(${out_type}): ${out_comment}
5860

W
wangguanzhong 已提交
5861

5862 5863 5864
    Examples:
        .. code-block:: python

5865
            import paddle
5866
            import paddle.fluid as fluid
5867

5868 5869 5870
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
5871 5872
    """

L
lyq 已提交
5873
    if in_dygraph_mode():
5874
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
5875
    if _non_static_mode():
5876
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
5877

5878
    helper = LayerHelper("clip_by_norm", **locals())
5879
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
5880
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
5881 5882

    if name is None:
5883 5884 5885
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
5886

5887 5888 5889
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
5890

5891 5892 5893 5894 5895 5896
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
5897 5898

    return out
X
Xin Pan 已提交
5899 5900


5901
@deprecated(since="2.0.0", update_to="paddle.mean")
X
Xin Pan 已提交
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
5913 5914 5915 5916

    Examples:
        .. code-block:: python

5917
            import paddle
5918
            import paddle.fluid as fluid
5919 5920
            paddle.enable_static()

5921 5922
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
5923
            mean = paddle.mean(input)
X
Xin Pan 已提交
5924
    """
5925

5926
    if _in_legacy_dygraph():
5927
        return _legacy_C_ops.mean(x)
5928
    if in_dygraph_mode():
5929
        return _C_ops.mean_all(x)
X
Xin Pan 已提交
5930 5931

    helper = LayerHelper("mean", **locals())
5932
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
5933
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
5934

5935 5936 5937
    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}
    )
X
Xin Pan 已提交
5938 5939 5940 5941

    return out


C
chengduo 已提交
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
5953 5954 5955 5956

    Examples:
        .. code-block:: python

5957
            import paddle.fluid as fluid
5958 5959 5960 5961 5962
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
5963
    """
5964 5965 5966
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

5967
    if _non_static_mode():
5968
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
5969 5970 5971

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5972 5973 5974 5975 5976 5977
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
5978 5979 5980
    return out


X
Xin Pan 已提交
5981 5982
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
5983 5984 5985 5986 5987 5988 5989 5990
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
5991 5992

    Args:
L
liu zhengxi 已提交
5993 5994
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
5995 5996 5997
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
5998 5999

    Returns:
L
liu zhengxi 已提交
6000
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
6001 6002

    Examples:
L
liu zhengxi 已提交
6003
        ..  code-block:: python
6004

6005
            import paddle.fluid as fluid
6006 6007
            import paddle
            paddle.enable_static()
6008 6009 6010 6011 6012
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
6013

6014

X
Xin Pan 已提交
6015
    """
J
Jiabin Yang 已提交
6016
    if _non_static_mode():
6017 6018 6019 6020 6021 6022 6023 6024
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
6025

6026 6027
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
6028
    helper = LayerHelper("mul", **locals())
6029 6030
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
6031
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
6032

6033 6034 6035
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
6036 6037 6038
    return out


M
minqiyang 已提交
6039 6040
def hash(input, hash_size, num_hash=1, name=None):
    """
6041

Z
zhupengyang 已提交
6042
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
6043 6044
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
6045 6046

    Args:
Z
zhupengyang 已提交
6047 6048 6049 6050 6051 6052
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
6053 6054

    Returns:
Z
zhupengyang 已提交
6055
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
6056 6057

    Examples:
Z
zhupengyang 已提交
6058
        .. code-block:: python
H
haowang101779990 已提交
6059

6060
            import paddle.fluid as fluid
Z
zhupengyang 已提交
6061
            import numpy as np
6062 6063
            import paddle
            paddle.enable_static()
6064

Z
zhupengyang 已提交
6065
            place = fluid.core.CPUPlace()
6066

6067 6068
            x = fluid.data(name="x", shape=[2,2], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res", input=x, hash_size=1000, num_hash=4)
6069

