Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
6bb84490
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6bb84490
编写于
12月 27, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix imperative unit test
test=develop
上级
336160e6
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
46 addition
and
38 deletion
+46
-38
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+4
-1
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+3
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+31
-31
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+7
-5
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
+1
-1
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
6bb84490
...
...
@@ -61,6 +61,9 @@ class Autograd {
for
(
size_t
i
=
0
;
i
<
input_grads
.
size
();
++
i
)
{
if
(
!
input_grads
[
i
])
continue
;
if
(
ready_op
->
input_vars_
->
at
(
i
)
->
stop_gradient_
)
{
continue
;
}
OpBase
*
pre_op
=
ready_op
->
pre_ops_
->
at
(
i
);
if
(
!
pre_op
)
continue
;
...
...
@@ -152,7 +155,7 @@ void VarBase::ApplyGrad(framework::Scope* scope, Variable* grad) {
}
std
::
vector
<
Variable
*>
OpBase
::
ApplyGrad
(
framework
::
Scope
*
scope
)
{
VLOG
(
3
)
<<
"op grad "
<<
grad_op_desc_
->
Type
();
VLOG
(
3
)
<<
"op grad
type:
"
<<
grad_op_desc_
->
Type
();
for
(
const
std
::
string
&
grad_invar
:
grad_op_desc_
->
InputArgumentNames
())
{
if
(
grad_to_var_
->
find
(
grad_invar
)
==
grad_to_var_
->
end
())
{
...
...
paddle/fluid/imperative/tracer.h
浏览文件 @
6bb84490
...
...
@@ -93,6 +93,8 @@ class Tracer {
LOG
(
ERROR
)
<<
"tracer doesn't support yet"
;
}
}
outputs
[
i
]
->
stop_gradient_
=
stop_gradient
;
outputs
[
i
]
->
var_
=
var
;
outputs
[
i
]
->
pre_op_
=
op
;
outputs
[
i
]
->
pre_op_out_idx_
=
i
;
...
...
@@ -106,6 +108,7 @@ class Tracer {
CreateGradOp
(
*
op_desc
,
{},
{
block
},
&
grad_op_desc
,
grad_to_var
);
op
->
grad_op_desc_
=
grad_op_desc
;
op
->
grad_to_var_
=
grad_to_var
;
VLOG
(
3
)
<<
"tracer create grad op "
<<
grad_op_desc
->
Type
();
}
op
->
block_
=
block
;
}
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
6bb84490
...
...
@@ -9348,7 +9348,7 @@ class PyFuncRegistry(object):
raise
TypeError
(
'func must be a Python function'
)
self
.
_func
=
func
# find named args using reflection
# find named args using reflection
args
=
inspect
.
getargspec
(
self
.
_func
)
if
len
(
args
[
0
])
==
0
and
args
[
1
]
is
None
and
args
[
2
]
is
None
:
# Function with no inputs
...
...
@@ -9359,15 +9359,15 @@ class PyFuncRegistry(object):
'''
Why record self here?
1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method
1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method
to find the registered function corresponding
to :code:`idx`.
to :code:`idx`.
2. For increasing reference count of self.
It seems that to release Python object
2. For increasing reference count of self.
It seems that to release Python object
whose reference count is 1 would cause
segmentation fault error in C++ side.
segmentation fault error in C++ side.
May be lack of Python GC in C++ side?
'''
PyFuncRegistry
.
_register_funcs
.
append
(
self
)
...
...
@@ -9418,7 +9418,7 @@ class PyFuncRegistry(object):
def
py_func
(
func
,
x
,
out
,
backward_func
=
None
,
skip_vars_in_backward_input
=
None
):
"""
PyFunc Operator.
User can use :code:`py_func` to register operators in Python side.
The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
numpy array or :code:`LoDTensor`. Paddle would call the registered
...
...
@@ -9436,7 +9436,7 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
no gradient, users should return None.
This function can also be used to debug the running network. User can
add a :code:`py_func` operator without output, and print input
add a :code:`py_func` operator without output, and print input
:code:`x` inside :code:`func`.
Args:
...
...
@@ -9444,50 +9444,50 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
Paddle cannot infer shapes and data types of :code:`out`. Users
should create :code:`out` beforehand.
should create :code:`out` beforehand.
backward_func (callable|None): backward Python function.
None means no backward. Default None.
None means no backward. Default None.
skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
Variables that are not needed in :code:`backward_func` inputs.
Variables that are not needed in :code:`backward_func` inputs.
These variables must be any of :code:`x` and :code:`out`.
If set, these vars would not be inputs of :code:`backward_func`,
Only useful when :code:`backward_func` is not None. Default None.
Only useful when :code:`backward_func` is not None. Default None.
