Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
c67c54a8
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c67c54a8
编写于
12月 27, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish the doc of cross_entropy
上级
95862a54
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
54 addition
and
1 deletion
+54
-1
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+54
-1
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
c67c54a8
...
...
@@ -270,6 +270,7 @@ def gru_unit(input,
attr
=
helper
.
param_attr
,
shape
=
[
size
,
3
*
size
],
dtype
=
dtype
)
# create bias
if
bias
is
None
:
bias_size
=
[
1
,
3
*
size
]
bias
=
helper
.
create_parameter
(
...
...
@@ -358,7 +359,59 @@ def cos_sim(X, Y, **kwargs):
def
cross_entropy
(
input
,
label
,
**
kwargs
):
"""
This function computes cross_entropy using the input and label.
**Cross Entropy Layer**
This layer computes the cross entropy between `input` and `label`. It supports
both standard cross-entropy and soft-label cross-entropy loss computation.
1) One-hot cross-entropy:
`soft_label = false`, `Label[i, 0]` indicates the class index for sample i:
.. math::
Y[i] = -\log(X[i, Label[i]])
2) Soft-label cross-entropy:
`soft_label = true`, `Label[i, j]` indicates the soft label of class j
for sample i:
.. math::
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
Please make sure that in this case the summuation of each row of `label`
equals one.
3) One-hot cross-entropy with vecterized `label`:
As a special case of 2), when each row of 'label' has only one
non-zero element (equals 1), soft-label cross-entropy degenerates to a
one-hot cross-entropy with one-hot label representation.
Args:
input (Variable|list): a 2-D tensor with shape N x D, where N is the
batch size and D is the number of classes. This input is a probability
computed by the previous operator, which is almost always the result
of a softmax operator.
label (Variable|list): the ground truth which is a 2-D tensor. When
`soft_label` is set to `false`, `label` is a tensor<int64> with shape
[N x 1]. When `soft_label` is set to `true`, `label` is a
tensor<float/double> with shape [N x K].
soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate
the given labels as soft labels, default `false`.
Returns:
A 2-D tensor with shape [N x 1], the cross entropy loss.
Raises:
`ValueError`: 1) If the 1st dimension of `input` and `label` are not equal; 2) If
`soft_label == true`, and the 2nd dimension of `input` and `label` are not
equal; 3) If `soft_label == false`, and the 2nd dimension of `label` is not 1.
Examples:
.. code-block:: python
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
"""
helper
=
LayerHelper
(
'cross_entropy'
,
**
kwargs
)
out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录