Z
zhupengyang 已提交
6070 6071 6072 6073
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
6074
            x_i = fluid.create_lod_tensor(in1, [[0, 2]], place)
Z
zhupengyang 已提交
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
6085
    """
6086
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'hash')
6087 6088
    check_type(hash_size, 'hash_size', int, 'hash')
    check_type(num_hash, 'num_hash', int, 'hash')
M
minqiyang 已提交
6089
    helper = LayerHelper('hash', **locals())
6090 6091 6092 6093 6094 6095 6096 6097 6098
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True
    )
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash, 'mod_by': hash_size},
    )
M
minqiyang 已提交
6099
    return out
G
gmcather 已提交
6100 6101


D
dengkaipeng 已提交
6102
@templatedoc()
6103 6104
def grid_sampler(x, grid, name=None):
    """
6105

6106
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
6107
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
6108 6109
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
6110 6111
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
6112
    interpolation value of 4 nearest corner points. The output tensor
K
Kaipeng Deng 已提交
6113
    shape will be [N, C, H, W].
6114

H
haowang101779990 已提交
6115
    .. code-block:: text
6116

H
haowang101779990 已提交
6117 6118
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
6119

K
Kaipeng Deng 已提交
6120 6121 6122 6123
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
6124

H
haowang101779990 已提交
6125 6126 6127
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
6128

H
haowang101779990 已提交
6129 6130 6131 6132 6133 6134 6135 6136 6137
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
6138

H
haowang101779990 已提交
6139 6140 6141 6142
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
6143

H
haowang101779990 已提交
6144 6145 6146 6147
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
6148

H
haowang101779990 已提交
6149 6150 6151 6152
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
6153

H
haowang101779990 已提交
6154 6155
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
6156 6157

    Args:
K
Kaipeng Deng 已提交
6158 6159 6160 6161 6162 6163 6164 6165 6166
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
6167 6168

    Returns:
H
haowang101779990 已提交
6169
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
6170 6171
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
6172

H
haowang101779990 已提交
6173 6174 6175 6176
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
6177
            import paddle.fluid as fluid
6178 6179
            import paddle.fluid as fluid
            import paddle
K
Kaipeng Deng 已提交
6180

6181
            paddle.enable_static()
K
Kaipeng Deng 已提交
6182 6183
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
6184 6185
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
6186
            out = fluid.layers.grid_sampler(x=x, grid=grid)
6187

D
dengkaipeng 已提交
6188 6189 6190
    """
    helper = LayerHelper("grid_sampler", **locals())

6191
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler')
6192 6193 6194
    check_variable_and_dtype(
        grid, 'grid', ['float32', 'float64'], 'grid_sampler'
    )
D
dengkaipeng 已提交
6195 6196 6197 6198 6199 6200
    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

6201
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
6202 6203
    ipts = {'X': x, 'Grid': grid}

6204 6205
    attrs = {'use_cudnn': False} if core.is_compiled_with_rocm() else {}

6206 6207 6208
    helper.append_op(
        type='grid_sampler', inputs=ipts, outputs={'Output': out}, attrs=attrs
    )
6209 6210 6211
    return out


G
gmcather 已提交
6212
def log_loss(input, label, epsilon=1e-4, name=None):
6213
    r"""
6214

G
gmcather 已提交
6215 6216 6217 6218 6219 6220 6221
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

6222 6223
        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}
G
gmcather 已提交
6224 6225

    Args:
6226
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
6227
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
6228
                                by the previous operator. Data type float32.
6229
        label (Tensor|list):  The ground truth which is a 2-D tensor with
6230
                                shape [N x 1], where N is the batch size.
Y
Yibing Liu 已提交
6231 6232
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
6233
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
6234
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
6235 6236

    Returns:
6237
        Tensor, which shape is [N x 1], data type is float32.
G
gmcather 已提交
6238 6239 6240 6241

    Examples:
        .. code-block:: python

6242 6243 6244 6245 6246 6247
          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
G
gmcather 已提交
6248
    """
6249
    return paddle.nn.functional.log_loss(input, label, epsilon, name)
G
gmcather 已提交
6250 6251


6252 6253 6254
def bilinear_tensor_product(
    x, y, size, act=None, name=None, param_attr=None, bias_attr=None
):
6255
    r"""
6256 6257
    :api_attr: Static Graph

Y
Yibing Liu 已提交
6258
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
6259

Q
Qiao Longfei 已提交
6260
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
6261 6262 6263
    For example:

    .. math::
H
haowang101779990 已提交
6264
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
6265

Q
Qiao Longfei 已提交
6266
    In this formula:
6267 6268
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
6269
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
6270
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
6271 6272 6273
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
6274
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type
Y
Yibing Liu 已提交
6275
            is float32 or float64.
6276
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type
Y
Yibing Liu 已提交
6277
            should be same as **x**.
Q
Qiao Longfei 已提交
6278
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
6279
        act (str|None): Activation to be applied to the output of this layer. Default None.
6280
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
6281
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
6282 6283
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
Y
Yibing Liu 已提交
6284
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
6285 6286
        bias_attr (ParamAttr|None): To specify the bias parameter attribute.
            Default: None, which means the default bias parameter property is
Y
Yibing Liu 已提交
6287
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
6288
    Returns:
Y
Yibing Liu 已提交
6289
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
6290 6291 6292 6293

    Examples:
        .. code-block:: python

6294 6295 6296 6297 6298
            import paddle
            paddle.enable_static()
            layer1 = paddle.static.data("t1", shape=[-1, 5], dtype="float32")
            layer2 = paddle.static.data("t2", shape=[-1, 4], dtype="float32")
            tensor = paddle.static.nn.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
6299 6300
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
6301
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
6302 6303 6304

    param_shape = [size, x.shape[1], y.shape[1]]

6305 6306 6307
    w = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False
    )
6308
    out = helper.create_variable_for_type_inference(dtype=dtype)
Q
Qiao Longfei 已提交
6309 6310 6311 6312

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
6313 6314 6315
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
Q
Qiao Longfei 已提交
6316
        inputs["Bias"] = bias
6317 6318 6319
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
    )
Q
Qiao Longfei 已提交
6320 6321 6322

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
6323 6324 6325 6326 6327


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
6328 6329 6330 6331 6332 6333 6334 6335 6336
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

6337
        Output is LoDTensor:
6338 6339 6340 6341 6342 6343
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
6344 6345

    Args:
6346 6347 6348
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
6349 6350

    Returns:
6351
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
6352 6353 6354

    Examples:
        .. code-block:: python
6355

B
bdzhuxiaoning 已提交
6356 6357 6358 6359
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
6360 6361
    """

6362 6363 6364 6365 6366
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
6367 6368
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6369 6370 6371 6372 6373 6374
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
6375
    return out
6376 6377


6378
@templatedoc()
6379
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
6380
    """
6381

6382
    **Temporal Shift Operator**
6383

6384
    ${comment}
6385 6386

    Args:
6387
        x(Tensor): ${x_comment}
6388
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
6389
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
6390 6391 6392
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
6393 6394
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".
6395 6396

    Returns:
6397
        out(Tensor): The temporal shifting result is a tensor with the
K
Kaipeng Deng 已提交
6398
        same shape and same data type as the input.
6399 6400 6401 6402 6403 6404 6405

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

6406 6407 6408 6409
            import paddle
            import paddle.nn.functional as F

            input = paddle.randn([6, 4, 2, 2])
6410
            out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
6411
    """
6412 6413 6414
    return paddle.nn.functional.temporal_shift(
        x, seg_num, shift_ratio, name, data_format
    )
6415 6416


H
heqiaozhi 已提交
6417
def continuous_value_model(input, cvm, use_cvm=True):
6418
    r"""
H
fix doc  
heqiaozhi 已提交
6419

H
heqiaozhi 已提交
6420
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
6421

Z
zhoushiyu 已提交
6422
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
6423

Z
zhoushiyu 已提交
6424 6425
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
6426
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
6427 6428
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
6429

Z
zhoushiyu 已提交
6430 6431 6432 6433 6434 6435 6436
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
6437

H
heqiaozhi 已提交
6438
    Returns:
H
fix doc  
heqiaozhi 已提交
6439

Z
zhoushiyu 已提交
6440 6441
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
6442

H
heqiaozhi 已提交
6443
    Examples:
H
fix doc  
heqiaozhi 已提交
6444

H
heqiaozhi 已提交
6445
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
6446

6447
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
6448 6449
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
6450 6451 6452 6453 6454 6455 6456 6457
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
6458

