nn.py 323.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
88
    'group_norm',
X
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
102
    'roi_align',
X
Xin Pan 已提交
103 104 105 106
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
107
    'resize_nearest',
X
Xin Pan 已提交
108 109 110 111 112 113
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
114
    'selu',
X
Xin Pan 已提交
115 116 117
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
118
    'margin_rank_loss',
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
162
    'space_to_depth',
W
whs 已提交
163
    'affine_grid',
S
sneaxiy 已提交
164
    'sequence_reverse',
165
    'affine_channel',
B
barrierye 已提交
166
    'similarity_focus',
M
minqiyang 已提交
167
    'hash',
D
dengkaipeng 已提交
168
    'grid_sampler',
G
gmcather 已提交
169 170
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
171
    'bilinear_tensor_product',
C
chengduozh 已提交
172 173
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
174
    'lstm',
Y
Yu Yang 已提交
175 176 177 178 179 180 181 182 183
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
184
       is_test=False,
185
       name=None):
Y
Yu Yang 已提交
186
    """
187
    **Fully Connected Layer**
Y
Yu Yang 已提交
188

189 190 191 192 193 194 195 196
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
197
    to the output as well.
C
caoying03 已提交
198

C
caoying03 已提交
199
    This process can be formulated as follows:
200 201 202

    .. math::

203
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
204 205 206

    In the above equation:

C
caoying03 已提交
207 208 209 210
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
211
    * :math:`Act`: The activation function.
C
caoying03 已提交
212
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
213 214

    Args:
R
ranqiu 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
230 231
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
232
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
233
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
234
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
235

236
    Returns:
F
fengjiayi 已提交
237
        Variable: The transformation result.
238 239

    Raises:
C
caoying03 已提交
240
        ValueError: If rank of the input tensor is less than 2.
241 242 243 244

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
245
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
246
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
247
    """
C
caoying03 已提交
248

C
caoying03 已提交
249
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
250 251 252 253

    dtype = helper.input_dtype()

    mul_results = []
254 255
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
256 257 258
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
259

Y
Yu Yang 已提交
260
        w = helper.create_parameter(
261
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
262
        tmp = helper.create_variable_for_type_inference(dtype)
263
        helper.append_op(
264 265 266
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
267
            outputs={"Out": tmp},
M
mozga-intel 已提交
268 269
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
270 271 272 273
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
274
    else:
X
Xin Pan 已提交
275
        pre_bias = helper.create_variable_for_type_inference(dtype)
276
        helper.append_op(
277 278 279
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
280
            attrs={"use_mkldnn": False})
281 282 283 284
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
285 286


287 288 289
def embedding(input,
              size,
              is_sparse=False,
290
              is_distributed=False,
291 292 293
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
294
    """
295 296
    **Embedding Layer**

297
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
298 299
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
300 301 302

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
303 304

    Args:
305 306 307 308 309
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
310
        is_distributed(bool): Whether to run lookup table from remote parameter server.
311 312
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
313
            with zeros whenever lookup encounters it in :attr:`input`. If
314
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
315 316
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
317
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
318

319 320 321
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
322

323 324
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
325

C
chengduoZH 已提交
326
          dict_size = len(dataset.ids)
327
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
328
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
329 330 331
    """

    helper = LayerHelper('embedding', **locals())
332 333 334 335 336
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
337 338
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
339
    tmp = helper.create_variable_for_type_inference(dtype)
340 341
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
342 343 344 345 346
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
347 348 349
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
350
            'remote_prefetch': remote_prefetch,
351 352
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
353 354 355
    return tmp


W
wopeizl 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
372

W
wopeizl 已提交
373 374 375 376 377 378 379 380 381 382 383
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
384

W
wopeizl 已提交
385 386 387 388
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
389

W
wopeizl 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
476 477


P
phlrain 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
         dropout_prob=0.0,
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
    """
    If Device is GPU, This op will use cudnn LSTM implementation

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed


    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
640 641 642 643 644 645 646 647 648 649 650
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
651 652
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
653 654 655
    """
    **Dynamic LSTMP Layer**

656 657 658 659 660 661
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
662 663 664 665 666

    The formula is as follows:

    .. math::

667
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
668

669
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
670

671
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
672

673
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
674

675
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
676

677
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
678

679
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
680

Y
Yibing Liu 已提交
681 682 683 684 685 686
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
687
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
688
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
689
          bias vector).
Y
Yibing Liu 已提交
690 691 692
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
693
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
694
    * :math:`h`: The hidden state.
695
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
696 697
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
698
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
699
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
700
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
701 702
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
703 704 705 706

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
707

Y
Yibing Liu 已提交
708 709 710 711 712 713 714 715 716 717 718 719
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
720
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
721 722
                               hidden-hidden weight and projection weight.

723 724
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
725 726
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
727 728
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
729
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
730 731 732 733 734

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
735
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
736 737 738 739 740 741
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
742
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
743 744 745
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
746
                                - The shape is (1 x 7D).
C
chengduo 已提交
747 748 749 750 751

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
752 753 754 755 756 757 758 759 760
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
761
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
762 763
                              default "tanh".
        proj_activation(str): The activation for projection output.
764
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
765 766
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
767 768
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
769 770

    Returns:
771 772 773 774
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
775 776

    Examples:
777

Y
Yibing Liu 已提交
778 779
        .. code-block:: python

780 781 782 783
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
784
            hidden_dim, proj_dim = 512, 256
785
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
786
                                     act=None, bias_attr=None)
787 788 789
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
790 791 792 793
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
794
    """
795

C
chengduo 已提交
796
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
797
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
798
    size = size // 4
Y
Yibing Liu 已提交
799 800 801 802 803 804 805 806 807 808
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
809 810 811 812 813 814
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
843 844 845 846 847 848 849 850 851
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
852
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
853

854
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
855
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
856

G
guosheng 已提交
857 858 859 860 861 862 863 864 865
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
866

G
guosheng 已提交
867
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
868

G
guosheng 已提交
869
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
870 871
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
872 873 874 875
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
876
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
877 878

    Args:
879 880
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
881
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
882
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
883 884
            is the hidden size.
        size(int): The dimension of the gru cell.
885
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
886 887
            hidden-hidden weight matrix. Note:

888
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
889
              :math:`D` is the hidden size.
890
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
891
              The first part are weights of the update gate and reset gate with
892
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
893
              candidate hidden state with shape :math:`(D \\times D)`.
894 895 896 897 898

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
899
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
900
            the bias in the update gate, reset gate and candidate calculations.
901 902 903
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
904 905
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
906
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
907 908 909
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
910
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
911
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
912 913 914 915
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
916 917

    Returns:
G
guosheng 已提交
918
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
919
            and sequence length is the same with the input.
920

G
guosheng 已提交
921
    Examples:
922

G
guosheng 已提交
923 924
        .. code-block:: python

925 926 927 928
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
929
            hidden_dim = 512
930
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
931
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
932 933 934 935 936 937 938 939 940
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
941
    batch_size = input.shape[0]
G
guosheng 已提交
942
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
943
    if h_0:
G
guosheng 已提交
944
        assert h_0.shape == (
Y
Yancey 已提交
945 946 947
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
948

X
Xin Pan 已提交
949 950 951 952
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
971 972 973
def gru_unit(input,
             hidden,
             size,
974 975
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
976
             activation='tanh',
977
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
978
    """
979
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
980

981 982
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
983

984
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
985

986
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
987

988
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
989 990

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
991 992 993
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
994 995
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

996 997
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
998 999 1000
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1001 1002 1003

    Args:
        input (Variable): The fc transformed input value of current step.
1004
        hidden (Variable): The hidden value of gru unit from previous step.
1005
        size (integer): The input dimension value.
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1020
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1021
            the bias in the update gate, reset gate and candidate calculations.
1022 1023 1024
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1025 1026
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1027 1028 1029 1030
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1031

1032 1033 1034 1035 1036 1037
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1038

1039
             # assuming we have x_t_data and prev_hidden of size=10
1040
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1041 1042
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1055
    size = size // 3
Y
Yu Yang 已提交
1056 1057

    # create weight
1058 1059
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1060

X
Xin Pan 已提交
1061 1062 1063
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1064
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1065
    # create bias
1066
    if helper.bias_attr:
Y
Yu Yang 已提交
1067 1068 1069
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1070
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1071 1072 1073

    helper.append_op(
        type='gru_unit',
1074
        inputs=inputs,
Y
Yu Yang 已提交
1075 1076 1077 1078 1079 1080
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1081 1082
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1083 1084 1085 1086 1087
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1088
@templatedoc()
1089
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1090 1091 1092 1093 1094 1095 1096
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1097
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1098 1099 1100 1101
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1102 1103 1104
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1105 1106

    """
Y
Yu Yang 已提交
1107 1108 1109 1110 1111 1112
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1113 1114 1115 1116 1117 1118 1119 1120
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1136 1137 1138 1139
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1140

W
wopeizl 已提交
1141 1142
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1143

W
wopeizl 已提交
1144
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1145

W
wopeizl 已提交
1146
        label(${label_type}): ${label_comment}
1147

W
wopeizl 已提交
1148 1149
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1150

W
wopeizl 已提交
1151 1152
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1153

W
wopeizl 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1164
                "Transition": transition,
W
wopeizl 已提交
1165 1166
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1167

W
wopeizl 已提交
1168
    return viterbi_path
Y
Yu Yang 已提交
1169 1170


Y
yi.wu 已提交
1171
@templatedoc()
F
fengjiayi 已提交
1172
def cos_sim(X, Y):
Y
Yu Yang 已提交
1173
    """
Y
yi.wu 已提交
1174 1175 1176
    ${comment}

    Args:
1177 1178
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1179

Y
yi.wu 已提交
1180
    Returns:
1181
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1182
    """
F
fengjiayi 已提交
1183
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1184 1185 1186
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1197 1198 1199 1200 1201
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1202
            dropout_implementation="downgrade_in_infer"):
1203 1204 1205 1206 1207
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1208
    training. The dropout operator randomly sets (according to the given dropout
1209 1210 1211 1212
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1213 1214
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1215 1216 1217 1218 1219 1220 1221
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1233
                                           dropout op can be removed from the program.
P
phlrain 已提交
1234
                                           the program will be efficient
1235

P
phlrain 已提交
1236

1237 1238

    Returns:
1239
        Variable: A tensor variable is the shape with `x`.
1240 1241

