nn.py 200.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

Y
Yu Yang 已提交
20 21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
23
from ..param_attr import ParamAttr
24 25 26
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
Y
yuyang18 已提交
27
import random
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Q
qingqing01 已提交
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
Y
ying 已提交
33 34 35
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
36
    'dynamic_lstmp',
G
guosheng 已提交
37
    'dynamic_gru',
Y
ying 已提交
38 39 40 41 42 43 44 45 46
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
47
    'conv3d',
Y
ying 已提交
48
    'sequence_pool',
49 50
    'sequence_softmax',
    'softmax',
Y
ying 已提交
51
    'pool2d',
Y
yuyang18 已提交
52
    'pool3d',
Y
ying 已提交
53 54 55
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
56
    'conv3d_transpose',
Y
ying 已提交
57 58 59 60 61 62
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
63
    'reduce_prod',
Y
ying 已提交
64 65 66 67
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
68 69
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
70 71
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
72
    'topk',
Y
ying 已提交
73 74
    'warpctc',
    'sequence_reshape',
75
    'transpose',
76
    'im2sequence',
77
    'nce',
W
weixing02 已提交
78
    'hsigmoid',
Q
Qiao Longfei 已提交
79
    'beam_search',
80
    'row_conv',
81
    'multiplex',
G
guosheng 已提交
82
    'layer_norm',
83 84
    'softmax_with_cross_entropy',
    'smooth_l1',
85
    'one_hot',
Y
Yu Yang 已提交
86
    'autoincreased_step_counter',
C
caoying03 已提交
87
    'reshape',
Y
yangyaming 已提交
88
    'lod_reset',
D
dragonwarrior 已提交
89
    'lrn',
G
guosheng 已提交
90
    'pad',
91
    'label_smooth',
92
    'roi_pool',
W
whs 已提交
93
    'dice_loss',
F
fengjiayi 已提交
94 95
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
96
    'resize_bilinear',
W
whs 已提交
97
    'gather',
98
    'scatter',
99
    'random_crop',
Y
yuyang18 已提交
100 101 102
    'mean_iou',
    'relu',
    'log',
103
    'crop',
104
    'rank_loss',
J
jerrywgz 已提交
105
    'prelu',
106
    'flatten',
Q
qingqing01 已提交
107
    'sequence_mask',
Y
Yu Yang 已提交
108 109 110 111 112 113 114 115
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
116
       use_mkldnn=False,
Y
Yu Yang 已提交
117
       act=None,
J
Jacek Czaja 已提交
118
       is_test=False,
119
       name=None):
Y
Yu Yang 已提交
120
    """
121
    **Fully Connected Layer**
Y
Yu Yang 已提交
122

123 124 125 126 127 128 129 130
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
131
    to the output as well.
C
caoying03 已提交
132

C
caoying03 已提交
133
    This process can be formulated as follows:
134 135 136

    .. math::

137
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
138 139 140

    In the above equation:

C
caoying03 已提交
141 142 143 144
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
145
    * :math:`Act`: The activation function.
C
caoying03 已提交
146
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
147 148

    Args:
R
ranqiu 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
164 165
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
166
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
167
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
168 169
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
170
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
171

172
    Returns:
F
fengjiayi 已提交
173
        Variable: The transformation result.
174 175

    Raises:
C
caoying03 已提交
176
        ValueError: If rank of the input tensor is less than 2.
177 178 179 180

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
181
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
182
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
183
    """
C
caoying03 已提交
184

C
caoying03 已提交
185
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
186 187 188 189

    dtype = helper.input_dtype()

    mul_results = []
190 191
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
192 193 194
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
195

Y
Yu Yang 已提交
196
        w = helper.create_parameter(
197 198
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
199
        helper.append_op(
200 201 202
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
203
            outputs={"Out": tmp},
M
mozga-intel 已提交
204 205
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
206 207 208 209
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
210
    else:
211 212
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
213 214 215 216
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
217 218 219 220
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
221 222


223 224 225
def embedding(input,
              size,
              is_sparse=False,
226
              is_distributed=False,
227 228 229
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
230
    """
231 232
    **Embedding Layer**

233
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
234 235
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
236 237 238