H
heqiaozhi 已提交
6459 6460 6461
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
6462 6463 6464 6465 6466 6467 6468 6469 6470
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'cvm'
    )
    helper.append_op(
        type='cvm',
        inputs={'X': [input], 'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm},
    )
H
heqiaozhi 已提交
6471
    return out
Z
zhoukunsheng 已提交
6472 6473


6474
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
6475
    r"""
6476

S
SunGaofeng 已提交
6477
    This op returns a col buffer of sliding local blocks of input x, also known
6478
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
6479
    all element will be rearranged as a column. While the convolution filter sliding over
6480 6481
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
6482
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
6483 6484 6485 6486
    can be calculated as following.

    .. math::

6487
        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1
6488

6489
        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1
6490

6491
        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1
6492

6493
        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1
6494

6495
        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]
6496

6497
        Lout &= hout \times wout
6498 6499


S
SunGaofeng 已提交
6500
    Parameters:
6501
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
S
SunGaofeng 已提交
6502
                                  data type can be float32 or float64
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
6515
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
6516
                                  [dilation_h, dilation_w], or an integer dilation treated as
6517
                                  [dilation, dilation]. For default, it will be [1, 1].
6518 6519
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
6520
                             For more information, please refer to :ref:`api_guide_Name`
6521

6522

6523
    Returns:
6524
        The tensor corresponding to the sliding local blocks.
6525 6526 6527
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
S
SunGaofeng 已提交
6528 6529 6530
        The data type of output is the same as the input :math:`x`

    Return Type:
6531
        Tensor
6532 6533 6534 6535 6536

    Examples:

        .. code-block:: python

6537 6538 6539 6540 6541
            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
6542 6543
    """

6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
    return paddle.nn.functional.unfold(
        x, kernel_sizes, strides, paddings, dilations, name
    )


def deformable_roi_pooling(
    input,
    rois,
    trans,
    no_trans=False,
    spatial_scale=1.0,
    group_size=[1, 1],
    pooled_height=1,
    pooled_width=1,
    part_size=None,
    sample_per_part=1,
    trans_std=0.1,
    position_sensitive=False,
    name=None,
):
6564
    r"""
6565

6566
    Deformable ROI Pooling Layer
6567

6568
    Performs deformable region-of-interest pooling on inputs. As described
6569
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after
6570
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
6571

6572
    The operation has three steps:
6573

6574
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
6575

6576 6577
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
6578

6579
    3. Sample several points in each bin to get average values as output.
6580 6581


6582 6583 6584 6585 6586 6587 6588 6589 6590
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
6591 6592 6593
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where
                          N is number of ROIs, C is number of channels, which indicate the offset distance
                          in the x and y directions, H is pooled height, and W is pooled width.
6594 6595 6596 6597
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
6598
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels
6599
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
6600
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
6601 6602 6603 6604 6605 6606 6607
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
6608
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
6609 6610 6611 6612
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
6613 6614 6615 6616

    Examples:
      .. code-block:: python

6617 6618
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
6619
        input = fluid.data(name="input",
6620 6621
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
6622 6623
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
6624
                          dtype='float32',
C
chengjuntao 已提交
6625 6626
                          lod_level=1)
        trans = fluid.data(name="trans",
6627 6628 6629 6630 6631
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
6632
                                                no_trans=False,
6633
                                                spatial_scale=1.0,
C
chengjuntao 已提交
6634 6635 6636 6637
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
6638
                                                sample_per_part=4,
C
chengjuntao 已提交
6639 6640
                                                trans_std=0.1,
                                                position_sensitive=True)
6641

6642
        # position_sensitive=False
6643
        import paddle.fluid as fluid
C
chengjuntao 已提交
6644
        input = fluid.data(name="input",
6645 6646
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
6647 6648
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
6649
                          dtype='float32',
C
chengjuntao 已提交
6650 6651
                          lod_level=1)
        trans = fluid.data(name="trans",
6652 6653 6654 6655 6656
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
6657
                                                no_trans=False,
6658
                                                spatial_scale=1.0,
C
chengjuntao 已提交
6659 6660 6661 6662
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
6663
                                                sample_per_part=4,
C
chengjuntao 已提交
6664 6665
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
6666 6667
    """