    Examples:
1242

1243 1244
        .. code-block:: python

1245 1246
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1247 1248
    """

F
fengjiayi 已提交
1249
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1250 1251 1252
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1253 1254 1255 1256

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1257 1258 1259 1260 1261
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1262 1263 1264 1265
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1266 1267
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1268
        })
1269 1270 1271
    return out


1272
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1273
    """
Y
Yibing Liu 已提交
1274 1275
    **Cross Entropy Layer**

1276 1277 1278
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1279 1280

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1281
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1282

Y
Yibing Liu 已提交
1283
        .. math::
Y
yangyaming 已提交
1284

Y
Yibing Liu 已提交
1285 1286 1287
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1288 1289
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1290 1291 1292 1293 1294

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1295
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1296 1297 1298
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1299 1300
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1301
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1302

Y
Yibing Liu 已提交
1303
    Args:
Y
yangyaming 已提交
1304
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1305 1306 1307 1308
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1309
        label (Variable|list): the ground truth which is a 2-D tensor. When
1310 1311 1312 1313
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1314
        soft_label (bool): a flag indicating whether to
1315
                                           interpretate the given labels as soft
1316
                                           labels. Default: `False`.
M
minqiyang 已提交
1317 1318
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1319
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1320 1321 1322 1323 1324

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1325 1326 1327 1328 1329
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1330 1331 1332 1333 1334 1335

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1336
    """
F
fengjiayi 已提交
1337
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1338
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1339 1340 1341 1342 1343
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1344 1345
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1346 1347 1348
    return out


F
fengjiayi 已提交
1349
def square_error_cost(input, label):
Y
Yu Yang 已提交
1350
    """
1351 1352
    **Square error cost layer**

1353 1354
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1369 1370
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1371 1372

    Returns:
G
guosheng 已提交
1373
        Variable: The tensor variable storing the element-wise squared error \
1374
                  difference of input and label.
1375 1376 1377 1378 1379 1380 1381 1382

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1383
    """
F
fengjiayi 已提交
1384
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1385
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1386 1387 1388 1389 1390 1391
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1392
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1393
    helper.append_op(
F
fengjiayi 已提交
1394 1395
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1396 1397 1398
    return square_out


Y
yi.wu 已提交
1399
@templatedoc()
Y
Yu Yang 已提交
1400 1401 1402 1403
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1404
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1405
    """
Y
yi.wu 已提交
1406
    **Chunk Evaluator**
Y
yi.wu 已提交
1407

Y
yangyaming 已提交
1408
    This function computes and outputs the precision, recall and
1409
    F1-score of chunk detection.
Y
yi.wu 已提交
1410

Y
yi.wu 已提交
1411 1412 1413 1414 1415 1416 1417 1418
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1419

Y
yi.wu 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1445

Y
yi.wu 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1470
    Args:
1471 1472 1473 1474 1475
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1476

Y
yi.wu 已提交
1477
    Returns:
Y
update  
yi.wu 已提交
1478 1479 1480
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1481

Y
yi.wu 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1494
    """
F
fengjiayi 已提交
1495
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1496 1497

    # prepare output
X
Xin Pan 已提交
1498 1499 1500 1501 1502 1503 1504
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1505 1506 1507 1508 1509 1510 1511 1512

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1513 1514 1515 1516
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1517 1518 1519
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1520 1521
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1522
        })
1523 1524
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1525 1526


1527
@templatedoc()
Y
Yu Yang 已提交
1528 1529 1530 1531 1532 1533 1534
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1535 1536
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1537 1538 1539 1540
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1541 1542 1543 1544 1545 1546 1547

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1561

1562 1563
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1564 1565 1566 1567 1568 1569 1570
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1571
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1582
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1583 1584 1585 1586 1587 1588
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1589
def sequence_softmax(input, use_cudnn=False, name=None):
1590 1591 1592
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1593
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1610 1611 1612
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1613

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1625 1626
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1627
    softmax_out = helper.create_variable_for_type_inference(dtype)
1628 1629 1630 1631 1632 1633 1634 1635
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1636
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1637
    """
1638
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1639
    has the same shape as the input.
Q
qiaolongfei 已提交
1640

1641 1642 1643 1644 1645 1646
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1647
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1648 1649 1650 1651 1652 1653 1654

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1655
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1656 1657 1658 1659 1660 1661 1662 1663

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1664 1665 1666
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1679 1680
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1681
    softmax_out = helper.create_variable_for_type_inference(dtype)
1682 1683 1684 1685 1686 1687 1688 1689
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1690 1691 1692
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1693 1694
           stride=1,
           padding=0,
1695
           dilation=1,
Y
Yu Yang 已提交
1696 1697 1698
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1699
           use_cudnn=True,
1700 1701
           act=None,
           name=None):
Y
Yu Yang 已提交
1702
    """
C
chengduoZH 已提交
1703
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1704 1705
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1706
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1707 1708 1709 1710 1711 1712 1713
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1714 1715 1716
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1717

1718
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1719

C
chengduoZH 已提交
1720 1721
    .. math::

C
refine  
chengduoZH 已提交
1722
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1723

T
tensor-tang 已提交
1724
    Where:
C
chengduoZH 已提交
1725

1726 1727 1728 1729 1730
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1731
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1732 1733 1734

    Example:

1735 1736
        - Input:

W
weixing02 已提交
1737
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1738

W
weixing02 已提交
1739
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1740

1741
        - Output:
T
tensor-tang 已提交
1742

W
weixing02 已提交
1743
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1744

C
chengduoZH 已提交
1745
        Where
1746 1747

        .. math::
C
chengduoZH 已提交
1748

W
weixing02 已提交
1749 1750
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1751 1752

    Args:
1753
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1754
        num_filters(int): The number of filter. It is as same as the output
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1783 1784
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1785 1786
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1787
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1788
            will be named automatically. Default: None
C
chengduoZH 已提交
1789 1790

    Returns:
G
guosheng 已提交
1791
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1792 1793
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1794
    Raises:
1795 1796
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1797

C
chengduoZH 已提交
1798 1799 1800
    Examples:
        .. code-block:: python

1801 1802
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1803 1804 1805
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1806
    assert param_attr is not False, "param_attr should not be False here."
1807
    l_type = 'conv2d'
X
xzl 已提交
1808 1809
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1810
        l_type = 'depthwise_conv2d'
1811 1812 1813 1814

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1815 1816 1817 1818 1819
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1820
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1821

C
chengduoZH 已提交
1822 1823 1824
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1825
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1826

C
chengduoZH 已提交
1827 1828
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1829 1830

    input_shape = input.shape
M
minqiyang 已提交
1831
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1832 1833

    def _get_default_param_initializer():
C
chengduo 已提交
1834 1835
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1836 1837 1838 1839 1840 1841 1842 1843
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1844
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1860
    helper.append_op(
1861
        type=l_type,
Y
Yu Yang 已提交
1862 1863 1864 1865 1866
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1867 1868 1869
        attrs={
            'strides': stride,
            'paddings': padding,
1870
            'dilations': dilation,
C
chengduoZH 已提交
1871
            'groups': groups,
1872
            'use_cudnn': use_cudnn,
1873
            'use_mkldnn': False,
C
chengduoZH 已提交
1874
        })
Y
Yu Yang 已提交
1875 1876 1877 1878 1879 1880

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1898 1899 1900 1901 1902 1903
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1913 1914
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1915 1916 1917
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1918
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1944
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1945 1946
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1947
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1948 1949
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1950
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1951 1952
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1953
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1954 1955 1956 1957 1958 1959
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1970 1971
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1972 1973
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1974
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1975
            will be named automatically. Default: None.
C
chengduoZH 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1988 1989
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1990 1991 1992
    """

    l_type = 'conv3d'
C
chengduo 已提交
1993
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2004
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2018 2019 2020
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2021 2022 2023 2024 2025 2026 2027 2028
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2029
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2044
            'use_mkldnn': False
C
chengduoZH 已提交
2045 2046
        })

2047
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2048 2049 2050 2051

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2052
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2053
    """
Y
yangyaming 已提交
2054 2055 2056
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2068
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2069 2070 2071 2072 2073
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2074
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2075 2076 2077 2078 2079 2080 2081

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2082 2083
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2084

L
Luo Tao 已提交
2085 2086
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2087
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2088
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2089
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2090 2091 2092 2093 2094 2095 2096

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2097

Y
yangyaming 已提交
2098
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2099 2100 2101 2102 2103
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2104 2105
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2106
    """
F
fengjiayi 已提交
2107
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2108
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2109 2110
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2111 2112 2113 2114 2115 2116

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2117 2118
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2119

Y
yangyaming 已提交
2120 2121 2122 2123 2124
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2125 2126 2127
    return pool_out


C
add doc  
chengduoZH 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2147
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2148 2149 2150 2151 2152
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2153
def sequence_first_step(input):
L
Luo Tao 已提交
2154
    """
L
Luo Tao 已提交
2155
    This function gets the first step of sequence.
L
Luo Tao 已提交
2156 2157 2158 2159

    .. code-block:: text

       x is a 1-level LoDTensor:
2160
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2161 2162 2163 2164 2165
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2166
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2167
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2168

L
Luo Tao 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2178

Y
yangyaming 已提交
2179
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2180 2181 2182
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2183 2184 2185
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2186
def sequence_last_step(input):
L
Luo Tao 已提交
2187
    """
L
Luo Tao 已提交
2188
    This function gets the last step of sequence.
L
Luo Tao 已提交
2189 2190 2191 2192

    .. code-block:: text

       x is a 1-level LoDTensor:
2193
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2194 2195 2196 2197 2198
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2199
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2200
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2201

L
Luo Tao 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2211

Y
yangyaming 已提交
2212
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2213 2214 2215
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2216 2217 2218
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2219 2220 2221 2222
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2223
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2224 2225 2226 2227 2228
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2229

Y
Yibing Liu 已提交
2230 2231
	- Case:

2232
            Given the input Variable **input**:
2233

2234 2235 2236
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2237

2238
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2239

2240
            the output Variable will be
2241

2242 2243 2244
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2245 2246

    NOTE: The first dimension size of **input**, **offset** and **length**
2247
          should be equal. The **offset** should start from 0.
2248

