nn.py 370.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
shippingwang 已提交
182
    'shuffle_channel',
S
sneaxiy 已提交
183
    'py_func',
184
    'psroi_pool',
H
heqiaozhi 已提交
185
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
186
    'huber_loss',
Z
zhaozhehao 已提交
187
    'tree_conv',
Y
Yu Yang 已提交
188 189
]

J
jerrywgz 已提交
190 191
kIgnoreIndex = -100

Y
Yu Yang 已提交
192 193 194 195 196 197 198

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
199
       is_test=False,
200
       name=None):
Y
Yu Yang 已提交
201
    """
202
    **Fully Connected Layer**
Y
Yu Yang 已提交
203

204 205 206 207 208 209 210 211
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
212
    to the output as well.
C
caoying03 已提交
213

C
caoying03 已提交
214
    This process can be formulated as follows:
215 216 217

    .. math::

218
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
219 220 221

    In the above equation:

C
caoying03 已提交
222 223 224 225
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
226
    * :math:`Act`: The activation function.
C
caoying03 已提交
227
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
228 229

    Args:
R
ranqiu 已提交
230 231 232 233 234 235 236 237 238 239
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
240
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
241 242 243 244
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
245 246
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
247
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
248
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
249
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
250

251
    Returns:
F
fengjiayi 已提交
252
        Variable: The transformation result.
253 254

    Raises:
C
caoying03 已提交
255
        ValueError: If rank of the input tensor is less than 2.
256 257 258 259

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
260
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
261
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
262
    """
C
caoying03 已提交
263

C
caoying03 已提交
264
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
265 266 267 268

    dtype = helper.input_dtype()

    mul_results = []
269 270
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
271 272 273
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
274

Y
Yu Yang 已提交
275
        w = helper.create_parameter(
276
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
277
        tmp = helper.create_variable_for_type_inference(dtype)
278
        helper.append_op(
279 280 281
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
282
            outputs={"Out": tmp},
M
mozga-intel 已提交
283 284
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
285 286 287 288
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
289
    else:
X
Xin Pan 已提交
290
        pre_bias = helper.create_variable_for_type_inference(dtype)
291
        helper.append_op(
292 293 294
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
295
            attrs={"use_mkldnn": False})
296 297 298 299
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
300 301


302 303 304
def embedding(input,
              size,
              is_sparse=False,
305
              is_distributed=False,
306 307 308
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
309
    """
310 311
    **Embedding Layer**

312
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
313 314
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
315 316 317

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
318 319

    Args:
320 321 322 323 324
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
325
        is_distributed(bool): Whether to run lookup table from remote parameter server.
326 327
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
328
            with zeros whenever lookup encounters it in :attr:`input`. If
329
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
330 331
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
332
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
333

334 335 336
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
337

338 339
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
340

C
chengduoZH 已提交
341
          dict_size = len(dataset.ids)
342
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
343
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
344 345 346
    """

    helper = LayerHelper('embedding', **locals())
347
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
348 349
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
350 351
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
352
    tmp = helper.create_variable_for_type_inference(dtype)
353 354
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
355 356 357 358 359
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
360 361 362
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
363
            'remote_prefetch': remote_prefetch,
364 365
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
366 367 368
    return tmp


W
wopeizl 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
385

W
wopeizl 已提交
386 387 388 389 390 391 392 393 394 395 396
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
397

W
wopeizl 已提交
398 399 400 401
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
402

W
wopeizl 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
489 490


P
phlrain 已提交
491 492 493 494 495 496
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
497
         dropout_prob=0.0,
P
phlrain 已提交
498 499 500 501 502
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
503
    """
P
phlrain 已提交
504
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
505 506

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
507
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
508 509
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
510
    .. math::
M
minqiyang 已提交
511 512 513 514 515 516 517

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
518
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
519 520 521 522

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
523 524

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
525 526 527 528 529 530
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
531 532 533
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
534
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
535

M
minqiyang 已提交
536
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
537 538 539 540 541
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
542
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
543 544 545 546 547
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
548
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
549 550
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
551 552
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
553 554 555 556 557 558
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
559
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
560

L
liuhongyu 已提交
561 562

    Returns:
M
minqiyang 已提交
563 564
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
565
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
566

H
haowang101779990 已提交
567 568 569 570
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
571
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
572 573
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
574
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
590
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
591 592 593 594 595 596
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
597 598 599
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
659 660 661 662 663 664 665 666 667 668 669
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
670 671
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
672 673 674
    """
    **Dynamic LSTMP Layer**

675 676 677 678 679 680
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
681 682 683 684 685

    The formula is as follows:

    .. math::

686
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
687

688
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
689

690
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
691

692
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
693

694
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
695

696
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
697

698
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
699

Y
Yibing Liu 已提交
700 701 702 703 704 705
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
706
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
707
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
708
          bias vector).
Y
Yibing Liu 已提交
709 710 711
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
712
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
713
    * :math:`h`: The hidden state.
714
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
715 716
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
717
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
718
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
719
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
720 721
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
722 723 724 725

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
726

Y
Yibing Liu 已提交
727 728 729 730 731 732 733 734 735 736 737 738
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
739
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
740 741
                               hidden-hidden weight and projection weight.

742 743
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
744 745
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
746 747
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
748
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
749 750 751 752 753

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
754
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
755 756 757 758 759 760
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
761
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
762 763 764
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
765
                                - The shape is (1 x 7D).
C
chengduo 已提交
766 767 768 769 770

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
771 772 773 774 775 776 777 778 779
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
780
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
781 782
                              default "tanh".
        proj_activation(str): The activation for projection output.
783
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
784 785
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
786 787
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
788 789

    Returns:
790 791 792 793
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
794 795

    Examples:
796

Y
Yibing Liu 已提交
797 798
        .. code-block:: python

799 800 801 802
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
803
            hidden_dim, proj_dim = 512, 256
804
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
805
                                     act=None, bias_attr=None)
806 807 808
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
809 810 811 812
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
813
    """
814

C
chengduo 已提交
815
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
816
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
817
    size = size // 4
Y
Yibing Liu 已提交
818 819 820 821 822 823 824 825 826 827
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
828 829 830 831 832 833
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
862 863 864 865 866 867 868
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
869 870
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
871
    """
872
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
873

874 875 876
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
877

G
guosheng 已提交
878 879 880 881 882 883 884 885 886
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
887

G
guosheng 已提交
888
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
889

Q
Qiao Longfei 已提交
890 891 892

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
893 894 895 896 897 898 899 900 901 902 903 904
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
905
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
906 907
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
908 909 910 911
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
912
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
913 914

    Args:
915 916
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
917
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
918
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
919 920
            is the hidden size.
        size(int): The dimension of the gru cell.
921
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
922 923
            hidden-hidden weight matrix. Note:

924
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
925
              :math:`D` is the hidden size.
926
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
927
              The first part are weights of the update gate and reset gate with
928
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
929
              candidate hidden state with shape :math:`(D \\times D)`.
930 931 932 933 934

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
935
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
936
            the bias in the update gate, reset gate and candidate calculations.
937 938 939
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
940 941
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
942
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
943 944 945
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
946
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
947
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
948 949 950 951
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
952 953

    Returns:
G
guosheng 已提交
954
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
955
            and sequence length is the same with the input.
956

G
guosheng 已提交
957
    Examples:
958

G
guosheng 已提交
959 960
        .. code-block:: python

961 962 963 964
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
965
            hidden_dim = 512
966
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
967
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
968 969 970 971 972 973 974 975 976
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
977
    batch_size = input.shape[0]
G
guosheng 已提交
978
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
979
    if h_0:
G
guosheng 已提交
980
        assert h_0.shape == (
Y
Yancey 已提交
981 982 983
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
984

X
Xin Pan 已提交
985 986 987 988
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1002 1003
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1004 1005 1006 1007
        })
    return hidden


Y
Yu Yang 已提交
1008 1009 1010
def gru_unit(input,
             hidden,
             size,
1011 1012
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1013
             activation='tanh',
Q
Qiao Longfei 已提交
1014 1015
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1016
    """
1017 1018 1019
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1020
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1021
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1022

1023 1024
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1025

1026
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1027

1028
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1045 1046

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1047 1048 1049
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1050 1051
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1052 1053
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1054 1055 1056
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1057 1058 1059

    Args:
        input (Variable): The fc transformed input value of current step.
1060
        hidden (Variable): The hidden value of gru unit from previous step.
1061
        size (integer): The input dimension value.
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1076
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1077
            the bias in the update gate, reset gate and candidate calculations.
1078 1079 1080
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1081 1082
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1083 1084 1085 1086
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1087

1088 1089 1090 1091 1092 1093
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1094

1095
             # assuming we have x_t_data and prev_hidden of size=10
1096
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1097 1098
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1111
    size = size // 3
Y
Yu Yang 已提交
1112 1113

    # create weight
1114 1115
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1116

X
Xin Pan 已提交
1117 1118 1119
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1120
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1121
    # create bias
1122
    if helper.bias_attr:
Y
Yu Yang 已提交
1123 1124 1125
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1126
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1127 1128 1129

    helper.append_op(
        type='gru_unit',
1130
        inputs=inputs,
Y
Yu Yang 已提交
1131 1132 1133 1134 1135 1136
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1137 1138
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1139 1140 1141 1142 1143
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1144
@templatedoc()
1145
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1146 1147 1148 1149 1150 1151 1152
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1153
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1154 1155 1156 1157
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1158 1159 1160
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1161 1162

    """
Y
Yu Yang 已提交
1163 1164 1165 1166 1167 1168
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1169 1170 1171 1172 1173 1174 1175 1176
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1192 1193 1194 1195
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1196

W
wopeizl 已提交
1197 1198
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1199

W
wopeizl 已提交
1200
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1201

W
wopeizl 已提交
1202
        label(${label_type}): ${label_comment}
1203

W
wopeizl 已提交
1204 1205
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1206

W
wopeizl 已提交
1207 1208
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1209

W
wopeizl 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1220
                "Transition": transition,
W
wopeizl 已提交
1221 1222
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1223

W
wopeizl 已提交
1224
    return viterbi_path
Y
Yu Yang 已提交
1225 1226


Y
yi.wu 已提交
1227
@templatedoc()
F
fengjiayi 已提交
1228
def cos_sim(X, Y):
Y
Yu Yang 已提交
1229
    """
Y
yi.wu 已提交
1230 1231 1232
    ${comment}

    Args:
1233 1234
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1235

Y
yi.wu 已提交
1236
    Returns:
1237
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1238
    """
F
fengjiayi 已提交
1239
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1240 1241 1242
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1253 1254 1255 1256 1257
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1258
            dropout_implementation="downgrade_in_infer"):
1259 1260 1261 1262 1263
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1264
    training. The dropout operator randomly sets (according to the given dropout
1265 1266 1267
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1268 1269
    dropout op can be removed from the program to make the program more efficient.

1270
    Args:
1271 1272
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1273 1274 1275 1276 1277 1278 1279
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1280 1281
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1282
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1283 1284 1285 1286 1287 1288

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1289
                                        2. upscale_in_train, upscale the outcome at training time
1290

H
haowang101779990 已提交
1291 1292
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1293

H
haowang101779990 已提交
1294 1295
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1296

M
minqiyang 已提交
1297

1298
    Returns:
1299
        Variable: A tensor variable is the shape with `x`.
1300 1301

    Examples:
1302

1303 1304
        .. code-block:: python

1305 1306
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1307 1308
    """

F
fengjiayi 已提交
1309
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1310 1311 1312
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1313 1314 1315 1316

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1317 1318 1319 1320 1321
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1322 1323 1324 1325
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1326 1327
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1328
        })
1329 1330 1331
    return out


J
jerrywgz 已提交
1332
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1333
    """
Y
Yibing Liu 已提交
1334 1335
    **Cross Entropy Layer**

1336 1337 1338
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1339 1340

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1341
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1342

Y
Yibing Liu 已提交
1343
        .. math::
Y
yangyaming 已提交
1344

Y
Yibing Liu 已提交
1345 1346 1347
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1348 1349
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1350 1351 1352 1353 1354

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1355
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1356 1357 1358
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1359 1360
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1361
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1362

Y
Yibing Liu 已提交
1363
    Args:
Y
yangyaming 已提交
1364
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1365 1366 1367 1368
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1369
        label (Variable|list): the ground truth which is a 2-D tensor. When
1370 1371 1372 1373
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1374
        soft_label (bool): a flag indicating whether to
1375
                                           interpretate the given labels as soft
1376
                                           labels. Default: `False`.
M
minqiyang 已提交
1377 1378
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1379
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1380 1381 1382 1383 1384

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1385 1386 1387
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1388

H
haowang101779990 已提交
1389 1390
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1391

H
haowang101779990 已提交
1392 1393
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1394 1395 1396 1397 1398 1399

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1400
    """
S
sneaxiy 已提交
1401 1402
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1403
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1404
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1405 1406 1407 1408 1409
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1410 1411
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1412 1413 1414
    return out


S
sneaxiy 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
                 'MatchX': [match_x],
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1431
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1432 1433 1434
    """
    Bayesian Personalized Ranking Loss Operator.

