Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
16d4e137
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
16d4e137
编写于
12月 24, 2018
作者:
S
shippingwang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add ShuffleChannelOP
上级
7f73c16e
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
173 addition
and
77 deletion
+173
-77
paddle/fluid/operators/shuffle_channel_op.cc
paddle/fluid/operators/shuffle_channel_op.cc
+29
-31
paddle/fluid/operators/shuffle_channel_op.cu
paddle/fluid/operators/shuffle_channel_op.cu
+106
-6
paddle/fluid/operators/shuffle_channel_op.h
paddle/fluid/operators/shuffle_channel_op.h
+16
-20
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+7
-3
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+1
-1
python/paddle/fluid/tests/unittests/test_shuffle_channel_op.py
...n/paddle/fluid/tests/unittests/test_shuffle_channel_op.py
+14
-16
未找到文件。
paddle/fluid/operators/shuffle_channel_op.cc
浏览文件 @
16d4e137
...
...
@@ -19,26 +19,27 @@ class ShuffleChannelOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
-
>
HasInput
(
"X"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of ShuffleChannelOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
Has
In
put
(
"Out"
),
PADDLE_ENFORCE
(
ctx
->
Has
Out
put
(
"Out"
),
"Output(Out) of ShuffleChannelOp should not be null."
);
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE
(
input_dims
.
size
()
==
4
,
"The layout of input is NCHW."
);
// ENFORCE group
auto
group
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>
>
(
"group"
);
// auto group = ctx->Attrs().Get<int
>("group");
ctx
->
SetOutputDim
(
"Out"
,
input_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
());
}
/*
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
ctx.device_context());
}
*/
};
class
ShuffleChannelOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -63,7 +64,7 @@ class ShuffleChannelOpMaker : public framework::OpProtoAndCheckerMaker {
then, feed each group in the next layer with different subgroups.
According to the paper, "Suppose a convolution layer with g groups
whose output has g
x
n channels, first reshape the output channel dimension into(g,n),
whose output has g
*
n channels, first reshape the output channel dimension into(g,n),
transposing and then flattening it back as the input of next layer. "
Shuffle channel operation makes it possible to build more powerful structures
...
...
@@ -75,52 +76,49 @@ class ShuffleChannelOpMaker : public framework::OpProtoAndCheckerMaker {
}
};
// Grad
class
ShuffleChannelOpGrad
:
public
framework
::
OperatorWithKernel
{
class
ShuffleChannelGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@Grad) should not be null"
)
"Input(Out@Grad) should not be null"
)
;
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output(X@Grad) should not be null"
);
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
input_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
type
()),
ctx
.
device_context
());
}
/*
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
ctx.device_context());
}
*/
};
}
// namespace operators
}
// namespace paddle
// how to write gpu kernal
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
shufflechannel
,
ops
::
ShuffleChannelOp
,
REGISTER_OPERATOR
(
shuffle
_
channel
,
ops
::
ShuffleChannelOp
,
ops
::
ShuffleChannelOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
// paddle::framework::EmptyGradOpMaker);
REGISTER_OPERATOR
(
shufflechannel_grad
,
ops
::
ShuffleChannelGradOp
);
REGISTER_OPERATOR
(
shuffle
_
channel_grad
,
ops
::
ShuffleChannelGradOp
);
REGISTER_OP_CPU_KERNEL
(
shufflechannel
,
shuffle
_
channel
,
ops
::
ShuffleChannelOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ShuffleChannelOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
shufflechannel_grad
,
shuffle
_
channel_grad
,
ops
::
ShuffleChannelGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ShuffleChannelGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/shuffle_channel_op.cu
浏览文件 @
16d4e137
...
...
@@ -10,15 +10,115 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/shuffle_channel_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
static
constexpr
int
kNumCUDAThreads
=
512
;
static
constexpr
int
kNumMaximumNumBlocks
=
4096
;
static
inline
int
NumBlocks
(
const
int
N
)
{
return
std
::
min
((
N
+
kNumCUDAThreads
-
1
)
/
kNumCUDAThreads
,
kNumMaximumNumBlocks
);
}
template
<
typename
T
>
__global__
void
ShuffleChannel
(
const
int
nthreads
,
const
int
feature_map_size
,
T
*
output
,
const
T
*
input
,
int
group_row
,
int
group_column
,
int
len
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
offset
=
blockDim
.
x
*
gridDim
.
x
;
for
(
size_t
ii
=
index
;
ii
<
nthreads
;
ii
+=
offset
)
{
const
int
n
=
index
/
group_row
/
group_column
/
len
;
const
int
i
=
(
index
/
group_column
/
len
)
%
group_row
;
const
int
j
=
index
/
len
%
group_column
;
const
int
k
=
index
-
(
n
*
feature_map_size
+
(
i
*
group_column
+
j
)
*
len
);
T
*
p_o
=
output
+
n
*
feature_map_size
+
(
j
*
group_row
+
i
)
*
len
;
p_o
[
k
]
=
input
[
index
];
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
ShuffleChannelOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
int
group
=
ctx
.