Y
Yibing Liu 已提交
2249
    Args:
2250
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2251
                         sequences.
Y
Yibing Liu 已提交
2252 2253 2254 2255 2256 2257
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2258
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2269
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2270 2271 2272 2273
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2274
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2289
@templatedoc()
Y
Yu Yang 已提交
2290
def pool2d(input,
C
chengduoZH 已提交
2291 2292
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2293 2294
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2295
           global_pooling=False,
C
chengduoZH 已提交
2296
           use_cudnn=True,
2297
           ceil_mode=False,
2298 2299
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2300
    """
F
fengjiayi 已提交
2301
    ${comment}
2302 2303

    Args:
2304 2305 2306
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2307
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2308
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2309 2310
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2311
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2312 2313 2314 2315 2316 2317
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2318 2319 2320
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2321
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2322
                        layer will be named automatically.
2323
        exclusive (bool): Whether to exclude padding points in average pooling
2324
                          mode, default is true
F
fengjiayi 已提交
2325

2326
    Returns:
F
fengjiayi 已提交
2327
        Variable: The pooling result.
F
fengjiayi 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2341 2342 2343 2344
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2345
                            global_pooling=False)
Y
Yu Yang 已提交
2346 2347 2348 2349 2350
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2351

C
chengduoZH 已提交
2352 2353 2354 2355 2356
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2357 2358 2359 2360
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2361 2362
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2363

C
Add doc  
chengduoZH 已提交
2364
    l_type = 'pool2d'
2365 2366

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2367
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2368
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2369 2370

    helper.append_op(
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2382 2383
            "use_mkldnn": False,
            "exclusive": exclusive,
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2397 2398
           name=None,
           exclusive=True):
2399 2400
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2401
    pooling configurations mentioned in input parameters.
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2414
        exclusive (bool): Whether to exclude padding points in average pooling
2415
                          mode, default is true
2416

2417
    Returns:
2418
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2419 2420 2421 2422 2423
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2424

C
chengduoZH 已提交
2425 2426 2427 2428 2429
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2430 2431 2432
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2433

C
chengduoZH 已提交
2434 2435
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2436

2437 2438
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2439
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2440
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2441 2442

    helper.append_op(
2443
        type=l_type,
Y
Yu Yang 已提交
2444 2445 2446 2447 2448 2449 2450
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2451
            "paddings": pool_padding,
2452
            "use_cudnn": use_cudnn,
2453
            "ceil_mode": ceil_mode,
2454 2455
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2468
               data_layout='NCHW',
Y
Yang Yang 已提交
2469
               in_place=False,
2470 2471
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2472
               moving_variance_name=None,
2473 2474
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2475
    """
Q
qiaolongfei 已提交
2476 2477 2478 2479
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2480

Q
qiaolongfei 已提交
2481
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2482

Q
qiaolongfei 已提交
2483 2484
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2485 2486 2487
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2500 2501

    Args:
Q
qiaolongfei 已提交
2502
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2503 2504 2505 2506
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2507 2508 2509 2510 2511 2512 2513 2514
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2515
        data_layout(string, default NCHW): NCHW|NHWC
2516
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2517 2518 2519 2520
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2521
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2522
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2523 2524

    Returns:
Q
qiaolongfei 已提交
2525
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2526 2527 2528 2529 2530 2531 2532

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2533
    """
C
chengduo 已提交
2534
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2557
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2558

2559 2560
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2561 2562 2563
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2564
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2565
        shape=param_shape,
2566 2567 2568 2569 2570 2571 2572
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2573
            trainable=False,
W
wanghaoshuang 已提交
2574
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2575
        shape=param_shape,
2576 2577
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2578 2579 2580 2581 2582 2583

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2584 2585 2586 2587
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2588

X
Xin Pan 已提交
2589 2590
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2608 2609 2610 2611
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2612
            "use_mkldnn": False,
2613
            "fuse_with_relu": fuse_with_relu
2614
        })
Y
Yu Yang 已提交
2615 2616 2617 2618

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2619
@templatedoc()
G
guosheng 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2630
    ${comment}
G
guosheng 已提交
2631 2632 2633

    The formula is as follows:

Y
yuyang18 已提交
2634
    ..  math::
G
guosheng 已提交
2635 2636 2637 2638 2639 2640 2641

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2642 2643 2644 2645 2646 2647 2648 2649
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2650

G
guosheng 已提交
2651 2652
    Args:
        input(Variable): The input tensor variable.
2653
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2654
            normalization. Default True.
2655
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2656 2657
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2658
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2659
            Default 1.
2660
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2661
            division by zero. Default 1e-05.
G
guosheng 已提交
2662
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2663 2664
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2665 2666
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2667
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2668 2669
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2670
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2671
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2672
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2673 2674 2675
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2676 2677

    Returns:
Y
yuyang18 已提交
2678
        ${y_comment}
G
guosheng 已提交
2679 2680 2681

    Examples:

Y
yuyang18 已提交
2682 2683 2684
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2700
    if shift:
G
guosheng 已提交
2701 2702 2703 2704 2705 2706
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2707 2708 2709 2710 2711
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2805 2806 2807 2808
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2809 2810 2811
                     padding=0,
                     stride=1,
                     dilation=1,
2812
                     groups=None,
C
caoying03 已提交
2813
                     param_attr=None,
2814
                     bias_attr=None,
C
chengduoZH 已提交
2815
                     use_cudnn=True,
2816
                     act=None,
C
caoying03 已提交
2817
                     name=None):
Y
Yu Yang 已提交
2818
    """
2819 2820 2821 2822 2823 2824 2825 2826
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2827 2828
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2829 2830 2831
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2832 2833 2834 2835 2836

    For each input :math:`X`, the equation is:

    .. math::

2837
        Out = \sigma (W \\ast X + b)
2838

2839
    Where:
2840 2841 2842

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2843 2844 2845 2846
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2847

2848 2849 2850 2851
    Example:

        - Input:

2852
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2853

2854
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2855 2856 2857

        - Output:

2858
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2859 2860

        Where
Y
Yu Yang 已提交
2861

2862 2863
        .. math::

2864 2865 2866 2867
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2868 2869

    Args:
2870 2871 2872 2873
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2874 2875 2876 2877
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2906
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2907 2908 2909
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2910
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2911
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2912 2913

    Returns:
2914
        Variable: The tensor variable storing the convolution transpose result.
2915 2916

    Raises:
2917 2918
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2919 2920 2921 2922

    Examples:
       .. code-block:: python

2923 2924
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2925
    """
C
chengduo 已提交
2926
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2927 2928 2929 2930 2931 2932 2933 2934
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2935 2936 2937
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2938 2939 2940
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2941

C
chengduoZH 已提交
2942 2943
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2944

Y
Yu Yang 已提交
2945 2946 2947 2948 2949
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2950

Y
Yu Yang 已提交
2951 2952
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2953

C
chengduoZH 已提交
2954
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2955
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2956
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2957
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2958
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2959 2960 2961
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2962

2963 2964 2965 2966 2967 2968 2969
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2970
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2971
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2972

Y
Yu Yang 已提交
2973 2974 2975
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2976
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2977
    helper.append_op(
2978
        type=op_type,
Y
Yu Yang 已提交
2979 2980
        inputs={'Input': [input],
                'Filter': [img_filter]},
2981
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2982
        attrs={
2983
            'output_size': output_size,
2984 2985 2986 2987 2988
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2989 2990
        })

2991 2992 2993
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2994 2995


2996
def conv3d_transpose(input,
Y
Yu Yang 已提交
2997 2998 2999
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3000 3001 3002
                     padding=0,
                     stride=1,
                     dilation=1,
3003
                     groups=None,
C
caoying03 已提交
3004
                     param_attr=None,
3005
                     bias_attr=None,
C
chengduoZH 已提交
3006
                     use_cudnn=True,
3007
                     act=None,
C
caoying03 已提交
3008
                     name=None):
Y
Yu Yang 已提交
3009
    """
3010
    **Convlution3D transpose layer**
3011

3012
    The convolution3D transpose layer calculates the output based on the input,
3013
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3014 3015 3016 3017 3018 3019
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3020 3021 3022
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3023 3024 3025 3026 3027

    For each input :math:`X`, the equation is:

    .. math::

3028
        Out = \sigma (W \\ast X + b)
3029 3030 3031

    In the above equation:

3032 3033
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3034 3035 3036 3037
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3038

3039 3040 3041 3042
    Example:

        - Input:

3043
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3044

3045
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3046 3047 3048

        - Output:

3049
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3050 3051

        Where
Y
Yu Yang 已提交
3052

3053 3054
        .. math::

3055 3056 3057
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3058 3059

    Args:
3060
        input(Variable): The input image with [N, C, D, H, W] format.
3061 3062 3063
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3064
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3065 3066
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3067
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3068 3069 3070
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3071 3072
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3073
        stride(int|tuple): The stride size. If stride is a tuple, it must
3074 3075
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3076
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3077 3078 3079
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3080 3081 3082 3083 3084
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3094 3095
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3096 3097
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3098 3099
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3100 3101

    Returns:
3102
        Variable: The tensor variable storing the convolution transpose result.
3103 3104

    Raises:
3105 3106
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3107 3108 3109 3110

    Examples:
       .. code-block:: python

3111 3112
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3113
    """
C
chengduo 已提交
3114
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3115 3116
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3117
    if not isinstance(input, Variable):
3118
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3119 3120
    input_channel = input.shape[1]

3121 3122 3123
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3124

C
chengduoZH 已提交
3125 3126 3127
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3128 3129 3130 3131 3132 3133
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3134 3135 3136
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3137

3138
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3139
                         padding[0] - 1) // dilation[0] + 1
3140
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3141
                         padding[1] - 1) // dilation[1] + 1
3142
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3143
                         padding[2] - 1) // dilation[2] + 1
3144
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3145
    else:
3146 3147
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3148

3149
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3150
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3151 3152 3153
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3154
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3155
    helper.append_op(
3156
        type=l_type,
Y
Yu Yang 已提交
3157 3158
        inputs={'Input': [input],
                'Filter': [img_filter]},
3159
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3160 3161 3162 3163
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3164
            'groups': groups,
C
chengduoZH 已提交
3165 3166
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3167

3168 3169
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3170
    return out
Y
yangyaming 已提交
3171 3172


Y
yangyaming 已提交
3173
def sequence_expand(x, y, ref_level=-1, name=None):
3174
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3175 3176 3177 3178
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3179 3180 3181 3182 3183

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3184
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3185
                x.data = [[a], [b], [c], [d]]
3186 3187 3188
                x.dims = [4, 1]

            y is a LoDTensor:
3189 3190
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3191

