Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
e41a71ce
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e41a71ce
编写于
12月 26, 2017
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix errors
上级
e0be63bf
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
66 addition
and
65 deletion
+66
-65
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+10
-9
python/paddle/v2/fluid/tests/test_activation_op.py
python/paddle/v2/fluid/tests/test_activation_op.py
+54
-54
python/paddle/v2/fluid/tests/test_net.py
python/paddle/v2/fluid/tests/test_net.py
+2
-2
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
e41a71ce
...
...
@@ -386,7 +386,8 @@ def square_error_cost(input, label, **kwargs):
square_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'square'
,
inputs
=
{
'X'
:
[
minus_out
]},
outputs
=
{
'Y'
:
[
square_out
]})
type
=
'square'
,
inputs
=
{
'X'
:
[
minus_out
]},
outputs
=
{
'Out'
:
[
square_out
]})
return
square_out
...
...
@@ -604,7 +605,7 @@ def sequence_pool(input, pool_type, **kwargs):
sqrt : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
max : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
pool_type (string): The pooling type of sequence_pool.
...
...
@@ -616,7 +617,7 @@ def sequence_pool(input, pool_type, **kwargs):
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
...
...
@@ -654,7 +655,7 @@ def sequence_first_step(input, **kwargs):
out.dim = [3, 1]
with condition len(x.lod[-1]) - 1 == out.dims[0]
out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
...
...
@@ -664,7 +665,7 @@ def sequence_first_step(input, **kwargs):
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_first_step = fluid.layers.sequence_first_step(input=x)
...
...
@@ -687,7 +688,7 @@ def sequence_last_step(input, **kwargs):
out.dim = [3, 1]
with condition len(x.lod[-1]) - 1 == out.dims[0]
out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
Args:
input(variable): The input variable which is a LoDTensor.
...
...
@@ -697,7 +698,7 @@ def sequence_last_step(input, **kwargs):
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_last_step = fluid.layers.sequence_last_step(input=x)
...
...
@@ -1132,7 +1133,7 @@ def reduce_sum(input, dim=None, keep_dim=False):
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
...
...
@@ -1176,7 +1177,7 @@ def reduce_mean(input, dim=None, keep_dim=False):
Returns:
Variable: The reduced Tensor variable.
Examples:
.. code-block:: python
...
...
python/paddle/v2/fluid/tests/test_activation_op.py
浏览文件 @
e41a71ce
...
...
@@ -10,13 +10,13 @@ class TestExp(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
exp
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
exp
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSigmoid
(
OpTest
):
...
...
@@ -25,13 +25,13 @@ class TestSigmoid(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
self
.
outputs
=
{
'
Out
'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
class
TestLogSigmoid
(
OpTest
):
...
...
@@ -40,13 +40,13 @@ class TestLogSigmoid(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
log
(
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
])))}
self
.
outputs
=
{
'
Out
'
:
np
.
log
(
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
])))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
class
TestTanh
(
OpTest
):
...
...
@@ -55,13 +55,13 @@ class TestTanh(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
tanh
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
tanh
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestTanhShrink
(
OpTest
):
...
...
@@ -70,13 +70,13 @@ class TestTanhShrink(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
self
.
inputs
[
'X'
]
-
np
.
tanh
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
self
.
inputs
[
'X'
]
-
np
.
tanh
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
class
TestHardShrink
(
OpTest
):
...
...
@@ -90,13 +90,13 @@ class TestHardShrink(OpTest):
t
=
np
.
copy
(
x
)
t
[(
t
>=
-
threshold
)
&
(
t
<=
threshold
)]
=
0
self
.
outputs
=
{
'
Y
'
:
t
}
self
.
outputs
=
{
'
Out
'
:
t
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.005
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.005
)
class
TestSoftShrink
(
OpTest
):
...
...
@@ -110,13 +110,13 @@ class TestSoftShrink(OpTest):
y
=
np
.
copy
(
self
.
inputs
[
'X'
])
y
=
(
y
<
-
lambda_val
)
*
(
y
+
lambda_val
)
+
(
y
>
lambda_val
)
*
(
y
-
lambda_val
)
self
.
outputs
=
{
'
Y
'
:
y
}
self
.
outputs
=
{
'
Out
'
:
y
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSqrt
(
OpTest
):
...
...