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
239 240

    Args:
241 242 243 244 245
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
246
        is_distributed(bool): Whether to run lookup table from remote parameter server.
247 248
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
249
            with zeros whenever lookup encounters it in :attr:`input`. If
250
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
251 252
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
253
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
254

255 256 257
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
258

259 260
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
261

C
chengduoZH 已提交
262
          dict_size = len(dataset.ids)
263
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
264
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
265 266 267 268 269 270
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
271 272
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
273 274 275 276 277
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
278 279 280 281 282
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
283 284 285
    return tmp


Y
yi.wu 已提交
286
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
287 288
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
289 290
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
291 292 293 294 295 296 297
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
298 299
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
300
    """
Y
yi.wu 已提交
301
    ${comment}
Y
Yibing Liu 已提交
302 303

    Args:
Y
yi.wu 已提交
304 305
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
306 307 308 309 310 311 312
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

313
        param_attr(ParamAttr|None): The parameter attribute for the learnable
314
                               hidden-hidden weights.
Y
Yibing Liu 已提交
315 316 317

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
318 319
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
320
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
321 322 323
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
324

325
                              1. `use_peepholes = False`
Y
yi.wu 已提交
326 327
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
328
                              2. `use_peepholes = True`
Y
yi.wu 已提交
329
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
330
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
331
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
332 333 334 335 336 337 338 339
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
340 341

    Returns:
Y
Yibing Liu 已提交
342 343
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
344

Y
Yibing Liu 已提交
345
    Examples:
Y
Yibing Liu 已提交
346 347
        .. code-block:: python

Y
Yibing Liu 已提交
348 349
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
350
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
351 352
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
353
    """
354

Y
Yu Yang 已提交
355
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
356
    size = size // 4
Y
Yu Yang 已提交
357 358 359 360 361 362 363 364 365 366 367 368
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
369 370 371 372 373 374 375 376 377 378
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
379 380 381

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
382
        inputs=inputs,
Y
Yu Yang 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
399 400 401 402 403 404 405 406 407 408 409
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
410 411
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
412 413 414
    """
    **Dynamic LSTMP Layer**

415 416 417 418 419 420
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
421 422 423 424 425

    The formula is as follows:

    .. math::

426
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
427

428
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
429

430
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
431

432
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
433

434
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
435

436
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
437

438
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
439

Y
Yibing Liu 已提交
440 441 442 443 444 445
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
446
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
447
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
448
          bias vector).
Y
Yibing Liu 已提交
449 450 451
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
452
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
453
    * :math:`h`: The hidden state.
454
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
455 456
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
457
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
458
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
459
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
460 461
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
462 463 464 465

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
466

Y
Yibing Liu 已提交
467 468 469 470 471 472 473 474 475 476 477 478
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
479
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
480 481
                               hidden-hidden weight and projection weight.

482 483
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
484 485
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
486 487
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
488 489
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
490 491 492 493 494 495
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
496
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
497 498 499
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
500
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
501 502 503 504 505 506 507 508 509
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
510
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
511 512
                              default "tanh".
        proj_activation(str): The activation for projection output.
513
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
514 515
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
516 517
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
518 519

    Returns:
520 521 522 523
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
524 525

    Examples:
526

Y
Yibing Liu 已提交
527 528
        .. code-block:: python

529 530 531 532
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
533
            hidden_dim, proj_dim = 512, 256
534
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
535
                                     act=None, bias_attr=None)
536 537 538
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
539 540 541 542
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
543
    """
544

Y
Yibing Liu 已提交
545
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
546
    size = size // 4
Y
Yibing Liu 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
591 592 593 594 595 596 597 598 599
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
600
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
601

602
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
603
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
604

G
guosheng 已提交
605 606 607 608 609 610 611 612 613
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
614

G
guosheng 已提交
615
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
616

G
guosheng 已提交
617
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
618 619
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
620 621 622 623
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
624
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
625 626

    Args:
627 628
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
629
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
630
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
631 632
            is the hidden size.
        size(int): The dimension of the gru cell.
633
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
634 635
            hidden-hidden weight matrix. Note:

636
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
637
              :math:`D` is the hidden size.
638
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
639
              The first part are weights of the update gate and reset gate with
640
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
641
              candidate hidden state with shape :math:`(D \\times D)`.
642
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
643
            hidden-hidden bias.
644
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
645 646 647
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
648
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
649
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
650 651 652 653
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
654 655

    Returns:
G
guosheng 已提交
656
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
657
            and sequence length is the same with the input.
658

G
guosheng 已提交
659
    Examples:
660

G
guosheng 已提交
661 662
        .. code-block:: python

663 664 665 666
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
667
            hidden_dim = 512
668
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
669 670 671 672 673 674 675 676 677 678
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
679
    batch_size = input.shape[0]
G
guosheng 已提交
680 681 682
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
683 684 685
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
709 710 711
def gru_unit(input,
             hidden,
             size,
712 713
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
714
             activation='tanh',
715
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
716
    """
717
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
718

719 720
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
721

722
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
723

724
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
725

726
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
727 728

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
729 730 731
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
732 733
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

734 735
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
736 737 738
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
739 740 741 742 743

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
744 745
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
746 747 748 749
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
750

751 752 753 754 755 756
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
757

758
             # assuming we have x_t_data and prev_hidden of size=10
759
             x_t = fluid.layers.fc(input=x_t_data, size=30)
760 761
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
762 763 764 765 766 767 768 769 770 771 772 773

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
774
    size = size // 3
Y
Yu Yang 已提交
775 776

    # create weight
777 778
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
779

780 781 782 783
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
784
    # create bias
785
    if helper.bias_attr:
Y
Yu Yang 已提交
786 787 788
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
789
        inputs['Bias'] = bias
Y
Yu Yang 已提交
790 791 792

    helper.append_op(
        type='gru_unit',
793
        inputs=inputs,
Y
Yu Yang 已提交
794 795 796 797 798 799
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
800 801
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
802 803 804 805 806
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
807
@templatedoc()
808
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
809 810 811 812 813 814 815
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
816
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
817 818 819 820
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
821 822 823
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
824 825

    """
Y
Yu Yang 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
851
@templatedoc()
852
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
853 854 855 856 857
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
858

Y
yuyang18 已提交
859
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
860

Y
yuyang18 已提交
861 862 863
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
864
        Variable: ${viterbi_path_comment}
865

Y
yi.wu 已提交
866 867 868 869 870
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
871
    """
Y
Yu Yang 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
885
@templatedoc()
F
fengjiayi 已提交
886
def cos_sim(X, Y):
Y
Yu Yang 已提交
887
    """
Y
yi.wu 已提交
888 889 890
    ${comment}

    Args:
891 892
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
893

Y
yi.wu 已提交
894
    Returns:
895
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
896
    """
F
fengjiayi 已提交
897
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


911
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
912 913 914 915 916
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
917
    training. The dropout operator randomly sets (according to the given dropout
918 919 920 921
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
922 923
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
924 925 926 927 928 929 930
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
931 932

    Returns:
933
        Variable: A tensor variable is the shape with `x`.
934 935

    Examples:
936

937 938
        .. code-block:: python

939 940
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
941 942
    """

F
fengjiayi 已提交
943
    helper = LayerHelper('dropout', **locals())
944 945
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
946 947 948 949

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

950 951 952 953 954
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
955 956 957 958 959 960
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
961 962 963
    return out


F
fengjiayi 已提交
964
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
965
    """
Y
Yibing Liu 已提交
966 967
    **Cross Entropy Layer**

968 969 970
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
971 972

    1) One-hot cross-entropy:
F
fengjiayi 已提交
973
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
974

Y
Yibing Liu 已提交
975
        .. math::
Y
yangyaming 已提交
976

Y
Yibing Liu 已提交
977 978 979
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
980 981
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
982 983 984 985 986

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
987
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
988 989 990
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
991 992
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
993
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
994

Y
Yibing Liu 已提交
995
    Args:
Y
yangyaming 已提交
996
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
997 998 999 1000
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1001
        label (Variable|list): the ground truth which is a 2-D tensor. When
1002 1003 1004 1005
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1006
        soft_label (bool): a flag indicating whether to
1007 1008
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1009 1010 1011 1012 1013