1435
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1436 1437 1438 1439 1440 1441
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1442 1443 1444 1445 1446 1447
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1448 1449
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1450 1451 1452
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1453 1454 1455
    Examples:
        .. code-block:: python

1456
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1457
    """
1458 1459 1460 1461 1462 1463

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1464
                'Label': [label]},
1465 1466 1467 1468
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1469
def square_error_cost(input, label):
Y
Yu Yang 已提交
1470
    """
1471 1472
    **Square error cost layer**

1473 1474
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1489 1490
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1491 1492

    Returns:
G
guosheng 已提交
1493
        Variable: The tensor variable storing the element-wise squared error \
1494
                  difference of input and label.
1495 1496 1497 1498 1499 1500 1501 1502

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1503
    """
F
fengjiayi 已提交
1504
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1505
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1506 1507 1508 1509 1510 1511
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1512
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1513
    helper.append_op(
F
fengjiayi 已提交
1514 1515
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1516 1517 1518
    return square_out


Y
yi.wu 已提交
1519
@templatedoc()
Y
Yu Yang 已提交
1520 1521 1522 1523
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1524
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1525
    """
Y
yi.wu 已提交
1526
    **Chunk Evaluator**
Y
yi.wu 已提交
1527

Y
yangyaming 已提交
1528
    This function computes and outputs the precision, recall and
1529
    F1-score of chunk detection.
Y
yi.wu 已提交
1530

M
minqiyang 已提交
1531
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1532
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1533 1534 1535 1536 1537 1538

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1539

Y
yi.wu 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1565

Y
yi.wu 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1590
    Args:
1591 1592 1593 1594 1595
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1596

Y
yi.wu 已提交
1597
    Returns:
Y
update  
yi.wu 已提交
1598 1599 1600
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1601

Y
yi.wu 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1614
    """
F
fengjiayi 已提交
1615
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1616 1617

    # prepare output
X
Xin Pan 已提交
1618 1619 1620 1621 1622 1623 1624
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1625 1626 1627 1628 1629 1630 1631 1632

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1633 1634 1635 1636
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1637 1638 1639
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1640 1641
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1642
        })
1643 1644
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1645 1646


1647
@templatedoc()
Y
Yu Yang 已提交
1648 1649 1650 1651 1652 1653 1654
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1655 1656
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1657 1658 1659 1660
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1661 1662 1663 1664 1665 1666 1667

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1681

1682 1683
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1684 1685 1686 1687 1688 1689 1690
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1691
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1702
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1703 1704 1705 1706 1707 1708
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1709
def sequence_softmax(input, use_cudnn=False, name=None):
1710 1711 1712
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1713
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1730 1731 1732
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1733

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1745 1746
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1747
    softmax_out = helper.create_variable_for_type_inference(dtype)
1748 1749 1750 1751 1752 1753 1754 1755
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1756
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1757
    """
1758
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1759
    has the same shape as the input.
Q
qiaolongfei 已提交
1760

1761 1762 1763 1764 1765 1766
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1767
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1768 1769 1770 1771 1772 1773 1774

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1775
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1776 1777 1778 1779 1780 1781 1782 1783

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1784 1785 1786
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1799 1800
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1801
    softmax_out = helper.create_variable_for_type_inference(dtype)
1802 1803 1804 1805 1806 1807 1808 1809
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1810 1811 1812
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1813 1814
           stride=1,
           padding=0,
1815
           dilation=1,
Y
Yu Yang 已提交
1816 1817 1818
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1819
           use_cudnn=True,
1820 1821
           act=None,
           name=None):
Y
Yu Yang 已提交
1822
    """
C
chengduoZH 已提交
1823
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1824 1825
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1826
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1827 1828 1829 1830 1831 1832 1833
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1834 1835 1836
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1837

1838
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1839

C
chengduoZH 已提交
1840 1841
    .. math::

C
refine  
chengduoZH 已提交
1842
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1843

T
tensor-tang 已提交
1844
    Where:
C
chengduoZH 已提交
1845

1846 1847 1848 1849 1850
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1851
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1852 1853 1854

    Example:

1855 1856
        - Input:

W
weixing02 已提交
1857
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1858

W
weixing02 已提交
1859
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1860

1861
        - Output:
T
tensor-tang 已提交
1862

W
weixing02 已提交
1863
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1864

C
chengduoZH 已提交
1865
        Where
1866 1867

        .. math::
C
chengduoZH 已提交
1868

W
weixing02 已提交
1869 1870
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1871 1872

    Args:
1873
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1874
        num_filters(int): The number of filter. It is as same as the output
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1892 1893 1894 1895 1896
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1897
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1898 1899 1900 1901 1902
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1903 1904
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1905 1906
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1907
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1908
            will be named automatically. Default: None
C
chengduoZH 已提交
1909 1910

    Returns:
G
guosheng 已提交
1911
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1912 1913
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1914
    Raises:
1915 1916
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1917

C
chengduoZH 已提交
1918 1919 1920
    Examples:
        .. code-block:: python

1921 1922
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1923 1924 1925
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1926
    assert param_attr is not False, "param_attr should not be False here."
1927
    l_type = 'conv2d'
X
xzl 已提交
1928 1929
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1930
        l_type = 'depthwise_conv2d'
1931 1932 1933 1934

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1935 1936 1937 1938 1939
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1940
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1941

C
chengduoZH 已提交
1942 1943 1944
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1945
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1946

C
chengduoZH 已提交
1947 1948
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1949 1950

    input_shape = input.shape
M
minqiyang 已提交
1951
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1952 1953

    def _get_default_param_initializer():
C
chengduo 已提交
1954 1955
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1956 1957 1958 1959 1960 1961 1962 1963
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1964
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1980
    helper.append_op(
1981
        type=l_type,
Y
Yu Yang 已提交
1982 1983 1984 1985 1986
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1987 1988 1989
        attrs={
            'strides': stride,
            'paddings': padding,
1990
            'dilations': dilation,
C
chengduoZH 已提交
1991
            'groups': groups,
1992
            'use_cudnn': use_cudnn,
1993
            'use_mkldnn': False,
1994
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
1995
        })
Y
Yu Yang 已提交
1996 1997 1998 1999 2000 2001

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2019 2020 2021 2022 2023 2024
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2034 2035
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2036 2037 2038
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2039
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2065
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2066 2067
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2068
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2069 2070
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2071
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2072 2073
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2074
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2075 2076 2077 2078 2079 2080
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2091 2092
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2093 2094
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2095
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2096
            will be named automatically. Default: None.
C
chengduoZH 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2109 2110
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2111 2112 2113
    """

    l_type = 'conv3d'
C
chengduo 已提交
2114
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2125
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2139 2140 2141
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2142 2143 2144 2145 2146 2147 2148 2149
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2150
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2165
            'use_mkldnn': False
C
chengduoZH 已提交
2166 2167
        })

2168
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2169 2170 2171 2172

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2173
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2174
    """
Y
yangyaming 已提交
2175 2176 2177
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2189
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2190 2191 2192 2193 2194
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2195
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2196 2197 2198 2199 2200 2201 2202

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2203 2204
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2205

L
Luo Tao 已提交
2206 2207
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2208
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2209
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2210
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2211 2212 2213 2214 2215 2216 2217

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2218

Y
yangyaming 已提交
2219
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2220 2221 2222 2223 2224
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2225 2226
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2227
    """
F
fengjiayi 已提交
2228
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2229
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2230 2231
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2232 2233 2234 2235 2236 2237

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2238 2239
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2240

Y
yangyaming 已提交
2241 2242 2243 2244 2245
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2246 2247 2248
    return pool_out


C
add doc  
chengduoZH 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2268
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2269 2270 2271 2272 2273
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2274
def sequence_first_step(input):
L
Luo Tao 已提交
2275
    """
L
Luo Tao 已提交
2276
    This function gets the first step of sequence.
L
Luo Tao 已提交
2277 2278 2279 2280

    .. code-block:: text

       x is a 1-level LoDTensor:
2281
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2282 2283 2284 2285 2286
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2287
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2288
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2289

L
Luo Tao 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2299

Y
yangyaming 已提交
2300
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2301 2302 2303
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2304 2305 2306
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2307
def sequence_last_step(input):
L
Luo Tao 已提交
2308
    """
L
Luo Tao 已提交
2309
    This function gets the last step of sequence.
L
Luo Tao 已提交
2310 2311 2312 2313

    .. code-block:: text

       x is a 1-level LoDTensor:
2314
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2315 2316 2317 2318 2319
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2320
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2321
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2322

L
Luo Tao 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2332

Y
yangyaming 已提交
2333
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2334 2335 2336
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2337 2338 2339
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2340 2341 2342 2343
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2344
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2345 2346 2347 2348 2349
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2350

H
haowang101779990 已提交
2351
              - Case:
Y
Yibing Liu 已提交
2352

2353
            Given the input Variable **input**:
2354

2355 2356 2357
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2358

2359
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2360

2361
            the output Variable will be
2362

2363 2364 2365
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2366

M
minqiyang 已提交
2367
    Note:
H
haowang101779990 已提交
2368
          The first dimension size of **input**, **offset** and **length**
2369
          should be equal. The **offset** should start from 0.
2370

Y
Yibing Liu 已提交
2371
    Args:
2372
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2373
                         sequences.
Y
Yibing Liu 已提交
2374 2375 2376 2377 2378 2379
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2380
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2391
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2392 2393 2394 2395
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2396
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2411
@templatedoc()
Y
Yu Yang 已提交
2412
def pool2d(input,
C
chengduoZH 已提交
2413 2414
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2415 2416
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2417
           global_pooling=False,
C
chengduoZH 已提交
2418
           use_cudnn=True,
2419
           ceil_mode=False,
2420 2421
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2422
    """
F
fengjiayi 已提交
2423
    ${comment}
2424 2425

    Args:
2426 2427 2428
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2429
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2430
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2431 2432
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2433
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2434 2435 2436 2437 2438 2439
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2440 2441 2442
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2443
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2444
                        layer will be named automatically.
2445
        exclusive (bool): Whether to exclude padding points in average pooling
2446
                          mode, default is true
F
fengjiayi 已提交
2447

2448
    Returns:
F
fengjiayi 已提交
2449
        Variable: The pooling result.
F
fengjiayi 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
S
sneaxiy 已提交
2462
          pool2d = fluid.layers.pool2d(
2463 2464 2465 2466
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2467
                            global_pooling=False)
Y
Yu Yang 已提交
2468 2469 2470 2471 2472
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2473

C
chengduoZH 已提交
2474 2475 2476 2477 2478
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2479 2480 2481 2482
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2483 2484
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2485

C
Add doc  
chengduoZH 已提交
2486
    l_type = 'pool2d'
2487 2488

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2489
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2490
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2491 2492

    helper.append_op(
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2504 2505
            "use_mkldnn": False,
            "exclusive": exclusive,
2506 2507 2508 2509 2510
        })

    return pool_out


S
sneaxiy 已提交
2511
@templatedoc()
2512 2513 2514 2515 2516 2517 2518 2519
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2520 2521
           name=None,
           exclusive=True):
2522
    """
S
sneaxiy 已提交
2523
    ${comment}
2524 2525

    Args:
S
sneaxiy 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2536 2537 2538 2539 2540 2541 2542
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2543
        exclusive (bool): Whether to exclude padding points in average pooling
2544
                          mode, default is true
2545

2546
    Returns:
2547
        Variable: output of pool3d layer.
S
sneaxiy 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2561 2562 2563 2564 2565
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2566

C
chengduoZH 已提交
2567 2568 2569 2570 2571
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2572 2573 2574
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2575

C
chengduoZH 已提交
2576 2577
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2578

2579 2580
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2581
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2582
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2583 2584

    helper.append_op(
2585
        type=l_type,
Y
Yu Yang 已提交
2586 2587 2588 2589 2590 2591 2592
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2593
            "paddings": pool_padding,
2594
            "use_cudnn": use_cudnn,
2595
            "ceil_mode": ceil_mode,
2596 2597
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2598 2599 2600 2601 2602
        })

    return pool_out


2603 2604 2605 2606 2607 2608 2609
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
S
sneaxiy 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).