Attr
<
int
>
(
"group"
);
auto
input_dims
=
input
->
dims
();
auto
num
=
input_dims
[
0
];
auto
channel
=
input_dims
[
1
];
auto
height
=
input_dims
[
2
];
auto
weight
=
input_dims
[
3
];
auto
feature_map_size
=
channel
*
height
*
weight
;
auto
sp_sz
=
height
*
weight
;
int
group_row
=
group
;
int
group_column
=
channel
/
group_row
;
// count is the product of NCHW same as numel()
int
count
=
num
*
group_column
*
group_row
*
sp_sz
;
int
blocks
=
NumBlocks
(
output
->
numel
());
int
threads
=
kNumCUDAThreads
;
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ShuffleChannel
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
count
,
feature_map_size
,
output_data
,
input_data
,
group_row
,
group_column
,
sp_sz
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ShuffleChannelGradOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
int
group
=
ctx
.
Attr
<
int
>
(
"group"
);
auto
input_dims
=
input
->
dims
();
auto
num
=
input_dims
[
0
];
auto
channel
=
input_dims
[
1
];
auto
height
=
input_dims
[
2
];
auto
weight
=
input_dims
[
3
];
auto
feature_map_size
=
channel
*
height
*
weight
;
auto
sp_sz
=
height
*
weight
;
int
group_row
=
group
;
int
group_column
=
channel
/
group_row
;
auto
*
output_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
input_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
int
blocks
=
NumBlocks
(
output_grad
->
numel
());
int
threads
=
kNumCUDAThreads
;
int
count
=
num
*
group_column
*
group_row
*
sp_sz
;
ShuffleChannel
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
count
,
feature_map_size
,
input_grad_data
,
output_grad_data
,
group_row
,
group_column
,
sp_sz
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
shufflechannel
,
ops
::
ShuffleChannelOp
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
ops
::
ShuffleChannelOp
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
shuffle
_
channel
,
ops
::
ShuffleChannelOp
CUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ShuffleChannelOpCUDA
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
shufflechannel_grad
,
ops
::
ShuffleChannelOpGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
ops
::
ShuffleChannelOpGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
shuffle_channel_grad
,
ops
::
ShuffleChannelGradOpCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ShuffleChannelGradOpCUDAKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/shuffle_channel_op.h
浏览文件 @
16d4e137
...
...
@@ -21,10 +21,10 @@ namespace operators {
template
<
typename
DeviceContext
,
typename
T
>
class
ShuffleChannelOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
c
ontext
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
c
tx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
output
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
group
=
ctx
.
Input
<
framework
::
Tensor
>
(
"group"
);
int
group
=
ctx
.
Attr
<
int
>
(
"group"
);
auto
input_dims
=
input
->
dims
();
auto
num
=
input_dims
[
0
];
...
...
@@ -34,21 +34,19 @@ class ShuffleChannelOpKernel : public framework::OpKernel<T> {
auto
feature_map_size
=
channel
*
height
*
weight
;
auto
sp_sz
=
height
*
weight
;
int
group_row
=
group
;
int
group_column
=
channel
s
/
group_row
;
int
group_column
=
channel
/
group_row
;
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
output_data_temp
=
output_data
+
n
*
feature_map_size
;
input_data_temp
=
input_data
+
n
*
feature_map_size
;
for
(
int
i
=
0
;
i
<
group_row
;
++
i
)
{
for
(
int
j
=
0
;
j
<
group_column
;
++
j
)
{
const
auto
*
p_i
=
input_data_temp
+
(
i
*
group_column
+
j
)
*
sp_sz
;
auto
*
p_o
=
output_data_temp
+
(
j
*
group_row
+
i
)
*
sp_sz
;
memcpy
(
p_o
,
p_i
,
sizeof
(
Dtype
)
*
sp_sz
);
const
T
*
p_i
=
input_data
+
n
*
feature_map_size
+
(
i
*
group_column
+
j
)
*
sp_sz
;
T
*
p_o
=
output_data
+
n
*
feature_map_size
+
(
j
*
group_row
+
i
)
*
sp_sz
;
memcpy
(
p_o
,
p_i
,
sizeof
(
int
)
*
sp_sz
);
}
}
}
...
...
@@ -61,7 +59,7 @@ class ShuffleChannelGradOpKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
group
=
ctx
.
Input
<
framework
::
Tensor
>
(
"group"
);
int
group
=
ctx
.
Attr
<
int
>
(
"group"
);
auto
input_dims
=
input
->
dims
();
auto
num
=
input_dims
[
0
];
...
...
@@ -72,7 +70,7 @@ class ShuffleChannelGradOpKernel : public framework::OpKernel<T> {
auto
sp_sz
=
height
*
weight
;
int
group_row
=
group
;
int
group_column
=
channel
s
/
group_row
;
int
group_column
=
channel
/
group_row
;
auto
*
output_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
...