Returns:
out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
Examples:
>>> import paddle.fluid as fluid
>>> import six
>>>
>>> def create_tmp_var(name, dtype, shape):
>>> return fluid.default_main_program().current_block().create_var(
>>> name=name, dtype=dtype, shape=shape)
>>> name=name, dtype=dtype, shape=shape)
>>>
>>> # tanh activation has been provided by Paddle C++ op
>>> # Here, we only use tanh to be an example to show the usage
>>> # Here, we only use tanh to be an example to show the usage
>>> # of py_func
>>> def tanh(x):
>>> return np.tanh(x)
>>>
>>>
>>> # forward input x is skipped
>>> def tanh_grad(y, dy):
>>> return np.array(dy) * (1 - np.square(np.array(y)))
>>>
>>> def debug_func(x):
>>> print(x)
>>> print(x)
>>>
>>> def simple_net(img, label):
>>> hidden = img
>>> for idx in six.moves.range(4):
>>> hidden = fluid.layers.fc(hidden, size=200)
>>> new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
>>> dtype=hidden.dtype, shape=hidden.shape)
>>> dtype=hidden.dtype, shape=hidden.shape)
>>>
>>> # user-defined layers with forward and backward
>>> hidden = fluid.layers.py_func(func=tanh, x=hidden,
>>> out=new_hidden, backward_func=tanh_grad,
>>> hidden = fluid.layers.py_func(func=tanh, x=hidden,
>>> out=new_hidden, backward_func=tanh_grad,
>>> skip_vars_in_backward_input=hidden)
>>>
>>> # user-defined debug layers to print variables
...
...
@@ -9666,14 +9666,15 @@ class FC(layers.PyLayer):
param_attr
=
None
,
num_flatten_dims
=
1
,
dtype
=
core
.
VarDesc
.
VarType
.
FP32
):
super
(
FC
,
self
).
__init__
()
super
(
FC
,
self
).
__init__
(
param_attr
=
param_attr
)
self
.
_size
=
size
self
.
_num_flatten_dims
=
num_flatten_dims
self
.
_dtype
=
dtype
self
.
_helper
=
LayerHelper
(
'FC'
,
param_attr
=
param_attr
)
self
.
_tmp
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
def
_build_once
(
self
,
inputs
):
input_shape
=
inputs
[
0
]
.
shape
input_shape
=
inputs
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
self
.
_num_flatten_dims
:],
1
)
]
+
[
self
.
_size
]
...
...
@@ -9684,21 +9685,20 @@ class FC(layers.PyLayer):
is_bias
=
False
)
def
forward
(
self
,
inputs
):
tmp
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
inputs
[
0
]
,
inputs
=
{
"X"
:
inputs
,
"Y"
:
self
.
_w
},
outputs
=
{
"Out"
:
tmp
},
outputs
=
{
"Out"
:
self
.
_
tmp
},
attrs
=
{
"x_num_col_dims"
:
self
.
_num_flatten_dims
,
"y_num_col_dims"
:
1
})
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
[
tmp
]},
outputs
=
{
"Out"
:
out
},
inputs
=
{
"X"
:
[
self
.
_
tmp
]},
outputs
=
{
"Out"
:
self
.
_
out
},
attrs
=
{
"use_mkldnn"
:
False
})
return
out
return
self
.
_out
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
6bb84490
...
...
@@ -36,7 +36,7 @@ class MyLayer(fluid.imperative.PyLayer):
super
(
MyLayer
,
self
).
__init__
()
def
forward
(
self
,
inputs
):
x
=
fluid
.
layers
.
relu
(
inputs
[
0
]
)
x
=
fluid
.
layers
.
relu
(
inputs
)
self
.
_x_for_debug
=
x
return
[
fluid
.
layers
.
elementwise_mul
(
x
,
x
)]
...
...
@@ -52,7 +52,7 @@ class MLP(fluid.imperative.PyLayer):
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
def
forward
(
self
,
inputs
):
x
=
self
.
_fc1
(
inputs
[
0
]
)
x
=
self
.
_fc1
(
inputs
)
x
=
self
.
_fc2
(
x
)
x
=
fluid
.
layers
.
reduce_sum
(
x
)
return
x
...
...
@@ -64,13 +64,14 @@ class TestImperative(unittest.TestCase):
cl
=
core
.
Layer
()
cl
.
forward
([])
l
=
fluid
.
imperative
.
PyLayer
()
l
.
forward
(
[])
self
.
assertRaises
(
NotImplementedError
,
l
.
forward
,
[])
def
test_layer_in_out
(
self
):
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
l
=
MyLayer
()
x
=
l
(
np
_inp
)[
0
]
x
=
l
(
var
_inp
)[
0
]
self
.
assertIsNotNone
(
x
)
dy_out
=
x
.
_numpy
()
x
.
_backward
()
...
...
@@ -95,8 +96,9 @@ class TestImperative(unittest.TestCase):
def
test_mlp
(
self
):
np_inp
=
np
.
array
([[
1.0
,
2.0
],
[
3.0
,
4.0
]],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
mlp
=
MLP
()
out
=
mlp
(
np
_inp
)
out
=
mlp
(
var
_inp
)
dy_out
=
out
.
_numpy
()
out
.
_backward
()
dy_grad
=
mlp
.
_fc1
.
_w
.
_gradient
()
...
...
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
浏览文件 @
6bb84490
...
...
@@ -101,7 +101,7 @@ class TestImperativeMnist(unittest.TestCase):
mnist
=
MNIST
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
for
i
in
range
(
1
):
for
i
in
range
(
2
):
x_data
=
np
.
random
.
rand
(
128
,
1
,
28
,
28
).
astype
(
'float32'
)
img
=
to_variable
(
x_data
)
y_data
=
np
.
random
.
rand
(
128
,
1
).
astype
(
'int64'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录