Y
yangyaming 已提交
3192
            ref_level: 0
3193

Y
yangyaming 已提交
3194
            then output is a 1-level LoDTensor:
3195
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3196
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3197 3198 3199 3200
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3201
                x.data = [[a], [b], [c]]
3202 3203 3204
                x.dims = [3, 1]

            y is a LoDTensor:
3205
                y.lod = [[2, 0, 3]]
3206

Y
yangyaming 已提交
3207
            ref_level: -1
3208

Y
yangyaming 已提交
3209 3210 3211
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3212 3213 3214
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3215 3216
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3217
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3218
                        will be named automatically.
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3229
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3230
    """
Y
yangyaming 已提交
3231
    helper = LayerHelper('sequence_expand', input=x, **locals())
3232
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3233
    tmp = helper.create_variable_for_type_inference(dtype)
3234
    helper.append_op(
Y
yangyaming 已提交
3235 3236 3237 3238 3239
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3240
    return tmp
3241 3242


C
chengduo 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3299
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3300 3301 3302 3303 3304 3305 3306 3307
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3308
@templatedoc()
3309
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3310 3311 3312 3313 3314
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3315 3316 3317
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3318
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3319 3320 3321 3322
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3323 3324 3325
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3326

F
fengjiayi 已提交
3327
    Returns:
M
minqiyang 已提交
3328
        Variable: The padded sequence batch and the original lengths before
3329
                  padding. All sequences has the same length.
M
minqiyang 已提交
3330

F
fengjiayi 已提交
3331 3332 3333 3334 3335 3336 3337
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3338
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3339
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3340 3341 3342 3343 3344
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3345 3346
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3347 3348 3349 3350

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3351 3352 3353 3354 3355 3356
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3357 3358
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3359
        attrs={'padded_length': maxlen})
3360
    return out, length
F
fengjiayi 已提交
3361 3362


3363
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3364
    """
3365
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3366

3367 3368
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3369 3370 3371 3372 3373 3374 3375 3376 3377
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3378 3379 3380
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3381
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3382 3383 3384 3385 3386 3387

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3388
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3389 3390 3391 3392 3393 3394

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3395 3396
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3411
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3423 3424 3425 3426 3427 3428 3429 3430 3431
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3432 3433
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3434 3435 3436

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3437 3438

    This layer does the search in beams for one time step. Specifically, it
3439 3440 3441 3442 3443 3444
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3445

3446 3447 3448 3449 3450 3451 3452 3453
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3454

3455
    Args:
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3481

3482
    Returns:
3483 3484
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3485 3486 3487 3488

    Examples:
        .. code-block:: python

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3506 3507 3508 3509
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3510 3511 3512
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3513 3514 3515 3516 3517

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3518
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3536 3537 3538 3539 3540 3541 3542
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3543

3544 3545 3546 3547 3548 3549 3550 3551 3552
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3553

3554 3555 3556 3557 3558 3559
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3560

3561 3562
    Examples:
        .. code-block:: python
3563

3564 3565 3566 3567 3568 3569
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3570 3571
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3587 3588 3589 3590
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3591
              param_attr=None,
C
caoying03 已提交
3592 3593
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3594 3595 3596 3597
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3598
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3599

3600
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3601

3602
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3603

3604
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3605 3606 3607

            h_t & = o_t tanh(c_t)

3608 3609 3610 3611 3612 3613
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3614 3615 3616

        .. math::

3617
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3618 3619 3620 3621 3622 3623 3624 3625

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3626
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3627 3628

    Args:
Y
yangyaming 已提交
3629 3630 3631 3632 3633 3634
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3635
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3648 3649
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3650 3651

    Returns:
Y
yangyaming 已提交
3652
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3653 3654

    Raises:
3655 3656 3657 3658
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3659 3660 3661 3662 3663 3664

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3665
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3666
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3667
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3684
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3685 3686 3687 3688
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3689 3690
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3691 3692 3693
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3694
    size = cell_t_prev.shape[1]
3695
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3696 3697
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3698
                param_attr=param_attr,
3699
                bias_attr=bias_attr)
Y
yangyaming 已提交
3700
    dtype = x_t.dtype
X
Xin Pan 已提交
3701 3702
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3703 3704 3705 3706 3707 3708 3709 3710 3711

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3712
    return h, c
G
guosheng 已提交
3713 3714


C
caoying03 已提交
3715
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3716
    """
Y
yangyaming 已提交
3717
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3718 3719 3720

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3721
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3722 3723
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3724 3725
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3726
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3727
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3728
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3729 3730
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3731 3732 3733

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3734

G
guosheng 已提交
3735 3736 3737 3738 3739 3740
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3741
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3742 3743 3744 3745
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3746 3747 3748 3749

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3750
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3751 3752 3753
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3754 3755
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3756
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3757 3758
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3759 3760 3761 3762 3763
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3764
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3765 3766 3767 3768
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3769 3770


C
caoying03 已提交
3771
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3772
    """
Y
Yibing Liu 已提交
3773
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3774 3775 3776

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3777 3778 3779
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3780
            must be in the range :math:`[-rank(input), rank(input))`. If
3781
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3782
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3783 3784
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3785
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3786
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3787
                       will be named automatically.
G
guosheng 已提交
3788 3789

    Returns:
Y
Yibing Liu 已提交
3790
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3791

G
guosheng 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3802 3803
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3804 3805 3806 3807 3808 3809 3810

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3811 3812
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3813
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3814 3815
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3816 3817 3818 3819 3820
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3821
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3822 3823 3824 3825
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3826 3827


C
caoying03 已提交
3828
def reduce_max(input, dim=None, keep_dim=False, name=None):
3829
    """
Y
yangyaming 已提交
3830
    Computes the maximum of tensor elements over the given dimension.
3831 3832 3833

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3834
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3835 3836 3837
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3838
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3839 3840
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3841
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3842 3843
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3844 3845 3846

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3847

3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3859 3860 3861 3862 3863 3864 3865

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3866 3867
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3868
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3869 3870
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3871 3872 3873 3874 3875
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3876
            'dim': dim if dim != None else [0],
3877 3878 3879 3880 3881 3882
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3883
def reduce_min(input, dim=None, keep_dim=False, name=None):
3884
    """
Y
yangyaming 已提交
3885
    Computes the minimum of tensor elements over the given dimension.
3886 3887 3888

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3889
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3890 3891 3892
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3893
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3894 3895
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3896
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3897 3898
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3899 3900 3901

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3902

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3914 3915 3916 3917 3918 3919 3920

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3921 3922
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3923
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3924 3925
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3926 3927 3928 3929 3930
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3931
            'dim': dim if dim != None else [0],
3932 3933 3934 3935
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3936 3937


3938 3939 3940 3941 3942 3943
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3944
        dim (list|int|None): The dimensions along which the product is performed. If
3945 3946
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3947 3948
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3949 3950 3951
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3952
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3953
            layer will be named automatically.
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3968
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3969
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3970 3971 3972 3973 3974 3975 3976

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3977 3978
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3979
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3980 3981
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3982 3983 3984 3985 3986
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3987
            'dim': dim if dim != None else [0],
3988 3989 3990 3991 3992 3993
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3994
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3995
    """
C
caoying03 已提交
3996
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3997 3998 3999

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4000 4001 4002 4003 4004
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4005
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4006
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4007
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4008 4009
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4010 4011

    Returns:
D
dzhwinter 已提交
4012
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4022 4023
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4039
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4062
    .. math::
4063 4064

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4065 4066 4067 4068 4069

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4070
        x(Variable|list): The input tensor to l2_normalize layer.
4071
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4072 4073
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4074
        epsilon(float): The epsilon value is used to avoid division by zero, \
4075
            the defalut value is 1e-10.
4076
        name(str|None): A name for this layer(optional). If set None, the layer \
4077
            will be named automatically.
C
caoying03 已提交
4078 4079

    Returns:
4080
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4081 4082

    Examples:
4083

C
caoying03 已提交
4084 4085
        .. code-block:: python

4086 4087 4088 4089
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4090 4091
    """

F
fengjiayi 已提交
4092 4093
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4094 4095
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4096 4097
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4098
    helper.append_op(
4099 4100 4101 4102
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4103
        attrs={
4104 4105
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4106 4107
        })
    return out
4108 4109


S
sneaxiy 已提交
4110
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4111
    """
Y
ying 已提交
4112 4113 4114 4115
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4116

C
chengduoZH 已提交
4117
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4118
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4119

4120 4121 4122 4123 4124
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4125
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4126

C
chengduoZH 已提交
4127
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4128
      performs in the following way.
G
guosheng 已提交
4129

4130
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4131
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4132
        last two dimensions and a batched matrix multiply supporting broadcast
4133
        applies on the two tensors.
G
guosheng 已提交
4134

Y
ying 已提交
4135 4136
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4137
    removed after matrix multiplication.
G
guosheng 已提交
4138 4139 4140

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4141 4142 4143
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4144
        alpha (float): The scale of output. Default 1.0.
4145
        name(str|None): A name for this layer(optional). If set None, the layer
4146
            will be named automatically.
G
guosheng 已提交
4147 4148

    Returns:
4149
        Variable: The product Tensor variable.
G
guosheng 已提交
4150

G
guosheng 已提交
4151 4152 4153
    Examples:
        .. code-block:: python

4154
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4155 4156
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4157

4158 4159
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4160

4161 4162
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4163

4164 4165
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4166 4167 4168 4169

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4170 4171
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4172

Y
ying 已提交
4173
            # x: [M], y: [N]
4174
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4175
    """
Y
ying 已提交
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4188
            y_shape = y_shape + [1]
Y
ying 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4205
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4206
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4207
    helper.append_op(
4208 4209 4210 4211
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4212 4213 4214
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4215
            'alpha': float(alpha),
S
sneaxiy 已提交
4216
        })
4217
    return out
4218 4219


4220
def topk(input, k, name=None):
Q
qingqing01 已提交
4221 4222 4223 4224
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4225
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4226 4227 4228 4229 4230 4231
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4253 4254 4255
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4256
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4257
                 of input.
4258
        name(str|None): A name for this layer(optional). If set None, the layer
4259
                       will be named automatically.
F
fengjiayi 已提交
4260
                       Default: None
Q
qingqing01 已提交
4261 4262

    Returns:
4263 4264 4265
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4266
        within the last dimension of input.
Q
qingqing01 已提交
4267

F
fengjiayi 已提交
4268 4269
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4270 4271 4272 4273 4274 4275 4276