@@ -125,13 +125,13 @@ class TestSqrt(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
sqrt
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
sqrt
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestAbs
(
OpTest
):
...
...
@@ -144,13 +144,13 @@ class TestAbs(OpTest):
# we should avoid this
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
abs
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
abs
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestCeil
(
OpTest
):
...
...
@@ -158,13 +158,13 @@ class TestCeil(OpTest):
self
.
op_type
=
"ceil"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
ceil
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
ceil
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestFloor
(
OpTest
):
...
...
@@ -173,13 +173,13 @@ class TestFloor(OpTest):
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
}
# numpy floor need +1
self
.
outputs
=
{
'
Y
'
:
np
.
floor
(
self
.
inputs
[
'X'
])
+
1.0
}
self
.
outputs
=
{
'
Out
'
:
np
.
floor
(
self
.
inputs
[
'X'
])
+
1.0
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestRound
(
OpTest
):
...
...
@@ -187,13 +187,13 @@ class TestRound(OpTest):
self
.
op_type
=
"round"
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
4
,
4
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
round
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
round
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestRelu
(
OpTest
):
...
...
@@ -203,13 +203,13 @@ class TestRelu(OpTest):
# The same reason with TestAbs
x
[
np
.
abs
(
x
)
<
0.005
]
=
0.02
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'
Y
'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
0
)}
self
.
outputs
=
{
'
Out
'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
0
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestBRelu
(
OpTest
):
...
...
@@ -227,13 +227,13 @@ class TestBRelu(OpTest):
t
=
np
.
copy
(
x
)
t
[
t
<
t_min
]
=
t_min
t
[
t
>
t_max
]
=
t_max
self
.
outputs
=
{
'
Y
'
:
t
}
self
.
outputs
=
{
'
Out
'
:
t
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestRelu6
(
OpTest
):
...
...
@@ -248,14 +248,14 @@ class TestRelu6(OpTest):
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'threshold'
:
threshold
}
self
.
outputs
=
{
'
Y
'
:
np
.
minimum
(
np
.
maximum
(
self
.
inputs
[
'X'
],
0
),
threshold
)
'
Out
'
:
np
.
minimum
(
np
.
maximum
(
self
.
inputs
[
'X'
],
0
),
threshold
)
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestSoftRelu
(
OpTest
):
...
...
@@ -271,13 +271,13 @@ class TestSoftRelu(OpTest):
t
=
np
.
copy
(
x
)
t
[
t
<
-
threshold
]
=
-
threshold
t
[
t
>
threshold
]
=
threshold
self
.
outputs
=
{
'
Y
'
:
np
.
log
((
np
.
exp
(
t
)
+
1
))}
self
.
outputs
=
{
'
Out
'
:
np
.
log
((
np
.
exp
(
t
)
+
1
))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestELU
(
OpTest
):
...
...
@@ -290,27 +290,27 @@ class TestELU(OpTest):
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{
'alpha'
:
alpha
}
self
.
outputs
=
{
'
Y
'
:
np
.
maximum
(
0
,
x
)
+
np
.
minimum
(
0
,
alpha
*
(
np
.
exp
(
x
)
-
1
))
'
Out
'
:
np
.
maximum
(
0
,
x
)
+
np
.
minimum
(
0
,
alpha
*
(
np
.
exp
(
x
)
-
1
))
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestReciprocal
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"reciprocal"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)}
self
.
outputs
=
{
'
Y
'
:
np
.
reciprocal
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
reciprocal
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.01
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.01
)
class
TestLog
(
OpTest
):
...
...
@@ -319,13 +319,13 @@ class TestLog(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
log
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
log
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSquare
(
OpTest
):
...
...
@@ -334,13 +334,13 @@ class TestSquare(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
square
(
self
.
inputs
[
'X'
])}
self
.
outputs
=
{
'
Out
'
:
np
.
square
(
self
.
inputs
[
'X'
])}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestPow
(
OpTest
):
...
...
@@ -348,13 +348,13 @@ class TestPow(OpTest):
self
.
op_type
=
"pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
1
,
2
,
[
11
,
17
]).
astype
(
"float32"
)}
self
.
attrs
=
{
'factor'
:
3.0
}
self
.
outputs
=
{
'
Y
'
:
np
.
power
(
self
.
inputs
[
'X'
],
3
)}
self
.
outputs
=
{
'
Out
'
:
np
.
power
(
self
.
inputs
[
'X'
],
3
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.02
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.02
)
class
TestSTanh
(
OpTest
):
...