    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2631 2632 2633 2634 2635 2636 2637 2638 2639

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
S
sneaxiy 已提交
2640 2641
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2656
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2657
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2658
          # of input data into m * n grids averagely and performs poolings in each
2659 2660
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2661
          #
2662 2663 2664 2665 2666 2667 2668 2669
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2670 2671
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2672
          pool_out = fluid.layers.adaptive_pool2d(
2673 2674
                            input=data,
                            pool_size=[3, 3],
2675
                            pool_type='avg')
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2686
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2712
    return (pool_out, mask) if require_index else pool_out
2713 2714 2715 2716 2717 2718 2719 2720 2721


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
S
sneaxiy 已提交
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).

    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2747 2748 2749

    Args:
        input (Variable): The input tensor of pooling operator. The format of
S
sneaxiy 已提交
2750 2751 2752
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2753
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
S
sneaxiy 已提交
2754
            it must contain three integers, (Depth, Height, Width).
2755
        pool_type: ${pooling_type_comment}
S
sneaxiy 已提交
2756 2757
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2772 2773
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2774
          # of input data into l * m * n grids averagely and performs poolings in each
2775 2776
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2777
          #
2778 2779 2780 2781 2782 2783 2784 2785 2786
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2787
          #                 output[:, :, i, j, k] =
2788 2789
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2790 2791
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2792
          pool_out, mask = fluid.layers.adaptive_pool3d(
2793
                            input=data,
S
sneaxiy 已提交
2794
                            pool_size=[3, 3, 3],
2795
                            pool_type='avg')
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2806
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2832
    return (pool_out, mask) if require_index else pool_out
2833 2834


Y
Yu Yang 已提交
2835 2836 2837 2838 2839 2840 2841
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2842
               data_layout='NCHW',
Y
Yang Yang 已提交
2843
               in_place=False,
2844 2845
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2846
               moving_variance_name=None,
2847
               do_model_average_for_mean_and_var=False,
2848 2849
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2850
    """
Q
qiaolongfei 已提交
2851 2852 2853 2854
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2855

Q
qiaolongfei 已提交
2856
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2857

Q
qiaolongfei 已提交
2858 2859
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2860 2861 2862
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2875

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2889
    Args:
Q
qiaolongfei 已提交
2890
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2891 2892 2893 2894
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2895 2896 2897 2898 2899 2900 2901 2902
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2903
        data_layout(string, default NCHW): NCHW|NHWC
2904
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2905 2906 2907 2908
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2909
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2910
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2911 2912 2913 2914 2915
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2916 2917

    Returns:
Q
qiaolongfei 已提交
2918
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2919 2920 2921 2922 2923 2924 2925

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2926
    """
C
chengduo 已提交
2927
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2928 2929 2930
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2931 2932 2933 2934
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2952 2953 2954
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2955 2956

    bias = helper.create_parameter(
2957
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2958 2959
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2960
        bias.stop_gradient = True
Y
Yu Yang 已提交
2961

2962 2963
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2964 2965 2966
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2967
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2968
        shape=param_shape,
W
Wu Yi 已提交
2969
        dtype=dtype)
2970 2971 2972 2973 2974 2975
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2976
            trainable=False,
W
wanghaoshuang 已提交
2977
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2978
        shape=param_shape,
W
Wu Yi 已提交
2979
        dtype=dtype)
2980
    variance.stop_gradient = True
Y
Yu Yang 已提交
2981 2982 2983 2984 2985 2986

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2987 2988 2989 2990
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2991

X
Xin Pan 已提交
2992 2993
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3011 3012 3013 3014
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
S
sneaxiy 已提交
3015
            "data_layout": data_layout,
X
Xin Pan 已提交
3016
            "use_mkldnn": False,
3017 3018
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3019
        })
Y
Yu Yang 已提交
3020 3021 3022 3023

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3151
@templatedoc()
G
guosheng 已提交
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3162
    ${comment}
G
guosheng 已提交
3163 3164 3165

    The formula is as follows:

Y
yuyang18 已提交
3166
    ..  math::
G
guosheng 已提交
3167 3168 3169 3170 3171 3172 3173

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3174 3175 3176 3177 3178 3179 3180 3181
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3182

G
guosheng 已提交
3183 3184
    Args:
        input(Variable): The input tensor variable.
3185
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3186
            normalization. Default True.
3187
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3188 3189
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3190
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3191
            Default 1.
3192
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3193
            division by zero. Default 1e-05.
G
guosheng 已提交
3194
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3195 3196
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3197 3198
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3199
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3200 3201
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3202
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3203
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3204
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3205 3206 3207
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3208 3209

    Returns:
Y
yuyang18 已提交
3210
        ${y_comment}
G
guosheng 已提交
3211 3212 3213

    Examples:

Y
yuyang18 已提交
3214 3215 3216
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3232
    if shift:
G
guosheng 已提交
3233 3234 3235 3236 3237 3238
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3239 3240 3241 3242 3243
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3271
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3319 3320
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
S
sneaxiy 已提交
3321
    group_norm_out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3337 3338 3339 3340
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3341 3342 3343
                     padding=0,
                     stride=1,
                     dilation=1,
3344
                     groups=None,
C
caoying03 已提交
3345
                     param_attr=None,
3346
                     bias_attr=None,
C
chengduoZH 已提交
3347
                     use_cudnn=True,
3348
                     act=None,
C
caoying03 已提交
3349
                     name=None):
Y
Yu Yang 已提交
3350
    """
3351 3352 3353 3354 3355 3356 3357 3358
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3359 3360
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3361 3362 3363
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3364 3365 3366 3367 3368

    For each input :math:`X`, the equation is:

    .. math::

3369
        Out = \sigma (W \\ast X + b)
3370

3371
    Where:
3372 3373 3374

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3375 3376 3377 3378
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3379

3380 3381 3382 3383
    Example:

        - Input:

3384
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3385

3386
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3387 3388 3389

        - Output:

3390
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3391 3392

        Where
Y
Yu Yang 已提交
3393

3394 3395
        .. math::

3396 3397
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3398 3399
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3400 3401

    Args:
3402 3403 3404 3405
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3406 3407 3408 3409
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3438
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3439 3440 3441
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3442
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3443
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3444 3445

    Returns:
3446
        Variable: The tensor variable storing the convolution transpose result.
3447 3448

    Raises:
3449 3450
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3451 3452 3453 3454

    Examples:
       .. code-block:: python

3455 3456
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3457
    """
C
chengduo 已提交
3458
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3459 3460 3461 3462 3463 3464 3465 3466
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3467 3468 3469
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3470 3471 3472
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3473

C
chengduoZH 已提交
3474 3475
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3476

Y
Yu Yang 已提交
3477 3478 3479 3480 3481
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3482

Y
Yu Yang 已提交
3483 3484
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3485

C
chengduoZH 已提交
3486
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3487
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3488
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3489
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3490
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3491 3492 3493
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3494

3495 3496 3497 3498 3499 3500 3501
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3502
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3503
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3504

Y
Yu Yang 已提交
3505 3506 3507
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3508
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3509
    helper.append_op(
3510
        type=op_type,
Y
Yu Yang 已提交
3511 3512
        inputs={'Input': [input],
                'Filter': [img_filter]},
3513
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3514
        attrs={
3515
            'output_size': output_size,
3516 3517 3518 3519 3520
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3521 3522
        })

3523 3524 3525
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3526 3527


3528
def conv3d_transpose(input,
Y
Yu Yang 已提交
3529 3530 3531
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3532 3533 3534
                     padding=0,
                     stride=1,
                     dilation=1,
3535
                     groups=None,
C
caoying03 已提交
3536
                     param_attr=None,
3537
                     bias_attr=None,
C
chengduoZH 已提交
3538
                     use_cudnn=True,
3539
                     act=None,
C
caoying03 已提交
3540
                     name=None):
Y
Yu Yang 已提交
3541
    """
3542
    **Convlution3D transpose layer**
3543

3544
    The convolution3D transpose layer calculates the output based on the input,
3545
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3546 3547 3548 3549 3550 3551
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3552 3553 3554
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3555 3556 3557 3558 3559

    For each input :math:`X`, the equation is:

    .. math::

3560
        Out = \sigma (W \\ast X + b)
3561 3562 3563

    In the above equation:

3564 3565
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3566 3567 3568 3569
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3570

3571 3572 3573 3574
    Example:

        - Input:

3575
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3576

3577
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3578 3579 3580

        - Output:

3581
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3582 3583

        Where
Y
Yu Yang 已提交
3584

3585 3586
        .. math::

3587 3588 3589
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3590 3591

    Args:
3592
        input(Variable): The input image with [N, C, D, H, W] format.
3593 3594 3595
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3596
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3597 3598
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3599
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3600 3601 3602
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3603 3604
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3605
        stride(int|tuple): The stride size. If stride is a tuple, it must
3606 3607
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3608
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3609 3610 3611
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3612 3613 3614 3615 3616
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3626 3627
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3628 3629
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3630 3631
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3632 3633

    Returns:
3634
        Variable: The tensor variable storing the convolution transpose result.
3635 3636

    Raises:
3637 3638
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3639 3640 3641 3642

    Examples:
       .. code-block:: python

3643 3644
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3645
    """
C
chengduo 已提交
3646
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3647 3648
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3649
    if not isinstance(input, Variable):
3650
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3651 3652
    input_channel = input.shape[1]

3653 3654 3655
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3656

C
chengduoZH 已提交
3657 3658 3659
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3660 3661 3662 3663 3664 3665
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3666 3667 3668
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3669

3670
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3671
                         padding[0] - 1) // dilation[0] + 1
3672
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3673
                         padding[1] - 1) // dilation[1] + 1
3674
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3675
                         padding[2] - 1) // dilation[2] + 1
3676
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3677
    else:
3678 3679
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3680

3681
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3682
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3683 3684 3685
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3686
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3687
    helper.append_op(
3688
        type=l_type,
Y
Yu Yang 已提交
3689 3690
        inputs={'Input': [input],
                'Filter': [img_filter]},
3691
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3692 3693 3694 3695
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3696
            'groups': groups,
C
chengduoZH 已提交
3697 3698
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3699

3700 3701
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3702
    return out
Y
yangyaming 已提交
3703 3704


Y
yangyaming 已提交
3705
def sequence_expand(x, y, ref_level=-1, name=None):
3706
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3707 3708 3709 3710
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3711 3712 3713 3714 3715

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3716
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3717
                x.data = [[a], [b], [c], [d]]
3718 3719 3720
                x.dims = [4, 1]

            y is a LoDTensor:
3721 3722
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3723

Y
yangyaming 已提交
3724
            ref_level: 0
3725

Y
yangyaming 已提交
3726
            then output is a 1-level LoDTensor:
3727
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3728
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3729 3730 3731 3732
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3733
                x.data = [[a], [b], [c]]
3734 3735 3736
                x.dims = [3, 1]

            y is a LoDTensor:
3737
                y.lod = [[2, 0, 3]]
3738

Y
yangyaming 已提交
3739
            ref_level: -1
3740

Y
yangyaming 已提交
3741 3742 3743
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3744 3745 3746
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3747 3748
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3749
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3750
                        will be named automatically.
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3761
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3762
    """
Y
yangyaming 已提交
3763
    helper = LayerHelper('sequence_expand', input=x, **locals())
3764
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3765
    tmp = helper.create_variable_for_type_inference(dtype)
3766
    helper.append_op(
Y
yangyaming 已提交
3767 3768 3769 3770 3771
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3772
    return tmp
3773 3774


C
chengduo 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3831
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3832 3833 3834 3835 3836 3837 3838 3839
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3840
@templatedoc()
3841
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3842 3843 3844 3845 3846
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3847 3848 3849
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3850
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3851 3852 3853 3854
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3855 3856 3857
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3858

F
fengjiayi 已提交
3859
    Returns:
M
minqiyang 已提交
3860
        Variable: The padded sequence batch and the original lengths before
3861
                  padding. All sequences has the same length.
M
minqiyang 已提交
3862

F
fengjiayi 已提交
3863 3864 3865 3866 3867 3868 3869
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3870
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3871
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3872 3873 3874 3875 3876
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3877 3878
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3879 3880 3881 3882

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3883 3884 3885 3886 3887 3888
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3889 3890
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3891
        attrs={'padded_length': maxlen})
3892
    return out, length
F
fengjiayi 已提交
3893 3894


3895
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3896
    """
3897
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3898