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4277 4278
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4290
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4291
    """
Y
ying 已提交
4292 4293 4294 4295 4296 4297 4298 4299 4300
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4301

Y
ying 已提交
4302
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4303

4304
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4305 4306
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4307
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4308

4309
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4310 4311
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4312

4313 4314 4315
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4316
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4317
                          the length of reference string.
4318
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4319
                                     calculating edit distance.
4320
        name (str): The name of this layer. It is optional.
4321

W
wanghaoshuang 已提交
4322
    Returns:
W
wanghaoshuang 已提交
4323
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4324 4325 4326 4327

    Examples:
        .. code-block:: python

T
tink2123 已提交
4328 4329
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4330
            cost = fluid.layers.edit_distance(input=x,label=y)
4331
    """
4332
    helper = LayerHelper("edit_distance", **locals())
4333

4334
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4335
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4336 4337
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4338 4339 4340 4341 4342

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4343
            attrs={"tokens": ignored_tokens})
4344 4345 4346 4347 4348
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4349
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4350
            attrs={"tokens": ignored_tokens})
4351 4352
        label = erased_label

4353
    # edit distance op
X
Xin Pan 已提交
4354 4355
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4356 4357 4358 4359
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4360 4361
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4362 4363
        attrs={"normalized": normalized})

4364
    return edit_distance_out, sequence_num
4365 4366 4367 4368 4369


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4370

Y
ying 已提交
4371 4372 4373 4374
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4392
        input.lod = [[4, 4]]
4393 4394
      
        Computation:
4395

4396 4397 4398 4399 4400 4401
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4402 4403 4404 4405 4406

        output.data = [[2],
                       [1],
                       [3]]

4407
        output.lod = [[2, 1]]
4408

4409

4410 4411
    Args:

Y
ying 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4421
        name (str): The name of this layer. It is optional.
4422 4423

    Returns:
4424 4425 4426 4427
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4428 4429 4430 4431 4432

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4433

4434
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4435
    """
4436
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4437
    _, topk_indices = topk(input, k=1)
4438 4439

    # ctc align op
X
Xin Pan 已提交
4440
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4441 4442 4443
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4444
        outputs={"Output": [ctc_out]},
4445 4446
        attrs={"merge_repeated": True,
               "blank": blank})
4447
    return ctc_out
4448 4449


W
Wu Yi 已提交
4450
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4451
    """
4452 4453
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4454
    to compute Connectionist Temporal Classification (CTC) loss.
4455 4456
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4457 4458 4459
    input tensor.

    Args:
4460
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4461 4462 4463 4464
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4465
       label (Variable): The ground truth of variable-length sequence,
4466 4467 4468
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4469 4470
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4471 4472 4473
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4474
         follewed by a mean_op.
W
Wu Yi 已提交
4475
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4476 4477

    Returns:
4478 4479
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4480 4481

    Examples:
4482

W
wanghaoshuang 已提交
4483
        .. code-block:: python
4484

4485 4486 4487
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4488 4489

    """
F
fengjiayi 已提交
4490
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4491 4492
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4493 4494 4495 4496 4497 4498
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4499 4500 4501 4502 4503
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4504
    return loss_out
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4520 4521 4522
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4523 4524 4525 4526 4527
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4528

4529
            out.lod  = [[0, 1, 3]]
4530 4531 4532 4533

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4534 4535 4536 4537 4538 4539 4540
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4541 4542 4543

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4544 4545

    Returns:
4546

4547 4548 4549 4550 4551
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4552
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4553
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4554 4555
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4556
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4557 4558 4559 4560 4561 4562
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4563 4564


4565 4566 4567 4568
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4569 4570 4571 4572 4573 4574
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4575
        num_neg_samples=None,
4576 4577 4578
        name=None,
        sampler="uniform",
        custom_dist=None,
4579 4580
        seed=0,
        is_sparse=False):
4581 4582 4583 4584 4585 4586 4587
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4588 4589
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4590
            sample is 1.0.
C
chengduo 已提交
4591 4592 4593 4594 4595 4596 4597 4598 4599
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4600
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4601 4602
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4603 4604 4605
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4606
        custom_dist (float[]): A float[] with size=num_total_classes.
4607 4608 4609 4610
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4611
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4612

4613
    Returns:
Y
Yibing Liu 已提交
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4641 4642 4643 4644 4645 4646 4647 4648 4649

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4650

4651
    """
Y
Yang Yu 已提交
4652 4653 4654
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4655 4656

    dim = input.shape[1]
Y
Yang Yu 已提交
4657 4658 4659 4660 4661 4662
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4663
    inputs = {}
C
chengduo 已提交
4664 4665 4666 4667 4668 4669 4670
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4671 4672 4673
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4674

4675 4676 4677 4678
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4679 4680 4681 4682 4683 4684 4685

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4738 4739 4740 4741
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4742 4743 4744 4745 4746
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4747 4748
    attrs = {
        'num_total_classes': int(num_total_classes),
4749 4750
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4751 4752
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4753
    }
Y
Yang Yu 已提交
4754 4755 4756

    helper.append_op(
        type='nce',
C
chengduo 已提交
4757
        inputs=inputs,
Y
Yang Yu 已提交
4758 4759 4760 4761 4762 4763
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4764
    return cost / (num_neg_samples + 1)
4765 4766


C
chengduo 已提交
4767 4768
def hsigmoid(input,
             label,
4769
             num_classes,
C
chengduo 已提交
4770 4771
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4772
             name=None,
4773 4774 4775
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4776
             is_sparse=False):
W
weixing02 已提交
4777 4778
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4779
    process of language model. This operator organizes the classes into a
4780 4781
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4782 4783 4784 4785 4786 4787
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4788
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4789
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4790

4791 4792 4793 4794 4795 4796 4797 4798 4799
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4800
    Args:
M
minqiyang 已提交
4801
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4802 4803 4804 4805
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4806 4807 4808
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4820 4821 4822 4823 4824 4825 4826
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4827
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4828 4829
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4830 4831

    Returns:
J
JiabinYang 已提交
4832
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4833 4834 4835 4836 4837

    Examples:

        .. code-block:: python

G
guosheng 已提交
4838 4839 4840
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4841 4842 4843 4844
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4845 4846
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4847
    dim = input.shape[1]
4848
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4849 4850 4851
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4852 4853 4854 4855
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4856 4857
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4858 4859 4860
    else:
        pass

J
JiabinYang 已提交
4861 4862
    weights = None

4863
    if not is_custom:
J
JiabinYang 已提交
4864 4865 4866 4867 4868 4869 4870 4871
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4872
            shape=[num_classes, dim],
J
JiabinYang 已提交
4873 4874
            is_bias=False,
            dtype=input.dtype)
4875 4876 4877
    inputs = {
        "X": input,
        "W": weights,
4878 4879
        "PTable": path_table,
        "PathCode": path_code,
4880 4881
        "Label": label
    }
W
weixing02 已提交
4882
    if helper.bias_attr:
4883
        if not is_custom:
J
JiabinYang 已提交
4884 4885
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4886
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4887 4888 4889 4890 4891 4892
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4893
                shape=[num_classes, 1],
J
JiabinYang 已提交
4894 4895 4896
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4897 4898
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4899
        inputs=inputs,
W
weixing02 已提交
4900 4901
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4902 4903
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4904 4905 4906
    return out


Y
fix ci.  
ying 已提交
4907
def transpose(x, perm, name=None):
Y
ying 已提交
4908 4909 4910 4911 4912 4913 4914
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4915 4916 4917
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4918 4919 4920 4921 4922 4923 4924

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4925
            # use append_batch_size=False to avoid prepending extra
4926
            # batch size in shape
4927
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4928
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4929
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4930 4931
    """

Y
fix ci.  
ying 已提交
4932
    if len(perm) != len(x.shape):
Y
ying 已提交
4933 4934 4935
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4936 4937 4938 4939 4940 4941
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4942 4943

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4944 4945
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4946
    helper.append_op(
4947
        type='transpose2',
Y
fix ci.  
ying 已提交
4948
        inputs={'X': [x]},
4949 4950
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4951 4952
        attrs={'axis': perm})
    return out
4953 4954


4955 4956 4957 4958 4959 4960 4961
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4962
    """
4963 4964 4965 4966 4967 4968 4969
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4998 4999 5000 5001 5002 5003 5004 5005 5006
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5007 5008 5009
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5010 5011 5012 5013 5014
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5042 5043 5044
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5057
            output.dims = {8, 8}
5058

5059
            output.lod = [[4, 4]]
5060

5061
    Examples:
5062 5063 5064

        .. code-block:: python

5065 5066
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5067 5068

    """
W
wanghaoshuang 已提交
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5079 5080 5081 5082 5083 5084 5085
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5086
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5087
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5088
    helper.append_op(
5089
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5090
    return out
5091 5092


Y
yuyang18 已提交
5093
@templatedoc()
5094
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5095 5096
    """
    ${comment}
5097 5098

    Args:
Y
yuyang18 已提交
5099
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5100 5101
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5102 5103 5104 5105 5106
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5107
        ${out_comment}.
5108 5109

    Examples:
Y
yuyang18 已提交
5110 5111 5112 5113
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5114 5115 5116 5117 5118 5119
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5120
    out = helper.create_variable_for_type_inference(dtype)
5121 5122 5123 5124 5125
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5126
    return helper.append_activation(out)
5127 5128


Y
yuyang18 已提交
5129
@templatedoc()
5130 5131
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5132 5133 5134 5135 5136 5137 5138
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5139 5140

    Args:
Y
yuyang18 已提交
5141 5142
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5143 5144

    Returns:
Y
yuyang18 已提交
5145
        ${out_comment}.
5146 5147
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5148 5149 5150 5151 5152

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5153
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5154 5155 5156 5157 5158 5159
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5160 5161


5162 5163 5164
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
5165
                               ignore_index=-100,
5166 5167
                               numeric_stable_mode=False,
                               return_softmax=False):
5168 5169
    """
    **Softmax With Cross Entropy Operator.**
5170

5171 5172 5173 5174
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5175

5176 5177 5178
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5179

5180 5181 5182
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5183

5184
    The equation is as follows:
5185

5186
    1) Hard label (one-hot label, so every sample has exactly one class)
5187

5188 5189 5190 5191
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5192

5193 5194 5195
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5196

5197 5198 5199 5200
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5201 5202 5203
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5204

S
sneaxiy 已提交
5205 5206 5207 5208 5209 5210 5211 5212
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5213 5214 5215 5216 5217 5218 5219 5220
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5221 5222
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5223
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5224 5225 5226
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5227 5228 5229
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5230
                                    stable algorithm. Default: False
5231
        return_softmax (bool): A flag indicating whether to return the softmax
5232
                               along with the cross entropy loss. Default: False
5233

5234
    Returns:
5235 5236 5237 5238
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5239
                              2-D tensor with shape [N x K].
5240 5241 5242 5243 5244 5245 5246

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5247 5248
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5249 5250
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5251 5252
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5253 5254 5255 5256 5257 5258
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5259 5260 5261 5262 5263
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5264 5265 5266 5267

    if return_softmax:
        return loss, softmax

5268 5269 5270 5271 5272
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5273 5274
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5275
    For each instance, it computes the smooth L1 loss element by element first
5276
    and then sums all the losses. So the shape of ouput Variable is
5277
    [batch_size, 1].
5278

5279 5280
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5281
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5282
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5283
            L1 loss op with same shape as :attr:`x`.
5284
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5285 5286
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5287
            by this tensor element by element.
5288
        outside_weight (Variable|None): A tensor with rank at least 2. This
5289 5290
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5291
            element by element.
5292
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5293 5294
           scalar with default value 1.0.