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1014 1015 1016 1017 1018
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1019 1020 1021 1022 1023 1024

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1025
    """
F
fengjiayi 已提交
1026
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1027 1028 1029 1030 1031 1032
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1033
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1034 1035 1036
    return out


F
fengjiayi 已提交
1037
def square_error_cost(input, label):
Y
Yu Yang 已提交
1038
    """
1039 1040
    **Square error cost layer**

1041 1042
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1057 1058
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1059 1060

    Returns:
G
guosheng 已提交
1061
        Variable: The tensor variable storing the element-wise squared error \
1062
                  difference of input and label.
1063 1064 1065 1066 1067 1068 1069 1070

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1071
    """
F
fengjiayi 已提交
1072
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1082 1083
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1084 1085 1086
    return square_out


Y
yi.wu 已提交
1087
@templatedoc()
Y
Yu Yang 已提交
1088 1089 1090 1091
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1092
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1093
    """
Y
yi.wu 已提交
1094
    **Chunk Evaluator**
Y
yi.wu 已提交
1095

Y
yangyaming 已提交
1096
    This function computes and outputs the precision, recall and
1097
    F1-score of chunk detection.
Y
yi.wu 已提交
1098

Y
yi.wu 已提交
1099 1100 1101 1102 1103 1104 1105 1106
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1107

Y
yi.wu 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1133

Y
yi.wu 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1158
    Args:
1159 1160 1161 1162 1163
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1164

Y
yi.wu 已提交
1165
    Returns:
Y
update  
yi.wu 已提交
1166 1167 1168
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1169

Y
yi.wu 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1182
    """
F
fengjiayi 已提交
1183
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1184 1185 1186 1187 1188

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1189 1190 1191
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1192 1193 1194 1195 1196 1197 1198 1199

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1200 1201 1202 1203
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1204 1205 1206
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1207 1208
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1209
        })
1210 1211
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1212 1213


1214
@templatedoc()
Y
Yu Yang 已提交
1215 1216 1217 1218 1219 1220 1221
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1222
                  act=None):
Y
Yu Yang 已提交
1223 1224 1225 1226
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1237

1238 1239
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1258
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1259 1260 1261 1262 1263 1264
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1265
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1266 1267 1268
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1269
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1289

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1312
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1313
    """
1314
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1315
    has the same shape as the input.
Q
qiaolongfei 已提交
1316

1317 1318 1319 1320 1321 1322
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1323
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1324 1325 1326 1327 1328 1329 1330

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1331
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1366 1367 1368
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1369 1370
           stride=1,
           padding=0,
1371
           dilation=1,
Y
Yu Yang 已提交
1372 1373 1374
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1375
           use_cudnn=True,
1376
           use_mkldnn=False,
1377 1378
           act=None,
           name=None):
Y
Yu Yang 已提交
1379
    """
C
chengduoZH 已提交
1380
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1381 1382
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1383
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1384 1385 1386 1387 1388 1389 1390
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1391 1392 1393
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1394

1395
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1396

C
chengduoZH 已提交
1397 1398
    .. math::

C
refine  
chengduoZH 已提交
1399
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1400

T
tensor-tang 已提交
1401
    Where:
C
chengduoZH 已提交
1402

1403 1404 1405 1406 1407
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1408
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1409 1410 1411

    Example:

1412 1413
        - Input:

W
weixing02 已提交
1414
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1415

W
weixing02 已提交
1416
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1417

1418
        - Output:
T
tensor-tang 已提交
1419

W
weixing02 已提交
1420
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1421

C
chengduoZH 已提交
1422
        Where
1423 1424

        .. math::
C
chengduoZH 已提交
1425

W
weixing02 已提交
1426 1427
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1428 1429

    Args:
1430
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1431
        num_filters(int): The number of filter. It is as same as the output
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1454 1455
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1456 1457 1458
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1459 1460

    Returns:
G
guosheng 已提交
1461
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1462 1463
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1464
    Raises:
1465 1466
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1467