3899 3900
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3901 3902 3903 3904 3905 3906 3907 3908 3909
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3910 3911 3912
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3913
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3914 3915 3916 3917 3918 3919

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3920
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3921 3922 3923 3924 3925 3926

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3927 3928
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3943
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3955 3956 3957 3958 3959 3960 3961
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
3962
                is_accumulated=True,
3963 3964
                name=None,
                return_parent_idx=False):
3965
    """
3966 3967
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3968 3969 3970

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3971 3972

    This layer does the search in beams for one time step. Specifically, it
3973 3974 3975
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
3987 3988 3989 3990

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3991

3992
    Args:
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4016 4017
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4018 4019
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4020 4021 4022 4023
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4024

4025
    Returns:
4026 4027 4028 4029
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4030 4031 4032 4033

    Examples:
        .. code-block:: python

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4051
    helper = LayerHelper('beam_search', **locals())
4052 4053 4054 4055 4056 4057
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4058

X
Xin Pan 已提交
4059 4060 4061
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4062 4063 4064 4065 4066
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4067 4068 4069

    helper.append_op(
        type='beam_search',
4070
        inputs=inputs,
Q
Qiao Longfei 已提交
4071 4072 4073
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4074
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4075 4076 4077 4078 4079 4080
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4081
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4082
        })
4083 4084 4085 4086
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4087 4088


4089 4090 4091 4092 4093 4094 4095
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4096

4097 4098 4099 4100 4101 4102 4103 4104 4105
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4106

4107 4108 4109 4110 4111 4112
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4113

4114 4115
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4116

4117 4118 4119 4120 4121 4122
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4123 4124
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4140 4141 4142 4143
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4144
              param_attr=None,
C
caoying03 已提交
4145 4146
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4147 4148 4149 4150
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4151
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4152

4153
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4154

4155
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4156

4157
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4158 4159 4160

            h_t & = o_t tanh(c_t)

4161 4162 4163 4164 4165 4166
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4167 4168 4169

        .. math::

4170
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4171 4172 4173 4174 4175 4176 4177 4178

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4179
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4180 4181

    Args:
Y
yangyaming 已提交
4182 4183 4184 4185 4186 4187
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4188
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4201 4202
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4203 4204

    Returns:
Y
yangyaming 已提交
4205
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4206 4207

    Raises:
4208 4209 4210 4211
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4212 4213 4214 4215 4216 4217

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4218
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4219
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4220
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4237
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4238 4239 4240 4241
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4242 4243
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4244 4245 4246
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4247
    size = cell_t_prev.shape[1]
4248
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4249 4250
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4251
                param_attr=param_attr,
4252
                bias_attr=bias_attr)
Y
yangyaming 已提交
4253
    dtype = x_t.dtype
X
Xin Pan 已提交
4254 4255
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4265
    return h, c
G
guosheng 已提交
4266 4267


C
caoying03 已提交
4268
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4269
    """
Y
yangyaming 已提交
4270
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4271 4272 4273

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4274
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4275 4276
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4277 4278
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4279
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4280
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4281
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4282 4283
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4284 4285 4286

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4287

G
guosheng 已提交
4288 4289 4290 4291 4292 4293
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4294
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4295 4296 4297 4298
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4299 4300 4301 4302

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4303
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4304 4305 4306
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4307 4308
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4309
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4310 4311
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4312 4313 4314 4315 4316
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4317
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4318 4319 4320 4321
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4322 4323


C
caoying03 已提交
4324
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4325
    """
Y
Yibing Liu 已提交
4326
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4327 4328 4329

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4330 4331 4332
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4333
            must be in the range :math:`[-rank(input), rank(input))`. If
4334
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4335
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4336 4337
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4338
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4339
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4340
                       will be named automatically.
G
guosheng 已提交
4341 4342

    Returns:
Y
Yibing Liu 已提交
4343
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4344

G
guosheng 已提交
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4355 4356
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4357 4358 4359 4360 4361 4362 4363

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4364 4365
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4366
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4367 4368
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4369 4370 4371 4372 4373
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4374
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4375 4376 4377 4378
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4379 4380


C
caoying03 已提交
4381
def reduce_max(input, dim=None, keep_dim=False, name=None):
4382
    """
Y
yangyaming 已提交
4383
    Computes the maximum of tensor elements over the given dimension.
4384 4385 4386

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4387
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4388 4389 4390
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4391
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4392 4393
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4394
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4395 4396
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4397 4398 4399

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4400

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4412 4413 4414 4415 4416 4417 4418

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4419 4420
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4421
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4422 4423
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4424 4425 4426 4427 4428
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4429
            'dim': dim if dim != None else [0],
4430 4431 4432 4433 4434 4435
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4436
def reduce_min(input, dim=None, keep_dim=False, name=None):
4437
    """
Y
yangyaming 已提交
4438
    Computes the minimum of tensor elements over the given dimension.
4439 4440 4441

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4442
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4443 4444 4445
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4446
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4447 4448
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4449
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4450 4451
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4452 4453 4454

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4455

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4467 4468 4469 4470 4471 4472 4473

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4474 4475
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4476
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4477 4478
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4479 4480 4481 4482 4483
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4484
            'dim': dim if dim != None else [0],
4485 4486 4487 4488
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4489 4490


4491 4492 4493 4494 4495 4496
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4497
        dim (list|int|None): The dimensions along which the product is performed. If
4498 4499
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4500 4501
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4502 4503 4504
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4505
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4506
            layer will be named automatically.
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4521
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4522
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4523 4524 4525 4526 4527 4528 4529

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4530 4531
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4532
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4533 4534
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4535 4536 4537 4538 4539
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4540
            'dim': dim if dim != None else [0],
4541 4542 4543 4544 4545 4546
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4547
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4548
    """
C
caoying03 已提交
4549
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4550 4551 4552

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4553 4554 4555 4556 4557
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4558
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4559
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4560
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4561 4562
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4563 4564

    Returns:
D
dzhwinter 已提交
4565
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4566 4567 4568 4569 4570 4571 4572 4573 4574

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4575 4576
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4592
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4606 4607 4608 4609 4610 4611 4612 4613 4614


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4615
    .. math::
4616 4617

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4618 4619 4620 4621 4622

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4623
        x(Variable|list): The input tensor to l2_normalize layer.
4624
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4625 4626
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4627
        epsilon(float): The epsilon value is used to avoid division by zero, \
4628
            the defalut value is 1e-10.
4629
        name(str|None): A name for this layer(optional). If set None, the layer \
4630
            will be named automatically.
C
caoying03 已提交
4631 4632

    Returns:
4633
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4634 4635

    Examples:
4636

C
caoying03 已提交
4637 4638
        .. code-block:: python

4639 4640 4641 4642
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4643 4644
    """

F
fengjiayi 已提交
4645 4646
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4647 4648
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4649 4650
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4651
    helper.append_op(
4652 4653 4654 4655
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4656
        attrs={
4657 4658
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4659 4660
        })
    return out
4661 4662


S
sneaxiy 已提交
4663
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4664
    """
Y
ying 已提交
4665 4666 4667 4668
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4669

C
chengduoZH 已提交
4670
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4671
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4672

4673 4674 4675 4676 4677
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4678
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4679

C
chengduoZH 已提交
4680
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4681
      performs in the following way.
G
guosheng 已提交
4682

4683
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4684
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4685
        last two dimensions and a batched matrix multiply supporting broadcast
4686
        applies on the two tensors.
G
guosheng 已提交
4687

Y
ying 已提交
4688 4689
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4690
    removed after matrix multiplication.
G
guosheng 已提交
4691 4692 4693

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4694 4695 4696
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4697
        alpha (float): The scale of output. Default 1.0.
4698
        name(str|None): A name for this layer(optional). If set None, the layer
4699
            will be named automatically.
G
guosheng 已提交
4700 4701

    Returns:
4702
        Variable: The product Tensor variable.
G
guosheng 已提交
4703

G
guosheng 已提交
4704 4705 4706
    Examples:
        .. code-block:: python

4707
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4708 4709
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4710

4711 4712
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4713

4714 4715
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4716

4717 4718
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4719 4720 4721 4722

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4723 4724
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4725

Y
ying 已提交
4726
            # x: [M], y: [N]
4727
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4728
    """
Y
ying 已提交
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4741
            y_shape = y_shape + [1]
Y
ying 已提交
4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4758
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4759
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4760
    helper.append_op(
4761 4762 4763 4764
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4765 4766 4767
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4768
            'alpha': float(alpha),
S
sneaxiy 已提交
4769
        })
4770
    return out
4771 4772


4773
def topk(input, k, name=None):
Q
qingqing01 已提交
4774 4775 4776 4777
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4778
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4779 4780 4781 4782 4783 4784
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4806 4807 4808
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4809
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4810
                 of input.
4811
        name(str|None): A name for this layer(optional). If set None, the layer
4812
                       will be named automatically.
F
fengjiayi 已提交
4813
                       Default: None
Q
qingqing01 已提交
4814 4815

    Returns:
4816 4817 4818
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4819
        within the last dimension of input.
Q
qingqing01 已提交
4820

F
fengjiayi 已提交
4821 4822
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4823 4824 4825 4826 4827 4828 4829

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4830 4831
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4832 4833 4834 4835 4836 4837
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4838 4839
    helper.append_op(
        type="top_k",
W
whs 已提交
4840
        inputs=inputs,
Q
qingqing01 已提交
4841 4842
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4843
        attrs=attrs)
Q
qingqing01 已提交
4844 4845 4846 4847 4848
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4849
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4850
    """
Y
ying 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4860

Y
ying 已提交
4861
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4862

4863
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4864 4865
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4866
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4867

4868
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4869 4870
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4871

4872 4873 4874
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4875
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4876
                          the length of reference string.
4877
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4878
                                     calculating edit distance.
4879
        name (str): The name of this layer. It is optional.
4880

W
wanghaoshuang 已提交
4881
    Returns:
W
wanghaoshuang 已提交
4882
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4883 4884 4885 4886

    Examples:
        .. code-block:: python

T
tink2123 已提交
4887 4888
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4889
            cost = fluid.layers.edit_distance(input=x,label=y)
4890
    """
4891
    helper = LayerHelper("edit_distance", **locals())
4892

4893
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4894
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4895 4896
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4897 4898 4899 4900 4901

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4902
            attrs={"tokens": ignored_tokens})
4903 4904 4905 4906 4907
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4908
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4909
            attrs={"tokens": ignored_tokens})
4910 4911
        label = erased_label

4912
    # edit distance op
X
Xin Pan 已提交
4913 4914
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4915 4916 4917 4918
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4919 4920
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4921 4922
        attrs={"normalized": normalized})

4923
    return edit_distance_out, sequence_num
4924 4925 4926 4927 4928


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4929

Y
ying 已提交
4930 4931 4932 4933
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4951
        input.lod = [[4, 4]]
M
minqiyang 已提交
4952

W
whs 已提交
4953
        Computation:
4954

W
whs 已提交
4955 4956 4957 4958 4959 4960
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4961 4962 4963 4964 4965

        output.data = [[2],
                       [1],
                       [3]]

4966
        output.lod = [[2, 1]]
4967

W
whs 已提交
4968

4969 4970
    Args:

Y
ying 已提交
4971 4972 4973 4974 4975 4976 4977 4978 4979
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4980
        name (str): The name of this layer. It is optional.
4981 4982

    Returns:
H
haowang101779990 已提交
4983 4984 4985
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4986
                  LoD [[]] and dims [1, 1].
4987 4988 4989 4990 4991

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4992

4993
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4994
    """
4995
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4996
    _, topk_indices = topk(input, k=1)
4997 4998

    # ctc align op
X
Xin Pan 已提交
4999
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5000 5001 5002
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5003
        outputs={"Output": [ctc_out]},
5004 5005
        attrs={"merge_repeated": True,
               "blank": blank})
5006
    return ctc_out
5007 5008


W
Wu Yi 已提交
5009
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5010
    """
5011 5012
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5013
    to compute Connectionist Temporal Classification (CTC) loss.
5014 5015
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5016 5017 5018
    input tensor.