5295
    Returns:
5296
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5297 5298 5299 5300 5301

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5302 5303
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5304
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5305
            out = fluid.layers.smooth_l1(x=fc, y=label)
5306
    """
5307

5308
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5309 5310
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5323 5324 5325 5326


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5327
    This layer creates the one-hot representations for input indices.
5328 5329

    Args:
Y
Yibing Liu 已提交
5330 5331
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5332 5333

    Returns:
Y
Yibing Liu 已提交
5334
        Variable: The one-hot representations of input.
5335 5336

    Examples:
C
caoying03 已提交
5337
        .. code-block:: python
5338

Y
Yibing Liu 已提交
5339 5340
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5341 5342
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5343
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5344 5345 5346 5347 5348 5349
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5350 5351


Y
Yu Yang 已提交
5352
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5353
    """
Y
yi.wu 已提交
5354 5355 5356
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5357 5358 5359 5360 5361 5362

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5363 5364
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5365 5366 5367 5368 5369 5370

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5371 5372
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5373 5374
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5375 5376 5377 5378 5379
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5380
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5381
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5382 5383
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5384 5385
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5386 5387 5388
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5389 5390


5391
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5392
    """
C
caoying03 已提交
5393 5394
    Gives a new shape to the input Tensor without changing its data.

5395 5396 5397 5398 5399
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5400

5401
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5402

5403 5404 5405 5406
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5407
    2. 0 means the actual dimension value is going to be copied from the
5408 5409 5410 5411
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5412 5413

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5414
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5415
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5416

5417
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5418 5419
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5420 5421
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5422
    dimensions.
C
caoying03 已提交
5423

5424
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5425 5426 5427 5428
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5429 5430

    Args:
5431
        x(variable): The input tensor.
C
caoying03 已提交
5432 5433
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5434 5435 5436 5437 5438
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5439 5440
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5441 5442 5443 5444 5445 5446 5447
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5448
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5449

5450
    Returns:
G
guosheng 已提交
5451 5452 5453 5454
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5455

X
Xin Pan 已提交
5456 5457 5458
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5459 5460
    Examples:
        .. code-block:: python
G
guosheng 已提交
5461

5462
            data = fluid.layers.data(
5463
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5464
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5465
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5466 5467 5468
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5469
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5470 5471 5472 5473 5474
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5475

5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5491
    helper = LayerHelper("reshape2", **locals())
5492 5493
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5494
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5495
    helper.append_op(
5496
        type="reshape2",
X
Xin Pan 已提交
5497
        inputs=inputs,
D
dzhwinter 已提交
5498
        attrs={"shape": shape},
5499 5500
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5501

D
dzhwinter 已提交
5502
    return helper.append_activation(out)
5503

5504

5505
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5506
    """
M
minqiyang 已提交
5507 5508 5509
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5510
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5511

Y
Yibing Liu 已提交
5512 5513
    Examples:
    Case 1:
M
minqiyang 已提交
5514
      Given
Y
Yibing Liu 已提交
5515 5516 5517 5518 5519 5520 5521 5522
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5523
        and
Y
Yibing Liu 已提交
5524 5525 5526
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5527

Y
Yibing Liu 已提交
5528
    Args:
5529
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5530
        axes (list): List of integers, indicating the dimensions to be squeezed.
5531
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5532 5533 5534 5535 5536 5537 5538 5539

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5540
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5541 5542
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5543 5544
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5545
    helper.append_op(
5546
        type="squeeze2",
5547
        inputs={"X": input},
Y
Yibing Liu 已提交
5548
        attrs={"axes": axes},
5549 5550
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5551

5552 5553 5554
    return out


5555
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5556
    """
M
minqiyang 已提交
5557 5558 5559
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5560

M
minqiyang 已提交
5561 5562
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5563
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5564

Y
Yibing Liu 已提交
5565
    Args:
5566
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5567
        axes (list): List of integers, indicating the dimensions to be inserted.
5568
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5569 5570 5571 5572 5573 5574 5575 5576

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5577
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5578 5579
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5580 5581
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5582
    helper.append_op(
5583
        type="unsqueeze2",
5584
        inputs={"X": input},
Y
Yibing Liu 已提交
5585
        attrs={"axes": axes},
5586 5587
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5588

5589 5590
    return out

5591

Y
yangyaming 已提交
5592
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5593
    """
Y
Yibing Liu 已提交
5594
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5595 5596 5597 5598
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5599
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5600 5601 5602 5603 5604 5605

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5606
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5607 5608 5609
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5610
            target_lod: [4, 2]
Y
yangyaming 已提交
5611 5612

            then we get a 1-level LoDTensor:
5613
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5614 5615 5616 5617 5618 5619
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5620
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5621 5622 5623 5624
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5625
                y.data = [[2, 4]]
Y
yangyaming 已提交
5626 5627 5628
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5629
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5630 5631 5632 5633 5634 5635
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5636
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5637 5638 5639 5640
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5641
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5642 5643 5644 5645
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5646
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5647 5648 5649 5650 5651
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5652
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5653
                           from :attr:`y`.
Y
yangyaming 已提交
5654
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5655
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5656 5657

    Returns:
Y
Yibing Liu 已提交
5658
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5659 5660

    Raises:
Y
Yibing Liu 已提交
5661
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5662 5663 5664 5665 5666 5667 5668 5669 5670

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5671
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5697
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5726 5727
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5740 5741 5742
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5756 5757 5758 5759


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5760
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5761
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5762

G
guosheng 已提交
5763 5764 5765 5766
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5789
                         The length of :attr:paddings must be
G
guosheng 已提交
5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5800

G
guosheng 已提交
5801 5802 5803 5804 5805 5806
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5807
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5808 5809 5810 5811 5812 5813 5814
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5815 5816


C
chengduo 已提交
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
5848 5849
		And
            pad_value = -1,
C
chengduo 已提交
5850

5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5886
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5887 5888 5889 5890 5891 5892 5893 5894 5895
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5896 5897 5898 5899 5900 5901 5902
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5903 5904
    called label-smoothing regularization (LSR).

5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5928
                              be :math:`(1, class\_num)`.
5929 5930
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5931
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5951
    smooth_label = helper.create_variable_for_type_inference(dtype)
5952 5953 5954 5955 5956 5957 5958
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5959 5960


W
wopeizl 已提交
5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5997 5998


J
jerrywgz 已提交
5999 6000 6001 6002 6003 6004
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6005 6006
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6023 6024 6025
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6026 6027 6028 6029 6030 6031
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6032
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6073 6074
        .. code-block:: python

W
whs 已提交
6075 6076 6077 6078
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6079
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6080 6081 6082 6083 6084 6085
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6086 6087


6088 6089 6090 6091
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6092 6093
                 resample='BILINEAR',
                 actual_shape=None):
6094
    """
Q
qiaolongfei 已提交
6095
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6096

6097
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6098 6099 6100
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6101

6102
        'BILINEAR' : Bilinear interpolation
6103

6104
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6105

6106
    Args:
6107
        input (Variable): The input tensor of image resize layer,
6108 6109
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6110
        out_shape(list|tuple|Variable|None): Output shape of image resize
6111 6112
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6113
        scale(float|None): The multiplier for the input height or width.
6114 6115 6116
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6117 6118
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6119
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6120
                       currently.
6121
                       Default: 'BILINEAR'
6122 6123 6124
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6125
                                :attr:`out_shape` and :attr:`scale` specifying
6126 6127 6128 6129 6130 6131 6132
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6133 6134
                                constructing stage.
                                Default: None
6135 6136

    Returns:
Q
update  
qiaolongfei 已提交
6137 6138
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6139

6140 6141 6142
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6143
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6144 6145 6146 6147
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6148 6149 6150
    Examples:
        .. code-block:: python

6151
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6152
    """
6153 6154 6155 6156
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6157 6158
    if resample not in resample_methods:
        raise ValueError(
6159
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6160
        )
6161
    resample_type = resample_methods[resample]
6162
    if out_shape is None and scale is None:
6163
        raise ValueError("One of out_shape and scale must not be None.")
6164
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6165
    dtype = helper.input_dtype()
6166 6167 6168 6169

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6170 6171 6172
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6173
    if out_shape is not None:
6174 6175 6176 6177
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6178
            inputs['OutSize'] = out_shape
6179 6180 6181 6182 6183 6184 6185 6186
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6187 6188 6189 6190
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6191 6192 6193 6194 6195
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6196
    out = helper.create_variable_for_type_inference(dtype)
6197
    helper.append_op(
6198
        type='{}_interp'.format(resample_type),
6199
        inputs=inputs,
6200
        outputs={"Out": out},
6201 6202 6203
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6204
    return out
F
stash  
fengjiayi 已提交
6205 6206


6207
@templatedoc(op_type="bilinear_interp")
6208 6209 6210 6211 6212
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6213
    """
6214 6215
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6216 6217
    in priority order.

6218 6219 6220 6221
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6222 6223
    again in the other direction.