...
@@ -81,19 +79,17 @@ class ShuffleChannelGradOpKernel : public framework::OpKernel<T> {
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
output_grad_data
=
output_grad
->
data
<
T
>
();
for
(
int
n
=
0
;
n
<
num
;
++
n
)
{
output_grad_temp
=
output_grad_data
+
n
*
feature_map_size
;
input_grad_temp
=
input_grad_data
+
n
*
feature_map_size
;
for
(
int
i
=
0
;
i
<
group_row
;
++
i
)
{
for
(
int
j
=
0
;
j
<
group_column
;
++
j
)
{
const
auto
*
p_i
=
output_grad_temp
+
(
i
*
group_column
+
j
)
*
sp_sz
;
auto
*
p_o
=
input_grad_temp
+
(
j
*
group_row
+
i
)
*
sp_sz
;
memcpy
(
p_o
,
p_i
,
sizeof
(
Dtype
)
*
sp_sz
);
const
T
*
p_i
=
output_grad_data
+
n
*
feature_map_size
+
(
i
*
group_column
+
j
)
*
sp_sz
;
T
*
p_o
=
input_grad_data
+
n
*
feature_map_size
+
(
j
*
group_row
+
i
)
*
sp_sz
;
memcpy
(
p_o
,
p_i
,
sizeof
(
int
)
*
sp_sz
);
}
}
}
return
;
}
};
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
16d4e137
...
...
@@ -173,7 +173,7 @@ __all__ = [
'merge_selected_rows'
,
'get_tensor_from_selected_rows'
,
'lstm'
,
'shufflechannel'
,
'shuffle
_
channel'
,
'psroi_pool'
,
]
...
...
@@ -9334,17 +9334,20 @@ def shuffle_channel(x, group=1, name=None):
with multiple group convolutional layers.
Args:
x: The input tensor variable.
x: The input tensor variable..
group: The num of group
Returns:
Variable: channel shuffled tensor variable.
Raises:
ValueError: If group in not a int type variable.
ValueError: If group in not a
n
int type variable.
Examples:
.. code-block:: python
out = fluid.layers.shuffle_channel(x=group_conv,group=4)
"""
...
...
@@ -9361,6 +9364,7 @@ def shuffle_channel(x, group=1, name=None):
inputs
=
{
"X"
:
x
},
outputs
=
{
"Out"
:
out
},
attrs
=
{
"group"
:
group
})
return
out
@
templatedoc
()
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
16d4e137
...
...
@@ -1018,7 +1018,7 @@ class TestBook(unittest.TestCase):
def
test_shuffle_channel
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
"x"
,
shape
=
[
1
0
,
32
,
16
,
16
],
dtype
=
"float32"
)
x
=
layers
.
data
(
name
=
"x"
,
shape
=
[
1
,
4
,
2
,
2
],
dtype
=
"float32"
)
group
=
layers
.
data
(
name
=
"group"
,
shape
=
[
1
],
dtype
=
"int32"
)
out
=
layers
.
shuffle_channel
(
x
,
group
)
self
.
assertIsNotNone
(
out
)
...
...
python/paddle/fluid/tests/unittests/test_shuffle_channel_op.py
浏览文件 @
16d4e137
...
...
@@ -23,31 +23,29 @@ import paddle.fluid.core as core
class
TestShuffleChannelOp
(
OpTest
):
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'output'
)
def
setUp
(
self
):
self
.
op_type
=
"shuffle_channel"
self
.
batch_size
=
10
self
.
input_channels
=
16
self
.
layer_h
=
32
self
.
layer_w
=
32
self
.
group
=
4
self
.
batch_size
=
1
self
.
input_channels
=
4
self
.
layer_h
=
2
self
.
layer_w
=
2
self
.
group
=
2
self
.
x
=
np
.
random
.
random
(
(
self
.
batch_size
,
self
.
input_channels
,
self
.
layer_h
,
self
,
layer_w
)).
astype
(
'float32'
)
(
self
.
batch_size
,
self
.
input_channels
,
self
.
layer_h
,
self
.
layer_w
)).
astype
(
'float32'
)
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'group'
:
self
.
group
}
n
,
c
,
h
,
w
=
self
.
x
.
shape
input_reshaped
=
np
.
reshape
(
self
.
x
,
(
-
1
,
self
.
group
,
c
//
self
.
group
,
h
,
w
))
input_transposed
=
np
.
transpose
(
input_reshaped
,
(
0
,
2
,
1
,
3
,
4
))
self
.
outputs
=
np
.
reshape
(
input_transposed
,
(
-
1
,
c
,
h
,
w
))
self
.
outputs
=
{
'Out'
:
np
.
reshape
(
input_transposed
,
(
-
1
,
c
,
h
,
w
))}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录