    Args:
5019
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5020 5021 5022 5023
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5024
       label (Variable): The ground truth of variable-length sequence,
5025 5026 5027
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5028 5029
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5030 5031 5032
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5033
         follewed by a mean_op.
W
Wu Yi 已提交
5034
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5035 5036

    Returns:
5037 5038
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5039 5040

    Examples:
5041

W
wanghaoshuang 已提交
5042
        .. code-block:: python
5043

5044 5045 5046
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5047 5048

    """
F
fengjiayi 已提交
5049
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5050 5051
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5052 5053 5054 5055 5056 5057
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5058 5059 5060 5061 5062
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5063
    return loss_out
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5079 5080 5081
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5082 5083 5084 5085 5086
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5087

5088
            out.lod  = [[0, 1, 3]]
5089 5090 5091 5092

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5093 5094 5095 5096 5097 5098 5099
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5100 5101 5102

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5103 5104

    Returns:
5105

5106 5107 5108 5109 5110
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5111
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5112
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5113 5114
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5115
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5116 5117 5118 5119 5120 5121
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5122 5123


5124 5125 5126 5127
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5128 5129 5130 5131 5132 5133
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5134
        num_neg_samples=None,
5135 5136 5137
        name=None,
        sampler="uniform",
        custom_dist=None,
5138 5139
        seed=0,
        is_sparse=False):
5140 5141 5142 5143 5144 5145 5146
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5147 5148
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5149
            sample is 1.0.
C
chengduo 已提交
5150 5151 5152 5153 5154 5155 5156 5157 5158
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5159
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5160 5161
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5162 5163 5164
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5165
        custom_dist (float[]): A float[] with size=num_total_classes.
5166 5167 5168 5169
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5170
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5171

5172
    Returns:
Y
Yibing Liu 已提交
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5200 5201 5202 5203 5204 5205 5206 5207 5208

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5209

5210
    """
Y
Yang Yu 已提交
5211 5212 5213
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5214 5215

    dim = input.shape[1]
Y
Yang Yu 已提交
5216 5217 5218 5219 5220 5221
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5222
    inputs = {}
C
chengduo 已提交
5223 5224 5225 5226 5227 5228 5229
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5230 5231 5232
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5233

5234 5235 5236 5237
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5238 5239 5240 5241 5242 5243 5244

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5245 5246 5247 5248 5249 5250 5251 5252 5253
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5254
            if normal_prob - 1.0 > 0:
5255
                bigs.append((i, normal_prob))
5256
            elif 1.0 - normal_prob > 0:
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5272
            if big_left - 1.0 > 0:
5273
                bigs.append((big_idx, big_left))
5274
            elif 1.0 - big_left > 0:
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5304 5305 5306 5307
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5308 5309 5310 5311 5312
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5313 5314 5315 5316
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5317

Y
Yang Yu 已提交
5318 5319
    attrs = {
        'num_total_classes': int(num_total_classes),
5320 5321
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5322
        'sampler': sampler,
5323 5324
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5325
    }
Y
Yang Yu 已提交
5326 5327 5328

    helper.append_op(
        type='nce',
C
chengduo 已提交
5329
        inputs=inputs,
Y
Yang Yu 已提交
5330 5331 5332 5333 5334 5335
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5336
    return cost / (num_neg_samples + 1)
5337 5338


C
chengduo 已提交
5339 5340
def hsigmoid(input,
             label,
5341
             num_classes,
C
chengduo 已提交
5342 5343
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5344
             name=None,
5345 5346 5347
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5348
             is_sparse=False):
W
weixing02 已提交
5349 5350
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5351
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5352
    complete binary tree, or you can use is_custom to pass your own tree to
5353
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5354 5355 5356 5357 5358 5359
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5360
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5361
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5362

5363 5364
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5365 5366 5367 5368
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5369
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5370
       related to the same batch of inputs.
5371

W
weixing02 已提交
5372
    Args:
M
minqiyang 已提交
5373
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5374 5375 5376 5377
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5378 5379
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5380
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5392
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5393
            it should be in leaf -> root order
M
minqiyang 已提交
5394 5395 5396
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5397
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5398
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5399
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5400
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5401
             of W and input will be sparse.
W
weixing02 已提交
5402 5403

    Returns:
J
JiabinYang 已提交
5404
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5405 5406 5407 5408 5409

    Examples:

        .. code-block:: python

G
guosheng 已提交
5410 5411 5412
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5413 5414 5415 5416
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5417 5418
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5419
    dim = input.shape[1]
5420
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5421 5422 5423
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5424 5425 5426 5427
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5428 5429
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5430 5431 5432
    else:
        pass

J
JiabinYang 已提交
5433
    weights = None
5434 5435 5436 5437
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5438
    if not is_custom:
J
JiabinYang 已提交
5439 5440 5441 5442 5443 5444 5445 5446
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5447
            shape=[num_classes, dim],
J
JiabinYang 已提交
5448 5449
            is_bias=False,
            dtype=input.dtype)
5450 5451 5452
    inputs = {
        "X": input,
        "W": weights,
5453
        "PathTable": path_table,
5454
        "PathCode": path_code,
5455 5456
        "Label": label
    }
W
weixing02 已提交
5457
    if helper.bias_attr:
5458
        if not is_custom:
J
JiabinYang 已提交
5459 5460
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5461
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5462 5463 5464 5465 5466 5467
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5468
                shape=[num_classes, 1],
J
JiabinYang 已提交
5469 5470 5471
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5472 5473
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5474
        inputs=inputs,
W
weixing02 已提交
5475
        outputs={"Out": out,
5476 5477 5478 5479 5480 5481 5482
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5483 5484 5485
    return out


Y
fix ci.  
ying 已提交
5486
def transpose(x, perm, name=None):
Y
ying 已提交
5487 5488 5489 5490 5491 5492 5493
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5494 5495 5496
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5497 5498 5499 5500 5501 5502 5503

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5504
            # use append_batch_size=False to avoid prepending extra
5505
            # batch size in shape
5506
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5507
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5508
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5509 5510
    """

Y
fix ci.  
ying 已提交
5511
    if len(perm) != len(x.shape):
Y
ying 已提交
5512 5513 5514
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5515 5516 5517 5518 5519 5520
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5521 5522

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5523 5524
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5525
    helper.append_op(
5526
        type='transpose2',
Y
fix ci.  
ying 已提交
5527
        inputs={'X': [x]},
5528 5529
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5530 5531
        attrs={'axis': perm})
    return out
5532 5533


5534 5535 5536 5537 5538 5539 5540
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5541
    """
5542 5543 5544 5545 5546 5547 5548
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5577 5578 5579 5580 5581 5582 5583 5584 5585
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5586 5587 5588
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5589 5590 5591 5592 5593
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5621 5622 5623
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5636
            output.dims = {8, 8}
5637

5638
            output.lod = [[4, 4]]
5639

T
Tink_Y 已提交
5640
    Examples:
5641 5642 5643

        .. code-block:: python

5644 5645
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5646 5647

    """
W
wanghaoshuang 已提交
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5658 5659 5660 5661 5662 5663 5664
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5665
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5666
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5667
    helper.append_op(
5668
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5669
    return out
5670 5671


Y
yuyang18 已提交
5672
@templatedoc()
5673
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5674 5675
    """
    ${comment}
5676 5677

    Args:
Y
yuyang18 已提交
5678
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5679 5680
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5681 5682 5683 5684 5685
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5686
        ${out_comment}.
5687 5688

    Examples:
Y
yuyang18 已提交
5689 5690 5691 5692
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5693 5694 5695 5696 5697 5698
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5699
    out = helper.create_variable_for_type_inference(dtype)
5700 5701 5702 5703 5704
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5705
    return helper.append_activation(out)
5706 5707


Y
yuyang18 已提交
5708
@templatedoc()
5709 5710
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5711 5712 5713 5714 5715 5716 5717
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5718 5719

    Args:
Y
yuyang18 已提交
5720 5721
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5722 5723

    Returns:
Y
yuyang18 已提交
5724
        ${out_comment}.
5725 5726
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5727 5728 5729 5730 5731

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5732
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5733 5734 5735 5736 5737 5738
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5739 5740


5741 5742 5743
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5744
                               ignore_index=kIgnoreIndex,
5745 5746
                               numeric_stable_mode=False,
                               return_softmax=False):
5747 5748
    """
    **Softmax With Cross Entropy Operator.**
5749

5750 5751 5752 5753
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5754

5755 5756 5757
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5758

5759 5760 5761
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5762

5763
    The equation is as follows:
5764

5765
    1) Hard label (one-hot label, so every sample has exactly one class)
5766

5767 5768 5769 5770
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5771

5772 5773 5774
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5775

5776 5777 5778 5779
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5780 5781 5782
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5783

H
haowang101779990 已提交
5784
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5785

H
haowang101779990 已提交
5786
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5787

H
haowang101779990 已提交
5788
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5789 5790 5791

    and then cross entropy loss is calculated by softmax and label.

5792 5793 5794 5795 5796 5797 5798 5799
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5800 5801
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5802
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5803 5804 5805
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5806 5807 5808
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5809
                                    stable algorithm. Default: False
5810
        return_softmax (bool): A flag indicating whether to return the softmax
5811
                               along with the cross entropy loss. Default: False
5812

5813
    Returns:
H
haowang101779990 已提交
5814 5815 5816 5817 5818
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5819 5820 5821 5822 5823 5824 5825

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5826 5827
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5828 5829
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5830 5831
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5832 5833 5834 5835 5836 5837
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5838 5839 5840 5841 5842
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5843 5844 5845 5846

    if return_softmax:
        return loss, softmax

5847 5848 5849 5850 5851
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5852 5853
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5854
    For each instance, it computes the smooth L1 loss element by element first
5855
    and then sums all the losses. So the shape of ouput Variable is
5856
    [batch_size, 1].
5857

5858 5859
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5860
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5861
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5862
            L1 loss op with same shape as :attr:`x`.
5863
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5864 5865
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5866
            by this tensor element by element.
5867
        outside_weight (Variable|None): A tensor with rank at least 2. This
5868 5869
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5870
            element by element.
5871
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5872 5873
           scalar with default value 1.0.

5874
    Returns:
5875
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5876 5877 5878 5879 5880

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5881 5882
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5883
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5884
            out = fluid.layers.smooth_l1(x=fc, y=label)
5885
    """
5886

5887
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5888 5889
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5902 5903 5904 5905


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5906
    This layer creates the one-hot representations for input indices.
5907 5908

    Args:
Y
Yibing Liu 已提交
5909 5910
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5911 5912

    Returns:
Y
Yibing Liu 已提交
5913
        Variable: The one-hot representations of input.
5914 5915

    Examples:
C
caoying03 已提交
5916
        .. code-block:: python
5917

Y
Yibing Liu 已提交
5918 5919
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5920 5921
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5922
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5923 5924 5925 5926 5927 5928
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5929 5930


Y
Yu Yang 已提交
5931
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5932
    """
Y
yi.wu 已提交
5933 5934 5935
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5936 5937 5938 5939 5940 5941

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5942 5943
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5944 5945 5946 5947 5948 5949

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5950 5951
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5952 5953
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5954 5955 5956 5957 5958
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5959
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5960
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5961 5962
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5963
            outputs={'Out': [counter]},
M
minqiyang 已提交
5964 5965
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
5966 5967 5968
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5969 5970


5971
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5972
    """
C
caoying03 已提交
5973 5974
    Gives a new shape to the input Tensor without changing its data.