6224
    For details of bilinear interpolation, please refer to Wikipedia:
6225
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6226 6227 6228 6229 6230

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6231

Y
yuyang18 已提交
6232 6233 6234 6235 6236
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6237 6238 6239
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6240
                                :attr:`out_shape` and :attr:`scale` specifying
6241 6242 6243 6244 6245 6246 6247
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6248 6249
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6250 6251 6252

    Returns:
        ${out_comment}.
6253 6254 6255 6256 6257

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6258 6259
    """

6260
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6261 6262


6263
@templatedoc(op_type="nearest_interp")
6264 6265 6266 6267 6268
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6269
    """
6270
    Resize input by performing nearest neighbor interpolation in both the
6271 6272
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6273 6274
    out_shape and scale in priority order.

6275
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6276
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6277 6278 6279 6280 6281

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6282

Y
yuyang18 已提交
6283 6284 6285 6286 6287
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6288 6289 6290
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6291
                                :attr:`out_shape` and :attr:`scale` specifying
6292 6293 6294 6295 6296 6297 6298
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6299 6300
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6301 6302 6303

    Returns:
        ${out_comment}.
6304 6305 6306 6307 6308

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6309 6310
    """

6311
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6312 6313 6314 6315


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6316 6317 6318
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6319 6320 6321 6322 6323 6324 6325
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6326
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6327

6328
    Returns:
Q
update  
qiaolongfei 已提交
6329
        Variable: The output is a 4-D tensor of the shape
6330
        (num_batches, channls, out_h, out_w).
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6341 6342 6343
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6344 6345 6346
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6347 6348
def gather(input, index):
    """
Q
qiaolongfei 已提交
6349 6350
    **Gather Layer**

6351
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6352 6353 6354 6355
    of X indexed by `index` and concatenate them together.

    .. math::

6356
        Out = X[Index]
W
whs 已提交
6357 6358 6359 6360 6361 6362 6363


    .. code-block:: text


                Given:

6364 6365
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6376
        input (Variable): The source input with rank>=1.
W
whs 已提交
6377 6378 6379 6380 6381 6382
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6383

W
whs 已提交
6384 6385 6386 6387 6388 6389
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6390
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6391 6392 6393 6394 6395 6396 6397 6398
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6430
    out = helper.create_variable_for_type_inference(dtype)
6431 6432 6433 6434 6435 6436 6437 6438 6439
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6490
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6491 6492 6493 6494 6495 6496 6497 6498 6499
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6513

6514 6515 6516
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6517
    """
F
stash  
fengjiayi 已提交
6518
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6519
    dtype = x.dtype
X
Xin Pan 已提交
6520
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6521
    if seed is None:
6522
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6523
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6524
    if isinstance(seed, int):
F
fengjiayi 已提交
6525 6526 6527 6528 6529
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6530 6531 6532 6533
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6534
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6535 6536
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6537 6538
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6539
    return out
W
whs 已提交
6540 6541


6542
def log(x, name=None):
W
wanghaoshuang 已提交
6543 6544 6545 6546 6547
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6548
        Out = \\ln(x)
W
wanghaoshuang 已提交
6549 6550

    Args:
6551
        x (Variable): Input tensor.
6552 6553
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6554 6555 6556 6557 6558 6559 6560 6561

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6562
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6563 6564
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6565
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6566
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6567
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6568 6569 6570
    return out


6571
def relu(x, name=None):
W
wanghaoshuang 已提交
6572 6573
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6574
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6575 6576 6577 6578
    the tensor elementwise.

    .. math::

6579
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6580 6581

    Args:
6582
        x (Variable): The input tensor.
6583 6584
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6585 6586 6587 6588 6589 6590 6591 6592

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6593
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6594 6595
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6596
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6597
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6598
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6599
    return out
6600 6601


C
chengduo 已提交
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6643 6644 6645
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6646 6647 6648 6649
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6650
    .. math::
6651 6652

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6653

6654
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6655 6656 6657 6658 6659
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6660
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6661
                           Its shape should be the same as input.
6662
        num_classes (int): The possible number of labels.
W
whs 已提交
6663 6664 6665 6666

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6667
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6668 6669 6670 6671

    Examples:

        .. code-block:: python
6672

W
whs 已提交
6673 6674 6675 6676
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6677 6678 6679
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6680 6681
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6682 6683
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6684
        outputs={
W
whs 已提交
6685 6686 6687
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6688 6689 6690
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
6759
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
6760 6761 6762 6763 6764

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6765
            isinstance(shape, Variable)):
6766 6767 6768 6769 6770
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6771
    out = helper.create_variable_for_type_inference(x.dtype)
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6789 6790


W
whs 已提交
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6808

W
whs 已提交
6809
              out_shape = [2, 3, 5, 5]
6810

W
whs 已提交
6811
          Step 1:
6812

W
whs 已提交
6813 6814 6815
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6816

W
whs 已提交
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6887
            isinstance(out_shape, Variable)):
W
whs 已提交
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6909 6910 6911 6912 6913 6914 6915 6916
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6917

6918 6919
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6920

6921 6922 6923 6924
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6925

6926 6927 6928 6929 6930
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6931 6932 6933

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6969
    out = helper.create_variable_for_type_inference("float32")
6970 6971 6972 6973 6974 6975 6976 6977

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6978 6979


M
minqiyang 已提交
6980 6981
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6982
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6983
    which compares left score and right score passed in.
M
minqiyang 已提交
6984
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6985 6986 6987 6988 6989 6990

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6991
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6992 6993
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6994
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6995 6996 6997
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6998
       Variable: The ranking loss.
M
minqiyang 已提交
6999
    Raises:
M
minqiyang 已提交
7000
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7001 7002 7003 7004 7005 7006 7007
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7008
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7009 7010 7011 7012 7013 7014
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7015 7016
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
7040
        .. code-block:: text
W
whs 已提交
7041

7042
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7043

7044 7045
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7046

7047
	      Case 0:
M
minqiyang 已提交
7048

7049 7050 7051
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7052

7053 7054 7055
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7056

7057
	      Case 1:
M
minqiyang 已提交
7058

7059 7060
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7061

7062 7063 7064
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7065

7066
	      Case 2:
M
minqiyang 已提交
7067

7068 7069
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7070

7071 7072 7073
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7074 7075


W
whs 已提交
7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7102
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7129 7130 7131 7132 7133

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7134 7135
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7136 7137
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7138
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7159 7160 7161 7162 7163

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7164 7165
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7166 7167
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7168
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7189 7190 7191 7192 7193

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7194 7195
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7196 7197
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7198
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7220 7221 7222 7223 7224

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7225
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7226
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7227 7228
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7229
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7252 7253 7254 7255 7256

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7257 7258
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7259 7260
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7261
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7283 7284 7285 7286 7287

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7288 7289
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7290 7291
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7292
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7293 7294 7295 7296 7297 7298 7299 7300
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7301 7302 7303 7304
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7305
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7306 7307 7308

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7309
        param_attr(ParamAttr|None): The parameter attribute for the learnable
7310
          weight (alpha).
J
jerrywgz 已提交
7311
        mode (string): The mode for weight sharing. It supports all, channel
7312 7313 7314
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7315
        name(str|None): A name for this layer(optional). If set None, the layer
7316
          will be named automatically.
J
jerrywgz 已提交
7317 7318 7319 7320 7321 7322 7323 7324

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7325
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7339
        attr=helper.param_attr,
J
jerrywgz 已提交
7340 7341 7342 7343
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7344
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7345 7346 7347 7348 7349 7350 7351 7352 7353
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7354 7355 7356 7357 7358 7359 7360 7361 7362 7363
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7364
    Returns:
7365
        output(${out_type}): ${out_comment}
7366 7367 7368 7369 7370 7371 7372

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7373 7374
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7375
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7394
    Returns:
7395
        output(${out_type}): ${out_comment}
7396 7397 7398 7399 7400 7401 7402

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7403 7404
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7405
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7423
    Returns:
7424
        output(${out_type}): ${out_comment}
7425 7426 7427 7428 7429 7430 7431

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7432 7433
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7434
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7435 7436 7437 7438 7439 7440 7441 7442
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7456

7457 7458 7459 7460 7461 7462 7463 7464 7465 7466
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7467 7468
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7484
        ValueError: If axis is not in range [0, rank(x)].
7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7501 7502
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7503
    helper.append_op(
7504
        type='flatten2',
7505
        inputs={"X": x},
7506 7507
        outputs={'Out': out,
                 'XShape': x_shape},
7508 7509
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7510 7511


C
chenweihang 已提交
7512
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7513
    """
C
chenweihang 已提交
7514
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7515
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7516 7517
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7518

C
chenweihang 已提交
7519 7520 7521 7522
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7523
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7524 7525 7526 7527 7528 7529
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7530
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7531 7532 7533
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7534 7535 7536
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7548 7549
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7550 7551 7552 7553 7554 7555
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7556
    return out
7557

7558

S
sneaxiy 已提交
7559 7560 7561 7562 7563 7564 7565 7566 7567
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7568

S
sneaxiy 已提交
7569
    .. math::
7570

S
sneaxiy 已提交
7571 7572 7573
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7574
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7575 7576 7577 7578
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7579 7580 7581
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7582 7583
    Returns:
        Variable: The output sequence mask.
7584

S
sneaxiy 已提交
7585 7586
    """

Q
qingqing01 已提交
7587
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7588
    if name is None:
X
Xin Pan 已提交
7589
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7590
    else:
X
Xin Pan 已提交
7591
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7592

Q
qingqing01 已提交
7593 7594 7595
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7596 7597
        outputs={'Y': out},
        attrs={
7598
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7599 7600 7601
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7602 7603


X
Xin Pan 已提交
7604
def stack(x, axis=0):
S
sneaxiy 已提交
7605 7606 7607 7608
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7609 7610 7611 7612 7613 7614 7615

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7616
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7617
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7618 7619

    Args:
7620
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7621
        axis (int|None): The axis along which all inputs are stacked.
7622

S
sneaxiy 已提交
7623 7624
    Returns:
        Variable: The stacked variable.
7625

S
sneaxiy 已提交
7626 7627
    """

X
Xin Pan 已提交
7628 7629 7630 7631 7632 7633
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7634
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7635
    helper.append_op(
S
sneaxiy 已提交
7636 7637
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7638

X
Xin Pan 已提交
7639
    return out
D
dzhwinter 已提交
7640 7641 7642 7643 7644 7645 7646


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7647

D
dzhwinter 已提交
7648 7649 7650
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7651
    raised.
D
dzhwinter 已提交
7652 7653

    Args:
M
minqiyang 已提交
7654
        x (Variable): Input variable.
D
dzhwinter 已提交
7655 7656
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7657