6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        rois, 'rois', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        trans, 'trans', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_type(
        group_size, 'group_size', (list, tuple), 'deformable_roi_pooling'
    )
6680
    if part_size is not None:
6681 6682 6683
        check_type(
            part_size, 'part_size', (list, tuple), 'deformable_roi_pooling'
        )
6684

C
cjt222 已提交
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700
    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input, "ROIs": rois, "Trans": trans},
        outputs={"Output": output, "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std,
        },
    )
C
cjt222 已提交
6717
    return output
6718 6719


6720
@deprecated(since="2.0.0", update_to="paddle.shard_index")
6721 6722
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
L
lilong12 已提交
6723 6724 6725 6726 6727 6728 6729 6730 6731
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
6732 6733
    ::

6734
        shard_size = (index_num + nshards - 1) // nshards
6735

L
lilong12 已提交
6736 6737 6738
    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
6739

L
lilong12 已提交
6740 6741 6742 6743
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.
6744 6745

    Args:
L
lilong12 已提交
6746 6747
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
6748 6749 6750
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.
6751 6752

    Returns:
L
lilong12 已提交
6753
        Tensor.
6754 6755 6756 6757

    Examples:
        .. code-block:: python

6758 6759 6760 6761 6762 6763 6764 6765
            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
6766
    """
H
hong 已提交
6767
    if in_dygraph_mode():
6768 6769 6770
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
H
hong 已提交
6771

B
Baibaifan 已提交
6772
    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
6773 6774 6775
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
6776 6777 6778
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
6779 6780

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
6793
    return out
H
huangjun12 已提交
6794 6795 6796 6797


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
6798
    r"""
6799 6800 6801
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
6802

6803
    The formula is as follows:
H
huangjun12 已提交
6804

6805
    .. math::
H
huangjun12 已提交
6806

6807
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
6808

6809 6810 6811 6812 6813 6814 6815 6816 6817
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
6818 6819
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

6820 6821
    Returns:
        Variable: The output tensor with the same shape and data type as input.
6822 6823


6824
    Examples:
6825

6826
    .. code-block:: python
6827

6828
        import paddle.fluid as fluid
6829
        import paddle
6830
        import numpy as np
6831
        paddle.enable_static()
6832

6833
        DATATYPE='float32'
6834

6835
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
6836

6837 6838
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
6839

6840 6841 6842 6843 6844
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
6845
    """
J
Jiabin Yang 已提交
6846
    if _non_static_mode():
6847 6848 6849
        return _legacy_C_ops.hard_swish(
            x, 'threshold', threshold, 'scale', scale, 'offset', offset
        )
6850

6851 6852 6853
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hard_swish'
    )
6854

H
huangjun12 已提交
6855 6856
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6857 6858 6859 6860 6861 6862
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold, 'scale': scale, 'offset': offset},
    )
H
huangjun12 已提交
6863
    return out
R
ruri 已提交
6864 6865


K
Kaipeng Deng 已提交
6866 6867
@templatedoc()
def mish(x, threshold=20, name=None):
6868
    r"""
K
Kaipeng Deng 已提交
6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925
    This operator implements the mish activation function.
    Refer to `Mish: A Self Regularized Non-Monotonic Neural
    Activation Function <https://arxiv.org/abs/1908.08681>`_


    The formula is as follows if :attr:`threshold` is :code:`None` or negative:

    .. math::

        out = x * \\tanh(\\ln(1 + e^{x}))

    The formula is as follows if :attr:`threshold` is set as positive value:

    .. math::

	out = \\begin{cases}
		x \\ast \\tanh(x), \\text{if } x > \\text{threshold} \\\\
		x \\ast \\tanh(e^{x}), \\text{if } x < -\\text{threshold} \\\\
		x \\ast \\tanh(\\ln(1 + e^{x})),  \\text{otherwise}
	      \\end{cases}

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type
                      should be float16, float32 or float64.
        threshold (float|None): threshold for softplus in Mish operator.
                Approximate value of softplus will be used if absolute value
                of input is greater than :attr:threshold and :attr:threshold
                is set as positive value. For none or negative threshold,
                approximate value is not used. Default 20.
        name (str, optional): The default value is None. Normally there is no
                need for user to set this property. For more information, please
                refer to :ref:`api_guide_Name`

    Returns:
        Variable: The output tensor with the same shape and data type as input.