5975 5976 5977 5978 5979
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5980

5981
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5982

5983 5984 5985 5986
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5987
    2. 0 means the actual dimension value is going to be copied from the
5988 5989 5990 5991
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5992 5993

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5994
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5995
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5996

5997
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5998 5999
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6000 6001
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6002
    dimensions.
C
caoying03 已提交
6003

6004
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6005 6006 6007 6008
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6009 6010

    Args:
6011
        x(variable): The input tensor.
C
caoying03 已提交
6012 6013
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6014 6015 6016 6017 6018
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6019 6020
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
6021
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
6022 6023 6024 6025 6026 6027
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
6028
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6029

6030
    Returns:
G
guosheng 已提交
6031 6032 6033 6034
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6035

X
Xin Pan 已提交
6036 6037 6038
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6039 6040
    Examples:
        .. code-block:: python
G
guosheng 已提交
6041

6042
            data = fluid.layers.data(
6043
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6044
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6045
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6046 6047 6048
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6049
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6050 6051 6052 6053 6054
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6055

6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6071
    helper = LayerHelper("reshape2", **locals())
6072 6073
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6074
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6075
    helper.append_op(
6076
        type="reshape2",
X
Xin Pan 已提交
6077
        inputs=inputs,
D
dzhwinter 已提交
6078
        attrs={"shape": shape},
6079 6080
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6081

D
dzhwinter 已提交
6082
    return helper.append_activation(out)
6083

6084

6085
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6086
    """
M
minqiyang 已提交
6087 6088 6089
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6090
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6091

H
haowang101779990 已提交
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6113

Y
Yibing Liu 已提交
6114
    Args:
6115
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6116
        axes (list): List of integers, indicating the dimensions to be squeezed.
6117
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6118 6119 6120 6121 6122 6123 6124 6125

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6126
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6127 6128
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6129 6130
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6131
    helper.append_op(
6132
        type="squeeze2",
6133
        inputs={"X": input},
Y
Yibing Liu 已提交
6134
        attrs={"axes": axes},
6135 6136
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6137

6138 6139 6140
    return out


6141
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6142
    """
M
minqiyang 已提交
6143 6144 6145
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6146

M
minqiyang 已提交
6147
    For example:
H
haowang101779990 已提交
6148 6149 6150

    .. code-block:: text

M
minqiyang 已提交
6151
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6152
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6153

Y
Yibing Liu 已提交
6154
    Args:
6155
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6156
        axes (list): List of integers, indicating the dimensions to be inserted.
6157
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6158 6159 6160 6161 6162 6163 6164 6165

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6166
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6167 6168
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6169 6170
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6171
    helper.append_op(
6172
        type="unsqueeze2",
6173
        inputs={"X": input},
Y
Yibing Liu 已提交
6174
        attrs={"axes": axes},
6175 6176
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6177

6178 6179
    return out

6180

Y
yangyaming 已提交
6181
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6182
    """
Y
Yibing Liu 已提交
6183
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6184 6185 6186 6187
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6188
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6189 6190 6191 6192 6193 6194

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6195
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6196 6197 6198
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6199
            target_lod: [4, 2]
Y
yangyaming 已提交
6200 6201

            then we get a 1-level LoDTensor:
6202
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6203 6204 6205 6206 6207 6208
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6209
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6210 6211 6212 6213
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6214
                y.data = [[2, 4]]
Y
yangyaming 已提交
6215 6216 6217
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6218
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6219 6220 6221 6222 6223 6224
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6225
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6226 6227 6228 6229
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6230
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6231 6232 6233 6234
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6235
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6236 6237 6238 6239 6240
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6241
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6242
                           from :attr:`y`.
Y
yangyaming 已提交
6243
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6244
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6245 6246

    Returns:
Y
Yibing Liu 已提交
6247
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6248 6249

    Raises:
Y
Yibing Liu 已提交
6250
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6251 6252 6253 6254 6255 6256 6257 6258 6259

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6260
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6286
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6315 6316
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6329 6330 6331
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6345 6346 6347 6348


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6349
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6350
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6351

G
guosheng 已提交
6352 6353 6354 6355
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6378
                         The length of :attr:paddings must be
G
guosheng 已提交
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6389

G
guosheng 已提交
6390 6391 6392 6393 6394 6395
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6396
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6397 6398 6399 6400 6401 6402 6403
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6404 6405


C
chengduo 已提交
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6437 6438
		And
            pad_value = -1,
C
chengduo 已提交
6439

T
Tink_Y 已提交
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6475
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6476 6477 6478 6479 6480 6481 6482 6483 6484
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6485 6486 6487 6488 6489 6490 6491
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6492 6493
    called label-smoothing regularization (LSR).

6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6517
                              be :math:`(1, class\_num)`.
6518 6519
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6520
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6540
    smooth_label = helper.create_variable_for_type_inference(dtype)
6541 6542 6543 6544 6545 6546 6547
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6548 6549


W
wopeizl 已提交
6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6586 6587


J
jerrywgz 已提交
6588 6589 6590 6591 6592 6593
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6594 6595
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6612 6613 6614
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6615 6616 6617 6618 6619 6620
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6621
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6662 6663
        .. code-block:: python

W
whs 已提交
6664 6665 6666 6667
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6668
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6669 6670 6671 6672 6673 6674
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6675 6676


6677 6678 6679 6680
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6681
                 resample='BILINEAR',
6682 6683
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6684
                 align_mode=1):
6685
    """
Q
qiaolongfei 已提交
6686
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6687

6688
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6689 6690 6691
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6692

6693
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6694

6695
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6696

6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6707
    Align_corners and align_mode are optinal parameters,the calculation method 
6708 6709 6710 6711
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6712
      For scale:
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
6725
      if:
6726 6727 6728 6729 6730 6731 6732 6733
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
6734
      else:
6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})

      Bilinear interpolation:

T
tink2123 已提交
6745
      if:
6746 6747 6748 6749 6750 6751 6752 6753 6754
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6755
      else:
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
       
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



6771
    Args:
6772
        input (Variable): The input tensor of image resize layer,
6773 6774
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6775
        out_shape(list|tuple|Variable|None): Output shape of image resize
6776 6777
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6778
        scale(float|None): The multiplier for the input height or width.
6779 6780 6781
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6782 6783
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6784
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6785
                       currently.
6786
                       Default: 'BILINEAR'
6787 6788 6789
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6790
                                :attr:`out_shape` and :attr:`scale` specifying
6791 6792 6793 6794 6795 6796 6797
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6798 6799
                                constructing stage.
                                Default: None
6800 6801 6802 6803
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6804
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6805 6806
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
6807 6808

    Returns:
Q
update  
qiaolongfei 已提交
6809 6810
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6811

6812 6813 6814
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6815
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6816 6817 6818
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
6819 6820
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
6821

6822 6823 6824
    Examples:
        .. code-block:: python

6825
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6826
    """
6827 6828 6829 6830
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6831 6832
    if resample not in resample_methods:
        raise ValueError(
6833
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6834
        )
6835
    resample_type = resample_methods[resample]
6836 6837 6838 6839 6840 6841

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6842
    if out_shape is None and scale is None:
6843
        raise ValueError("One of out_shape and scale must not be None.")
6844
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6845
    dtype = helper.input_dtype()
6846 6847 6848 6849

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6850 6851 6852
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6853
    if out_shape is not None:
6854 6855 6856 6857
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6858
            inputs['OutSize'] = out_shape
6859 6860 6861 6862 6863 6864 6865 6866
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6867 6868 6869 6870
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6871 6872 6873 6874 6875
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6876
    out = helper.create_variable_for_type_inference(dtype)
6877
    helper.append_op(
6878
        type='{}_interp'.format(resample_type),
6879
        inputs=inputs,
6880
        outputs={"Out": out},
6881 6882 6883 6884 6885 6886 6887
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
6888
    return out
F
stash  
fengjiayi 已提交
6889 6890


6891
@templatedoc(op_type="bilinear_interp")
6892 6893 6894 6895
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6896 6897
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
6898
                    align_mode=1):
6899
    """
6900 6901
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6902 6903
    in priority order.

6904 6905 6906 6907
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6908 6909
    again in the other direction.

6910
    For details of bilinear interpolation, please refer to Wikipedia:
6911
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6912

T
tink2123 已提交
6913
    Align_corners and align_mode are optinal parameters,the calculation 
6914 6915 6916
    method of interpolation can be selected by them.


T
tink2123 已提交
6917
    Align_corners and align_mode are optinal parameters,the calculation method 
6918 6919 6920 6921
    of interpolation can be selected by them.

    Example:

T
tink2123 已提交
6922
      For scale:
6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)     

    Bilinear interpolation:

T
tink2123 已提交
6934
      if:
6935 6936 6937 6938 6939 6940 6941 6942 6943
          align_corners = False , align_mode = 0
          
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:
          
          H_out = (H_{in}+0.5) * scale_{factor} - 0.5
          W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
6944 6945
      else:

6946 6947 6948 6949 6950 6951 6952 6953
          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = H_{in} * scale_{factor}
          W_out = W_{in} * scale_{factor}



Y
yuyang18 已提交
6954 6955 6956 6957
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6958

Y
yuyang18 已提交
6959 6960 6961 6962 6963
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6964 6965 6966
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6967
                                :attr:`out_shape` and :attr:`scale` specifying
6968 6969 6970 6971 6972 6973 6974
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6975 6976
                                constructing stage.
                                Default: None
6977 6978
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
6979 6980 6981

    Returns:
        ${out_comment}.
6982 6983 6984 6985 6986

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6987 6988
    """

6989 6990
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
6991 6992


6993
@templatedoc(op_type="nearest_interp")
6994 6995 6996 6997
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
6998 6999
                   actual_shape=None,
                   align_corners=True):
7000
    """
7001
    Resize input by performing nearest neighbor interpolation in both the
7002 7003
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
7004 7005
    out_shape and scale in priority order.

7006 7007
    Example:

T
tink2123 已提交
7008
      For scale:
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
      
        if align_corners = True && out_size > 1 :

          scale_factor = (in_size-1.0)/(out_size-1.0)
        
        else:
          
          scale_factor = float(in_size/out_size)
        
      
      Nearest neighbor interpolation:
      
T
tink2123 已提交
7021
      if:
7022 7023 7024 7025 7026 7027 7028 7029
          align_corners = False

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
          W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
7030
      else:
7031 7032 7033 7034 7035 7036 7037 7038 7039
          align_corners = True

          input : (N,C,H_in,W_in)
          output: (N,C,H_out,W_out) where:

          H_out = round(H_{in} * scale_{factor})
          W_out = round(W_{in} * scale_{factor})


7040
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7041
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7042 7043 7044 7045 7046

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7047

Y
yuyang18 已提交
7048 7049 7050 7051 7052
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7053 7054 7055
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7056
                                :attr:`out_shape` and :attr:`scale` specifying
7057 7058 7059 7060 7061 7062 7063
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7064 7065
                                constructing stage.
                                Default: None
7066
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7067 7068 7069

    Returns:
        ${out_comment}.
7070 7071 7072 7073 7074

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7075 7076
    """

7077 7078
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7079 7080 7081 7082


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7083 7084 7085
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7086 7087 7088 7089 7090 7091 7092
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7093
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7094

7095
    Returns:
Q
update  
qiaolongfei 已提交
7096
        Variable: The output is a 4-D tensor of the shape
7097
        (num_batches, channls, out_h, out_w).
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7108 7109 7110
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7111 7112 7113
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7114 7115
def gather(input, index):
    """
Q
qiaolongfei 已提交
7116 7117
    **Gather Layer**

7118
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7119 7120 7121 7122
    of X indexed by `index` and concatenate them together.

    .. math::

7123
        Out = X[Index]
W
whs 已提交
7124 7125 7126 7127 7128 7129 7130


    .. code-block:: text


                Given:

7131 7132
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7143
        input (Variable): The source input with rank>=1.
W
whs 已提交
7144 7145 7146 7147 7148 7149
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7150

W
whs 已提交
7151 7152 7153 7154 7155 7156
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7157
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7158 7159 7160 7161 7162 7163 7164 7165
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7197
    out = helper.create_variable_for_type_inference(dtype)
7198 7199 7200 7201 7202 7203 7204 7205 7206
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7207 7208 7209 7210 7211 7212 7213 7214 7215
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7216

Q
Qingsheng Li 已提交
7217
    Given the following input:
H
haowang101779990 已提交
7218

Q
Qingsheng Li 已提交
7219
    .. code-block:: text
H
haowang101779990 已提交
7220

Q
Qingsheng Li 已提交
7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7233

Q
Qingsheng Li 已提交
7234
    .. code-block:: text
H
haowang101779990 已提交
7235

Q
Qingsheng Li 已提交
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7251
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7252 7253 7254 7255 7256 7257 7258 7259 7260 7261

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7262
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7263 7264 7265 7266 7267 7268 7269 7270 7271
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7285

7286 7287 7288
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7289
    """
F
stash  
fengjiayi 已提交
7290
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7291
    dtype = x.dtype
X
Xin Pan 已提交
7292
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7293
    if seed is None:
7294
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7295
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7296
    if isinstance(seed, int):
F
fengjiayi 已提交
7297 7298 7299 7300 7301
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7302 7303 7304 7305
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7306
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7307 7308
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7309 7310
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7311
    return out
W
whs 已提交
7312 7313


7314
def log(x, name=None):
W
wanghaoshuang 已提交
7315 7316 7317 7318 7319
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7320
        Out = \\ln(x)
W
wanghaoshuang 已提交
7321 7322

    Args:
7323
        x (Variable): Input tensor.
7324 7325
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7326 7327 7328 7329 7330 7331 7332 7333

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7334
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7335 7336
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7337
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7338
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7339
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7340 7341 7342
    return out


7343
def relu(x, name=None):
W
wanghaoshuang 已提交
7344 7345
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7346
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7347 7348 7349 7350
    the tensor elementwise.