D
dzhwinter 已提交
7658 7659
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7660

D
dzhwinter 已提交
7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7672
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7673 7674 7675 7676 7677 7678 7679 7680

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7693

W
whs 已提交
7694 7695 7696 7697
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7698

W
whs 已提交
7699
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7700

W
whs 已提交
7701
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7702

W
whs 已提交
7703 7704 7705 7706
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7707

W
whs 已提交
7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7724
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7725 7726 7727 7728 7729 7730
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7731 7732


G
fix  
gongweibao 已提交
7733 7734 7735
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7736
@templatedoc()
G
fix  
gongweibao 已提交
7737 7738 7739 7740 7741 7742 7743 7744 7745
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7746
    ${comment}
G
fix  
gongweibao 已提交
7747 7748

    Args:
G
gongweibao 已提交
7749 7750 7751
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7752
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7753 7754 7755
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7756 7757
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7758
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7759

7760 7761 7762 7763 7764
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7765 7766 7767
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7768
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7785 7786


G
gongweibao 已提交
7787
@templatedoc()
X
Xin Pan 已提交
7788
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7789
    """
G
gongweibao 已提交
7790
    ${comment}
G
fix  
gongweibao 已提交
7791 7792

    Args:
G
gongweibao 已提交
7793 7794 7795 7796
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7797 7798 7799
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7800
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7801

7802 7803 7804 7805
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7806 7807 7808
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7809
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7810 7811 7812 7813 7814 7815 7816 7817 7818 7819
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7820
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7821 7822 7823 7824 7825
        })

    return out


G
gongweibao 已提交
7826
@templatedoc()
G
fix  
gongweibao 已提交
7827
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7828
    """
G
gongweibao 已提交
7829
    ${comment}
G
fix  
gongweibao 已提交
7830 7831

    Args:
G
gongweibao 已提交
7832 7833 7834 7835
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7836
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7837 7838

    Returns:
G
gongweibao 已提交
7839
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7840

7841 7842 7843 7844 7845 7846 7847 7848 7849 7850
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7851 7852 7853
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7854
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7866
@templatedoc()
G
fix  
gongweibao 已提交
7867 7868 7869 7870 7871 7872 7873 7874 7875
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7876
    ${comment}
G
fix  
gongweibao 已提交
7877 7878

    Args:
G
gongweibao 已提交
7879 7880
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7881
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7882 7883 7884 7885
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7886
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7887 7888

    Returns:
G
gongweibao 已提交
7889
        out (Variable): ${out_comment}
7890 7891 7892 7893 7894 7895 7896 7897

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7898 7899 7900
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7901
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7920
@templatedoc()
X
Xin Pan 已提交
7921
def sum(x):
G
fix  
gongweibao 已提交
7922
    """
G
gongweibao 已提交
7923
    ${comment}
G
fix  
gongweibao 已提交
7924 7925

    Args:
G
gongweibao 已提交
7926
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7927 7928

    Returns:
G
gongweibao 已提交
7929
        out (Variable): ${out_comment}
7930 7931 7932 7933 7934 7935

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
7936 7937 7938
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7939 7940
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7941 7942 7943 7944
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7945
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7946 7947 7948 7949

    return out


G
gongweibao 已提交
7950
@templatedoc()
G
fix  
gongweibao 已提交
7951 7952
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7953
    ${comment}
G
fix  
gongweibao 已提交
7954 7955

    Args:
G
gongweibao 已提交
7956 7957 7958 7959
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7960 7961

    Returns:
G
gongweibao 已提交
7962
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7963

7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
7975 7976 7977
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7978 7979
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7991
@templatedoc()
G
fix  
gongweibao 已提交
7992 7993
def shape(input):
    """
G
gongweibao 已提交
7994
    ${comment}
G
fix  
gongweibao 已提交
7995 7996

    Args:
G
gongweibao 已提交
7997
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7998 7999

    Returns:
G
gongweibao 已提交
8000
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8001

8002 8003 8004 8005 8006 8007
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8008 8009 8010
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8011 8012
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8013
    helper.append_op(
G
fix  
gongweibao 已提交
8014
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8015 8016

    return out
G
merge  
gongweibao 已提交
8017 8018


S
sneaxiy 已提交
8019 8020 8021 8022 8023 8024 8025 8026
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8027 8028
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8029
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8030 8031 8032
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8033

S
sneaxiy 已提交
8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8045
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8046 8047 8048 8049 8050 8051 8052 8053
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8054
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8055
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8056 8057 8058 8059 8060 8061

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8062
    if name is None:
X
Xin Pan 已提交
8063
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8064 8065 8066
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8067 8068 8069 8070 8071 8072 8073 8074 8075 8076

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8077
    return helper.append_activation(out)
S
sneaxiy 已提交
8078 8079


X
Xin Pan 已提交
8080
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8081 8082 8083
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8084
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8085 8086 8087
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8088
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8089 8090 8091
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8092
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8093 8094 8095
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8096
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8097 8098 8099
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8100
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8101 8102 8103
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8104
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8116 8117
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8118
        ])
M
minqiyang 已提交
8119 8120


8121
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8122 8123
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8124 8125
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8126 8127 8128

    if out is None:
        if name is None:
X
Xin Pan 已提交
8129
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8145
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8157 8158 8159 8160 8161 8162 8163 8164 8165

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8166 8167 8168 8169 8170 8171 8172
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8173
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8185 8186 8187 8188 8189 8190 8191 8192 8193

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8194 8195 8196 8197 8198 8199 8200
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8201
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8213 8214 8215 8216 8217 8218 8219 8220 8221

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8222 8223 8224 8225 8226 8227 8228
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8229
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8230 8231 8232 8233 8234 8235 8236 8237 8238 8239
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8240 8241 8242 8243 8244 8245 8246

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8247 8248 8249 8250
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8266 8267 8268 8269 8270 8271 8272

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8273 8274 8275 8276 8277
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8278 8279 8280 8281
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8305 8306 8307 8308 8309 8310 8311

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8312 8313 8314 8315 8316
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8317 8318 8319 8320
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8321 8322 8323 8324 8325 8326 8327 8328

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8347
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8348 8349 8350 8351 8352 8353 8354 8355 8356 8357
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduozh 已提交
8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8400
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8401 8402 8403 8404 8405 8406 8407 8408 8409
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8410 8411
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8434
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8464
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8475 8476


J
JiabinYang 已提交
8477
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8478
    """
J
JiabinYang 已提交
8479
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8480 8481 8482

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8483
    The attr blocksize indicates the input block size.
8484 8485

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8486
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8487 8488

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8489
    (but keeping all data)
J
JiabinYang 已提交
8490

J
JiabinYang 已提交
8491
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8492
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8493 8494 8495 8496 8497
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8498
    Args:
J
JiabinYang 已提交
8499
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8500
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8501 8502

    Returns:
J
JiabinYang 已提交
8503
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8504 8505

    Raises:
J
JiabinYang 已提交
8506
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8507 8508 8509 8510 8511 8512

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8513
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8514
                x=data, blocksize=2)
J
JiabinYang 已提交
8515 8516
    """

J
JiabinYang 已提交
8517
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8518

J
JiabinYang 已提交
8519 8520
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8521 8522

    if name is None:
J
JiabinYang 已提交
8523 8524
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8525 8526 8527 8528 8529
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8530
        type="space_to_depth",
J
JiabinYang 已提交
8531
        inputs={"X": x},
J
JiabinYang 已提交
8532
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8533
        outputs={"Out": out})
J
JiabinYang 已提交
8534 8535
    return out

J
JiabinYang 已提交
8536

S
sneaxiy 已提交
8537 8538
@templatedoc()
def sequence_reverse(x, name=None):
8539
    """
S
sneaxiy 已提交
8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8551
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8552 8553 8554 8555 8556 8557 8558 8559 8560 8561
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8562 8563


8564 8565 8566 8567 8568 8569
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8570

8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8590
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8603 8604


B
barrierye 已提交
8605
def similarity_focus(input, axis, indexes, name=None):
8606
    """
B
barrierye 已提交
8607
    SimilarityFocus Operator
B
barrierye 已提交
8608 8609

    Generate a similarity focus mask with the same shape of input using the following method:
8610 8611 8612
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8613
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8614 8615 8616 8617 8618 8619 8620
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8621
       each index.
B
barrierye 已提交
8622 8623 8624 8625
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8675
    Args:
8676
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8677
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8678
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8679
            1, 2 or 3.
B
barrierye 已提交
8680
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8681 8682

    Returns:
8683
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8684
            as the input.
8685

B
barrierye 已提交
8686 8687 8688
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8689 8690
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8703 8704 8705 8706 8707
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8708 8709 8710 8711 8712 8713 8714
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8715 8716


M
minqiyang 已提交
8717 8718
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8719 8720
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8721 8722
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8761
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8762
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8763 8764 8765 8766 8767 8768 8769 8770 8771

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8772 8773
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8774 8775
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8776 8777 8778 8779 8780 8781 8782
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8783 8784


D
dengkaipeng 已提交
8785
@templatedoc()
8786 8787
def grid_sampler(x, grid, name=None):
    """
8788
    This operation samples input X by using bilinear interpolation based on
8789
    flow field grid, which is usually gennerated by affine_grid. The grid of
8790 8791 8792 8793
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8794
    interpolation value of 4 nearest corner points.
8795 8796 8797 8798 8799 8800 8801 8802

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8803
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8833 8834

    Args:
8835 8836 8837
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8838 8839

    Returns:
8840
        out(Variable): Output of shape [N, C, H, W] data samples input X
8841 8842 8843 8844 8845 8846 8847 8848 8849
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8850 8851 8852 8853 8854 8855 8856 8857 8858
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8859
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8860 8861
    ipts = {'X': x, 'Grid': grid}

8862
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8863 8864 8865
    return out


G
gmcather 已提交
8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8960 8961 8962 8963 8964 8965 8966 8967 8968 8969


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8970
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8971

Q
Qiao Longfei 已提交
8972
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8973 8974 8975
    For example:

    .. math::
8976
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8977

Q
Qiao Longfei 已提交
8978
    In this formula:
8979 8980
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8981
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8982
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8983 8984 8985
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8986 8987
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8988 8989 8990
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8991
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8992
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8993
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8994 8995 8996 8997
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8998
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8999 9000 9001 9002

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9003
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9004 9005
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9006
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9007 9008 9009 9010

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9011
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduozh 已提交
9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out