...
@@ -366,13 +366,13 @@ class TestSTanh(OpTest):
scale_a
=
2.0
/
3.0
scale_b
=
1.7159
self
.
attrs
=
{
'scale_a'
:
scale_a
,
'scale_b'
:
scale_b
}
self
.
outputs
=
{
'
Y
'
:
scale_b
*
np
.
tanh
(
self
.
inputs
[
'X'
]
*
scale_a
)}
self
.
outputs
=
{
'
Out
'
:
scale_b
*
np
.
tanh
(
self
.
inputs
[
'X'
]
*
scale_a
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSoftplus
(
OpTest
):
...
...
@@ -381,13 +381,13 @@ class TestSoftplus(OpTest):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float64"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
log
(
1
+
np
.
exp
(
self
.
inputs
[
'X'
]))}
self
.
outputs
=
{
'
Out
'
:
np
.
log
(
1
+
np
.
exp
(
self
.
inputs
[
'X'
]))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestSoftsign
(
OpTest
):
...
...
@@ -397,14 +397,14 @@ class TestSoftsign(OpTest):
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'
Y
'
:
np
.
divide
(
self
.
inputs
[
'X'
],
1
+
np
.
abs
(
self
.
inputs
[
'X'
]))
'
Out
'
:
np
.
divide
(
self
.
inputs
[
'X'
],
1
+
np
.
abs
(
self
.
inputs
[
'X'
]))
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.007
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.007
)
class
TestThresholdedRelu
(
OpTest
):
...
...
@@ -419,13 +419,13 @@ class TestThresholdedRelu(OpTest):
self
.
inputs
=
{
'X'
:
X
}
self
.
attrs
=
{
'threshold'
:
threshold
}
self
.
outputs
=
{
'
Y
'
:
(
X
>
threshold
)
*
X
}
self
.
outputs
=
{
'
Out
'
:
(
X
>
threshold
)
*
X
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
self
.
relative_error
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
self
.
relative_error
)
class
TestHardSigmoid
(
OpTest
):
...
...
@@ -447,13 +447,13 @@ class TestHardSigmoid(OpTest):
upper_threshold
-
0.2
temp
=
X
*
slope
+
offset
self
.
outputs
=
{
'
Y
'
:
np
.
maximum
(
0.0
,
np
.
minimum
(
1.0
,
temp
))}
self
.
outputs
=
{
'
Out
'
:
np
.
maximum
(
0.0
,
np
.
minimum
(
1.0
,
temp
))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.002
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.002
)
class
TestSwish
(
OpTest
):
...
...
@@ -462,13 +462,13 @@ class TestSwish(OpTest):
X
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
X
}
self
.
attrs
=
{
'beta'
:
2.3
}
self
.
outputs
=
{
'
Y
'
:
X
*
expit
(
self
.
attrs
[
'beta'
]
*
X
)}
self
.
outputs
=
{
'
Out
'
:
X
*
expit
(
self
.
attrs
[
'beta'
]
*
X
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'
Y
'
,
max_relative_error
=
0.008
)
self
.
check_grad
([
'X'
],
'
Out
'
,
max_relative_error
=
0.008
)
if
__name__
==
"__main__"
:
...
...
python/paddle/v2/fluid/tests/test_net.py
浏览文件 @
e41a71ce
...
...
@@ -7,7 +7,7 @@ def fc(X, W, Y):
ret_v
=
core
.
Net
.
create
()
ret_v
.
append_op
(
Operator
(
"mul"
,
X
=
"X"
,
Y
=
"W"
,
Out
=
"pre_activation"
))
ret_v
.
append_op
(
Operator
(
"sigmoid"
,
X
=
"pre_activation"
,
Y
=
Y
))
ret_v
.
append_op
(
Operator
(
"sigmoid"
,
X
=
"pre_activation"
,
Out
=
Y
))
ret_v
.
complete_add_op
(
True
)
return
ret_v
...
...
@@ -30,7 +30,7 @@ Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}.
Op(sigmoid), inputs:{X[pre_activation]}, outputs:{
Y
[fc.out]}.
Op(sigmoid), inputs:{X[pre_activation]}, outputs:{
Out
[fc.out]}.
'''
self
.
assertEqual
(
expected
,
"
\n
"
+
str
(
net
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录