    .. math::

7351
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7352 7353

    Args:
7354
        x (Variable): The input tensor.
7355 7356
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7357 7358 7359 7360 7361 7362 7363 7364

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7365
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7366 7367
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7368
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7369
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7370 7371
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7372
    return out
7373 7374


C
chengduo 已提交
7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7416 7417 7418
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7419 7420 7421 7422
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7423
    .. math::
7424

H
haowang101779990 已提交
7425
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7426

7427
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7428 7429 7430 7431 7432
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7433
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7434
                           Its shape should be the same as input.
7435
        num_classes (int): The possible number of labels.
W
whs 已提交
7436 7437

    Returns:
M
minqiyang 已提交
7438 7439
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7440
                     Three variables:
M
minqiyang 已提交
7441

H
haowang101779990 已提交
7442 7443 7444
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7445 7446 7447 7448

    Examples:

        .. code-block:: python
7449

W
whs 已提交
7450 7451 7452 7453
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7454 7455 7456
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7457 7458
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7459 7460
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7461
        outputs={
W
whs 已提交
7462 7463 7464
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7465 7466 7467
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7536
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7537 7538 7539 7540 7541

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7542
            isinstance(shape, Variable)):
7543 7544 7545 7546 7547
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7548
    out = helper.create_variable_for_type_inference(x.dtype)
7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7566 7567


W
whs 已提交
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7585

W
whs 已提交
7586
              out_shape = [2, 3, 5, 5]
7587

W
whs 已提交
7588
          Step 1:
7589

W
whs 已提交
7590 7591 7592
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7593

W
whs 已提交
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7639
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7640
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7653

W
whs 已提交
7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7665
            isinstance(out_shape, Variable)):
W
whs 已提交
7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7687 7688
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7689

7690 7691
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7692
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7693 7694 7695
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7696

7697 7698
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7699

H
haowang101779990 已提交
7700 7701
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7702 7703
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7704

H
haowang101779990 已提交
7705 7706 7707 7708 7709 7710 7711 7712
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7713 7714 7715

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7750
    out = helper.create_variable_for_type_inference("float32")
7751 7752 7753 7754 7755 7756 7757 7758

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7759 7760


M
minqiyang 已提交
7761 7762
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7763
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7764
    which compares left score and right score passed in.
M
minqiyang 已提交
7765
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7766 7767 7768

    .. math::

H
haowang101779990 已提交
7769
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7770 7771

    Args:
M
minqiyang 已提交
7772
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7773 7774
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7775
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7776 7777
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7778

M
minqiyang 已提交
7779
    Returns:
M
minqiyang 已提交
7780
       Variable: The ranking loss.
H
haowang101779990 已提交
7781

M
minqiyang 已提交
7782
    Raises:
M
minqiyang 已提交
7783
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7784

M
minqiyang 已提交
7785
    Examples:
H
haowang101779990 已提交
7786

M
minqiyang 已提交
7787
        .. code-block:: python
H
haowang101779990 已提交
7788

M
minqiyang 已提交
7789 7790 7791 7792 7793
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7794
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7795 7796 7797 7798 7799 7800
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7801 7802
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7826
        .. code-block:: text
W
whs 已提交
7827

T
Tink_Y 已提交
7828
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7829

T
Tink_Y 已提交
7830 7831
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7832

T
Tink_Y 已提交
7833
	      Case 0:
M
minqiyang 已提交
7834

T
Tink_Y 已提交
7835 7836 7837
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7838

T
Tink_Y 已提交
7839 7840 7841
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7842

T
Tink_Y 已提交
7843
	      Case 1:
M
minqiyang 已提交
7844

T
Tink_Y 已提交
7845 7846
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7847

T
Tink_Y 已提交
7848 7849 7850
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7851

T
Tink_Y 已提交
7852
	      Case 2:
M
minqiyang 已提交
7853

T
Tink_Y 已提交
7854 7855
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7856

T
Tink_Y 已提交
7857 7858 7859
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7860 7861


W
whs 已提交
7862 7863
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7864
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7888
    out = helper.create_variable_for_type_inference(dtype)
7889 7890 7891 7892 7893 7894 7895 7896 7897
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7898
    helper.append_op(
7899
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7900 7901 7902 7903

    return out


7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7916 7917 7918 7919 7920

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7921 7922
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7923 7924
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7925
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7946 7947 7948 7949 7950

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7951 7952
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7953 7954
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7955
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7976 7977 7978 7979 7980

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7981 7982
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7983 7984
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7985
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8007 8008 8009 8010 8011

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8012
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8013
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8014 8015
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8016
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8039 8040 8041 8042 8043

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8044 8045
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8046 8047
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8048
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8070 8071 8072 8073 8074

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8075 8076
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8077 8078
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8079
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8080 8081 8082 8083 8084 8085 8086 8087
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8088 8089 8090 8091
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8092 8093
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8094 8095 8096

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8097
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8098
          weight (alpha).
J
jerrywgz 已提交
8099
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8100 8101 8102
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8103
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8104
          will be named automatically.
J
jerrywgz 已提交
8105 8106 8107 8108 8109 8110 8111 8112

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8113
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8127
        attr=helper.param_attr,
J
jerrywgz 已提交
8128 8129 8130 8131
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8132
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8133 8134 8135 8136 8137 8138 8139 8140 8141
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8142 8143 8144 8145 8146 8147 8148 8149 8150 8151
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8152
    Returns:
8153
        output(${out_type}): ${out_comment}
8154 8155 8156

    Examples:

8157
    .. code-block:: python
8158

H
haowang101779990 已提交
8159 8160
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8161 8162
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8163
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8182
    Returns:
8183
        output(${out_type}): ${out_comment}
8184 8185 8186 8187 8188

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8189 8190
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8191 8192
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8193
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8211
    Returns:
8212
        output(${out_type}): ${out_comment}
8213 8214 8215 8216 8217

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8218 8219
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8220 8221
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8222
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8223 8224 8225 8226 8227 8228 8229 8230
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8231 8232 8233 8234
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8235

H
haowang101779990 已提交
8236
    For Example:
M
minqiyang 已提交
8237

H
haowang101779990 已提交
8238
    .. code-block:: text
8239

H
haowang101779990 已提交
8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8261 8262 8263

    Args:
        x (Variable): A tensor of rank >= axis.
8264 8265
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8266 8267 8268 8269 8270 8271 8272 8273
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8274 8275 8276
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8277 8278 8279 8280
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8281
        ValueError: If axis is not in range [0, rank(x)].
8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8298 8299
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8300
    helper.append_op(
8301
        type='flatten2',
8302
        inputs={"X": x},
8303 8304
        outputs={'Out': out,
                 'XShape': x_shape},
8305 8306
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8307 8308


C
chenweihang 已提交
8309
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8310
    """
C
chenweihang 已提交
8311
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8312
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8313 8314
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8315

H
haowang101779990 已提交
8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8333 8334

    Args:
C
chenweihang 已提交
8335 8336 8337
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8349 8350
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8351 8352 8353 8354 8355 8356
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8357
    return out
8358

8359

S
sneaxiy 已提交
8360 8361 8362 8363 8364 8365 8366 8367 8368
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8369

S
sneaxiy 已提交
8370
    .. math::
8371

S
sneaxiy 已提交
8372 8373 8374
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8375
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8376 8377 8378 8379
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8380 8381 8382
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8383 8384
    Returns:
        Variable: The output sequence mask.
8385

S
sneaxiy 已提交
8386 8387
    """

Q
qingqing01 已提交
8388
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8389
    if name is None:
X
Xin Pan 已提交
8390
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8391
    else:
X
Xin Pan 已提交
8392
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8393

Q
qingqing01 已提交
8394 8395 8396
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8397 8398
        outputs={'Y': out},
        attrs={
8399
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8400 8401 8402
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8403 8404


X
Xin Pan 已提交
8405
def stack(x, axis=0):
S
sneaxiy 已提交
8406 8407 8408 8409
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8410 8411 8412 8413 8414 8415 8416

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8417
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8418
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8419 8420

    Args:
8421
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8422
        axis (int|None): The axis along which all inputs are stacked.
8423

S
sneaxiy 已提交
8424 8425
    Returns:
        Variable: The stacked variable.
8426

S
sneaxiy 已提交
8427 8428
    """

X
Xin Pan 已提交
8429 8430 8431 8432 8433 8434
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8435
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8436
    helper.append_op(
S
sneaxiy 已提交
8437 8438
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8439

X
Xin Pan 已提交
8440
    return out
D
dzhwinter 已提交
8441 8442 8443 8444 8445 8446 8447


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8448

D
dzhwinter 已提交
8449 8450 8451
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8452
    raised.
D
dzhwinter 已提交
8453 8454

    Args:
M
minqiyang 已提交
8455
        x (Variable): Input variable.
D
dzhwinter 已提交
8456 8457
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8458

D
dzhwinter 已提交
8459 8460
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8461

D
dzhwinter 已提交
8462 8463 8464 8465 8466 8467 8468 8469 8470 8471
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8472
    for _ in range(num):
X
Xin Pan 已提交
8473
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8474 8475 8476 8477 8478 8479 8480 8481

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8494

W
whs 已提交
8495 8496 8497 8498
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8499

W
whs 已提交
8500
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8501

W
whs 已提交
8502
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8503

W
whs 已提交
8504 8505 8506 8507
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8508

W
whs 已提交
8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8525
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8526 8527 8528 8529 8530 8531
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8532 8533


G
fix  
gongweibao 已提交
8534 8535 8536
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8537
@templatedoc()
G
fix  
gongweibao 已提交
8538 8539 8540 8541 8542 8543 8544 8545 8546
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8547
    ${comment}
G
fix  
gongweibao 已提交
8548 8549

    Args:
G
gongweibao 已提交
8550 8551 8552
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8553
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8554 8555 8556
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8557 8558
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8559
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8560

8561 8562 8563 8564 8565
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8566 8567 8568
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8569
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8586 8587


G
gongweibao 已提交
8588
@templatedoc()
X
Xin Pan 已提交
8589
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8590
    """
G
gongweibao 已提交
8591
    ${comment}
G
fix  
gongweibao 已提交
8592 8593

    Args:
G
gongweibao 已提交
8594 8595 8596 8597
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8598 8599 8600
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8601
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8602

8603 8604 8605 8606
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8607 8608 8609
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8610
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8611 8612 8613 8614 8615 8616 8617 8618 8619 8620
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8621
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8622 8623 8624 8625 8626
        })

    return out


G
gongweibao 已提交
8627
@templatedoc()
G
fix  
gongweibao 已提交
8628
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8629
    """
G
gongweibao 已提交
8630
    ${comment}
G
fix  
gongweibao 已提交
8631 8632

    Args:
G
gongweibao 已提交
8633 8634 8635 8636
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8637
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8638 8639

    Returns:
G
gongweibao 已提交
8640
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8641

8642 8643 8644 8645 8646 8647 8648 8649 8650 8651
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8652 8653 8654
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8655
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8667
@templatedoc()
G
fix  
gongweibao 已提交
8668 8669 8670 8671 8672 8673 8674 8675 8676
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8677
    ${comment}
G
fix  
gongweibao 已提交
8678 8679

    Args:
G
gongweibao 已提交
8680 8681
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8682
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8683 8684 8685 8686
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8687
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8688 8689

    Returns:
G
gongweibao 已提交
8690
        out (Variable): ${out_comment}
8691 8692 8693 8694 8695 8696 8697 8698

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8699 8700 8701
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8702
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8721
@templatedoc()
X
Xin Pan 已提交
8722
def sum(x):
G
fix  
gongweibao 已提交
8723
    """
G
gongweibao 已提交
8724
    ${comment}
G
fix  
gongweibao 已提交
8725 8726

    Args:
G
gongweibao 已提交
8727
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8728 8729

    Returns:
G
gongweibao 已提交
8730
        out (Variable): ${out_comment}
8731 8732 8733 8734 8735 8736

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8737 8738 8739
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8740 8741
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8742 8743 8744 8745
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8746
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8747 8748 8749 8750

    return out


G
gongweibao 已提交
8751
@templatedoc()
G
fix  
gongweibao 已提交
8752 8753
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8754
    ${comment}
G
fix  
gongweibao 已提交
8755 8756

    Args:
G
gongweibao 已提交
8757 8758 8759 8760
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8761 8762

    Returns:
G
gongweibao 已提交
8763
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8764

8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8776 8777 8778
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8779 8780
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8792
@templatedoc()
G
fix  
gongweibao 已提交
8793 8794
def shape(input):
    """
G
gongweibao 已提交
8795
    ${comment}
G
fix  
gongweibao 已提交
8796 8797

    Args:
G
gongweibao 已提交
8798
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8799 8800

    Returns:
G
gongweibao 已提交
8801
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8802