    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        DATATYPE='float32'

        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)

        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.mish(x)

        place = fluid.CPUPlace()
        # place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667, 3., 4.]]
    """
6926
    if in_dygraph_mode():
6927
        return _C_ops.mish(x, threshold)
6928
    if _in_legacy_dygraph():
6929
        return _legacy_C_ops.mish(x, 'threshold', threshold)
6930

K
Kaipeng Deng 已提交
6931 6932
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'mish')
    check_type(threshold, 'threshold', (float, int), 'mish')
6933 6934 6935 6936 6937
    assert (
        threshold > 0
    ), "threshold of mish should be greater than 0, " "but got {}".format(
        threshold
    )
K
Kaipeng Deng 已提交
6938 6939 6940

    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6941 6942 6943 6944 6945 6946
    helper.append_op(
        type='mish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
K
Kaipeng Deng 已提交
6947 6948 6949
    return out


6950
@deprecated(since="2.0.0", update_to="paddle.uniform")
6951
@templatedoc()
6952 6953 6954
def uniform_random(
    shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None
):
6955
    """
6956 6957
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
6958 6959 6960

    Examples:
    ::
6961

6962 6963
        Input:
          shape = [1, 2]
6964

6965 6966 6967 6968
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
6982 6983
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
6984
            time. Default is 0.
6985 6986 6987
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
6988

6989
    Returns:
6990 6991
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
6992

6993
    Raises:
6994 6995
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.
6996

6997 6998 6999
    Examples:
        .. code-block:: python

7000
            import paddle
7001
            import paddle.fluid as fluid
7002
            paddle.enable_static()
7003 7004

            # example 1:
7005
            # attr shape is a list which doesn't contain Tensor.
7006
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
7007 7008 7009
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]
7010 7011

            # example 2:
7012 7013 7014
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
7015
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
7016 7017
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]
7018 7019

            # example 3:
7020
            # attr shape is a Tensor, the data type must be int64 or int32.
7021
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
7022
            result_3 = fluid.layers.uniform_random(var_shape)
7023 7024 7025 7026
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]
7027

7028 7029 7030
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
7031

7032 7033
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
7034
        return _C_ops.uniform(
7035 7036 7037 7038 7039 7040 7041
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
7042
    elif _in_legacy_dygraph():
7043
        shape = utils.convert_shape_to_list(shape)
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
        return _legacy_C_ops.uniform_random(
            'shape',
            shape,
            'min',
            float(min),
            'max',
            float(max),
            'seed',
            seed,
            'dtype',
            dtype,
        )
7056

7057
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
7058 7059 7060
    check_dtype(
        dtype, 'dtype', ('float32', 'float64', 'uint16'), 'uniform_random/rand'
    )
7061 7062
    check_type(min, 'min', (float, int, Variable), 'uniform_random/rand')
    check_type(max, 'max', (float, int, Variable), 'uniform_random/rand')
7063 7064

    inputs = dict()
7065
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
7066 7067 7068
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand'
    )
7069

7070
    helper = LayerHelper("uniform_random", **locals())
7071
    out = helper.create_variable_for_type_inference(dtype)
7072 7073 7074
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out}
    )
7075
    utils.try_set_static_shape_tensor(out, shape)
7076
    return out
myq406450149's avatar
myq406450149 已提交
7077 7078 7079 7080 7081 7082 7083


def unbind(input, axis=0):
    """
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
7084

myq406450149's avatar
myq406450149 已提交
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
7110 7111 7112
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
7113
    if not isinstance(axis, (int)):
7114 7115 7116
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

7127 7128 7129 7130 7131 7132
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
7133
    return outs