8803 8804 8805 8806 8807 8808
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8809 8810 8811
    """

    helper = LayerHelper('shape', **locals())
8812
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8813
    helper.append_op(
G
fix  
gongweibao 已提交
8814
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8815 8816

    return out
G
merge  
gongweibao 已提交
8817 8818


S
sneaxiy 已提交
8819 8820 8821 8822 8823 8824 8825 8826
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8827 8828
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8829
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8830 8831 8832
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8833

S
sneaxiy 已提交
8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8845
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8846 8847 8848 8849 8850 8851 8852 8853
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8854
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8855
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8856 8857 8858 8859 8860 8861

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8862
    if name is None:
X
Xin Pan 已提交
8863
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8864 8865 8866
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8867 8868 8869 8870 8871 8872 8873 8874 8875 8876

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8877
    return helper.append_activation(out)
S
sneaxiy 已提交
8878 8879


X
Xin Pan 已提交
8880
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8881 8882 8883
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8884
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8885 8886 8887
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8888
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8889 8890 8891
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8892
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8893 8894 8895
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8896
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8897 8898 8899
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8900
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8901 8902 8903
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8904
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8916 8917
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8918
        ])
M
minqiyang 已提交
8919 8920


8921
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8922 8923
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8924 8925
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8926 8927 8928

    if out is None:
        if name is None:
X
Xin Pan 已提交
8929
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8945
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8957 8958 8959 8960 8961 8962 8963 8964 8965

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8966 8967 8968 8969 8970 8971 8972
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8973
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8985 8986 8987 8988 8989 8990 8991 8992 8993

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8994 8995 8996 8997 8998 8999 9000
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9001
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9013 9014 9015 9016 9017 9018 9019 9020 9021

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9022 9023 9024 9025 9026 9027 9028
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9029
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9030 9031 9032 9033 9034 9035 9036 9037 9038 9039
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9040 9041 9042 9043 9044 9045 9046

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9047 9048 9049 9050
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9066 9067 9068 9069 9070 9071 9072

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9073 9074 9075 9076 9077
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9078 9079 9080 9081
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9105 9106 9107 9108 9109 9110 9111

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9112 9113 9114 9115 9116
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9117 9118 9119 9120
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9121 9122 9123 9124 9125 9126 9127 9128

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9147
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9148 9149 9150 9151 9152 9153 9154 9155 9156 9157
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9200
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9201 9202 9203 9204 9205 9206 9207 9208 9209
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9210 9211
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9212 9213 9214 9215 9216 9217
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9218 9219 9220
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9221 9222
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9223 9224 9225 9226 9227 9228
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9229
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9230
        name(basestring|None): Name of the output.
9231 9232
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9233 9234 9235

    Returns:
        out(${out_type}): ${out_comment}
9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9250 9251 9252 9253 9254
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9255
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9256 9257 9258 9259 9260 9261 9262 9263
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9264 9265
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9286
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9287 9288 9289 9290 9291 9292 9293 9294 9295 9296
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9297 9298


J
JiabinYang 已提交
9299
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9300
    """
J
JiabinYang 已提交
9301
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9302 9303 9304

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9305
    The attr blocksize indicates the input block size.
9306 9307

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9308
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9309 9310

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9311
    (but keeping all data)
J
JiabinYang 已提交
9312

J
JiabinYang 已提交
9313
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9314
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9315 9316 9317 9318 9319
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9320
    Args:
J
JiabinYang 已提交
9321
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9322
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9323 9324

    Returns:
J
JiabinYang 已提交
9325
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9326 9327

    Raises:
J
JiabinYang 已提交
9328
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9329 9330 9331 9332 9333 9334

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9335
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9336
                x=data, blocksize=2)
J
JiabinYang 已提交
9337 9338
    """

J
JiabinYang 已提交
9339
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9340

J
JiabinYang 已提交
9341 9342
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9343 9344

    if name is None:
J
JiabinYang 已提交
9345 9346
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9347 9348 9349 9350 9351
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9352
        type="space_to_depth",
J
JiabinYang 已提交
9353
        inputs={"X": x},
J
JiabinYang 已提交
9354
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9355
        outputs={"Out": out})
J
JiabinYang 已提交
9356 9357
    return out

J
JiabinYang 已提交
9358

S
sneaxiy 已提交
9359 9360
@templatedoc()
def sequence_reverse(x, name=None):
9361
    """
S
sneaxiy 已提交
9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9373
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9374 9375 9376 9377 9378 9379 9380 9381 9382 9383
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9384 9385


9386 9387 9388 9389 9390 9391
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9392

9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9412
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9425 9426


B
barrierye 已提交
9427
def similarity_focus(input, axis, indexes, name=None):
9428
    """
B
barrierye 已提交
9429
    SimilarityFocus Operator
B
barrierye 已提交
9430 9431

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9432

9433 9434 9435
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9436
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9437 9438 9439 9440 9441 9442 9443
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9444
       each index.
B
barrierye 已提交
9445 9446 9447 9448
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9498
    Args:
9499
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9500
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9501
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9502
            1, 2 or 3.
B
barrierye 已提交
9503
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9504 9505

    Returns:
H
haowang101779990 已提交
9506 9507
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9508

B
barrierye 已提交
9509 9510
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9511

B
barrierye 已提交
9512
            data = fluid.layers.data(
B
barrierye 已提交
9513 9514
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9515

B
barrierye 已提交
9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9528 9529 9530 9531 9532
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9533 9534 9535 9536 9537 9538 9539
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9540 9541


M
minqiyang 已提交
9542 9543
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9544 9545
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9546 9547
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9586
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9587
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9588 9589 9590 9591 9592 9593

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9594

M
minqiyang 已提交
9595 9596 9597
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9598 9599
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9600 9601
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9602 9603 9604 9605 9606 9607 9608
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9609 9610


D
dengkaipeng 已提交
9611
@templatedoc()
9612 9613
def grid_sampler(x, grid, name=None):
    """
9614
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9615
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9616 9617 9618 9619
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9620
    interpolation value of 4 nearest corner points.
9621

H
haowang101779990 已提交
9622
    .. code-block:: text
9623

H
haowang101779990 已提交
9624 9625
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9626

H
haowang101779990 已提交
9627 9628
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9629

H
haowang101779990 已提交
9630 9631 9632
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9633

H
haowang101779990 已提交
9634 9635 9636 9637 9638 9639 9640 9641 9642
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9643

H
haowang101779990 已提交
9644 9645 9646 9647
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9648

H
haowang101779990 已提交
9649 9650 9651 9652
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9653

H
haowang101779990 已提交
9654 9655 9656 9657
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9658

H
haowang101779990 已提交
9659 9660
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9661 9662

    Args:
9663 9664 9665
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9666 9667

    Returns:
H
haowang101779990 已提交
9668
        Variable: Output of shape [N, C, H, W] data samples input X
9669 9670
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9671 9672 9673 9674 9675 9676 9677 9678
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9679

D
dengkaipeng 已提交
9680 9681 9682 9683 9684 9685 9686 9687 9688
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9689
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9690 9691
    ipts = {'X': x, 'Grid': grid}

9692
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9693 9694 9695
    return out


G
gmcather 已提交
9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9762
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9784 9785 9786 9787
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9788
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9789 9790
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9791
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9792 9793

    .. math::
H
haowang101779990 已提交
9794 9795 9796
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9797 9798

    Where:
H
haowang101779990 已提交
9799 9800
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9815

G
gmcather 已提交
9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9832 9833 9834 9835 9836 9837 9838 9839 9840 9841


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9842
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9843

Q
Qiao Longfei 已提交
9844
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9845 9846 9847
    For example:

    .. math::
H
haowang101779990 已提交
9848
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9849

Q
Qiao Longfei 已提交
9850
    In this formula:
9851 9852
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9853
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9854
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9855 9856 9857
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9858 9859
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9860 9861 9862
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9863
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9864
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9865
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9866 9867 9868 9869
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9870
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9871 9872 9873 9874

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9875
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9876 9877
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9878
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9879 9880 9881 9882

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9883
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9924 9925


S
shippingwang 已提交
9926
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
9927 9928
    """
    **Shuffle Channel Operator**
9929

S
shippingwang 已提交
9930 9931 9932 9933 9934 9935
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
9936
    
S
shippingwang 已提交
9937
    .. code-block:: text
9938

S
shippingwang 已提交
9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
9967
    Args: 
S
shippingwang 已提交
9968 9969
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
9970 9971

    Returns:
S
shippingwang 已提交
9972 9973
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
9974 9975

    Raises:
S
shippingwang 已提交
9976
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
9977 9978 9979

    Examples:
        .. code-block:: python
9980 9981

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
9982
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
9983 9984 9985
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
9986
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
9987 9988 9989 9990 9991 9992 9993 9994 9995

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
9996
    return out
S
Add  
shippingwang 已提交
9997 9998


S
sneaxiy 已提交
9999
class PyFuncRegistry(object):
S
sneaxiy 已提交
10000 10001 10002
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10003
        if func is None or not callable(func):
S
sneaxiy 已提交
10004 10005 10006
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10007
        # find named args using reflection
S
sneaxiy 已提交
10008 10009 10010 10011 10012 10013 10014
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10015 10016 10017
        '''
        Why record self here?

M
minqiyang 已提交
10018 10019
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10020
           to find the registered function corresponding
M
minqiyang 已提交
10021
           to :code:`idx`.
S
sneaxiy 已提交
10022

M
minqiyang 已提交
10023 10024
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10025
           whose reference count is 1 would cause
M
minqiyang 已提交
10026
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10027 10028
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10029
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10044 10045 10046 10047 10048 10049 10050 10051 10052
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10053

S
sneaxiy 已提交
10054 10055
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10056 10057

        ret = []
S
sneaxiy 已提交
10058 10059 10060
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10061 10062
                continue

S
sneaxiy 已提交
10063 10064
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10065

S
sneaxiy 已提交
10066 10067 10068
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10069

S
sneaxiy 已提交
10070
        return tuple(ret)
S
sneaxiy 已提交
10071 10072


S
sneaxiy 已提交
10073 10074 10075 10076
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10077

S
sneaxiy 已提交
10078 10079 10080 10081 10082 10083 10084 10085
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10086
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10087

S
sneaxiy 已提交
10088 10089
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10090 10091 10092 10093
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10094
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10095
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10096 10097
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10098 10099 10100 10101 10102
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10103
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10104
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10105
                                       None means no backward. Default None.
S
sneaxiy 已提交
10106
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10107
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10108 10109
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10110
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10111 10112 10113

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10114 10115

    Examples:
M
minqiyang 已提交
10116

S
sneaxiy 已提交
10117 10118 10119 10120 10121
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10122
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10123 10124
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10125
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10126 10127 10128
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10129
        >>>
S
sneaxiy 已提交
10130 10131 10132 10133 10134
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10135
        >>>     print(x)
S
sneaxiy 已提交
10136 10137 10138 10139 10140 10141
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10142
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10143 10144
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10145 10146
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10147 10148 10149 10150 10151 10152 10153 10154
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10155
    """
S
sneaxiy 已提交
10156
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10157 10158 10159
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10160
        x = [x]
S
sneaxiy 已提交
10161 10162
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10163

S
sneaxiy 已提交
10164 10165 10166
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10167
        out_list = [out]
S
sneaxiy 已提交
10168
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10169
        out_list = out
S
sneaxiy 已提交
10170 10171 10172
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10173

S
sneaxiy 已提交
10174 10175
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10176
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10177 10178

    for each_out in out_list:
S
sneaxiy 已提交
10179 10180
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10181 10182
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10183

S
sneaxiy 已提交
10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10199 10200 10201 10202

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10203 10204
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10205 10206 10207
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10208
        })
S
sneaxiy 已提交
10209
    return out
S
sneaxiy 已提交
10210 10211 10212


# For debug usage
S
sneaxiy 已提交
10213 10214 10215 10216
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10269

M
minqiyang 已提交
10270

M
minqiyang 已提交
10271
def huber_loss(input, label, delta):
10272
    """
M
minqiyang 已提交
10273 10274 10275
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10276 10277 10278 10279

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10280
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10281 10282 10283 10284

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10285
        huber\_loss = 0.5 * (label - input) * (label - input)
10286 10287 10288 10289 10290 10291 10292


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10293
        delta (float): The parameter of huber loss, which controls
10294 10295 10296
                       the range of outliers

    Returns:
M
minqiyang 已提交
10297
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10298 10299 10300 10301 10302

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10303
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10304
    """
M
minqiyang 已提交
10305
    helper = LayerHelper('huber_loss', **locals())
10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)