C
chengduoZH 已提交
1468 1469 1470
    Examples:
        .. code-block:: python

1471 1472
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1473 1474 1475
    """

    num_channels = input.shape[1]
1476 1477

    l_type = 'conv2d'
X
xzl 已提交
1478 1479
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1480
        l_type = 'depthwise_conv2d'
1481 1482 1483 1484

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1485 1486 1487 1488 1489
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1490
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1491

C
chengduoZH 已提交
1492 1493 1494
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1495
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1496

C
chengduoZH 已提交
1497 1498
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1499 1500

    input_shape = input.shape
M
minqiyang 已提交
1501
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1516
        type=l_type,
Y
Yu Yang 已提交
1517 1518 1519 1520 1521
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1522 1523 1524
        attrs={
            'strides': stride,
            'paddings': padding,
1525
            'dilations': dilation,
C
chengduoZH 已提交
1526
            'groups': groups,
1527 1528
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1529
        })
Y
Yu Yang 已提交
1530 1531 1532 1533 1534 1535

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1554 1555 1556 1557 1558 1559
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1569 1570
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1571 1572 1573
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1574
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1600
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1601 1602
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1603
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1604 1605
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1606
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1607 1608
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1609
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1636 1637
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1652
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1693
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1694 1695 1696 1697

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1698
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1699
    """
Y
yangyaming 已提交
1700 1701 1702
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1714
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1715 1716 1717 1718 1719
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1720
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1721 1722 1723 1724 1725 1726 1727

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1728 1729
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1730

L
Luo Tao 已提交
1731 1732
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1733
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1734 1735 1736 1737 1738 1739 1740 1741
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1742

Y
yangyaming 已提交
1743
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1744 1745 1746 1747 1748
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1749 1750
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1751
    """
F
fengjiayi 已提交
1752
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1764 1765 1766 1767 1768
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1769 1770 1771
    return pool_out


F
fengjiayi 已提交
1772
def sequence_first_step(input):
L
Luo Tao 已提交
1773
    """
L
Luo Tao 已提交
1774
    This function gets the first step of sequence.
L
Luo Tao 已提交
1775 1776 1777 1778

    .. code-block:: text

       x is a 1-level LoDTensor:
1779
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1780 1781 1782 1783 1784
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1785
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1786
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1787

L
Luo Tao 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1797

Y
yangyaming 已提交
1798
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1799 1800 1801
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1802 1803 1804
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1805
def sequence_last_step(input):
L
Luo Tao 已提交
1806
    """
L
Luo Tao 已提交
1807
    This function gets the last step of sequence.
L
Luo Tao 已提交
1808 1809 1810 1811

    .. code-block:: text

       x is a 1-level LoDTensor:
1812
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1813 1814 1815 1816 1817
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1818
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1819
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1820

L
Luo Tao 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1830

Y
yangyaming 已提交
1831
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1832 1833 1834
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1835 1836 1837
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1838
@templatedoc()
Y
Yu Yang 已提交
1839
def pool2d(input,
C
chengduoZH 已提交
1840 1841
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1842 1843
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1844
           global_pooling=False,
C
chengduoZH 已提交
1845
           use_cudnn=True,
1846
           ceil_mode=False,
1847
           use_mkldnn=False,
C
caoying03 已提交
1848
           name=None):
Y
Yu Yang 已提交
1849
    """
F
fengjiayi 已提交
1850
    ${comment}
1851 1852

    Args:
1853 1854 1855
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1856
                          feature, and W is the width of the feature.
1857
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1858
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1859
        pool_type: ${pooling_type_comment}
1860 1861
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1862 1863 1864 1865
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1866
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1867 1868
                        layer will be named automatically.

1869
    Returns:
F
fengjiayi 已提交
1870
        Variable: The pooling result.
F
fengjiayi 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1884 1885 1886 1887
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1888
                            global_pooling=False)
Y
Yu Yang 已提交
1889 1890 1891 1892 1893
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1894

C
chengduoZH 已提交
1895 1896 1897 1898 1899
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1900 1901 1902 1903
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1904 1905
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1906

C
Add doc  
chengduoZH 已提交
1907
    l_type = 'pool2d'
1908 1909

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1910 1911 1912 1913
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1943
    pooling configurations mentioned in input parameters.
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1957

1958
    Returns:
1959
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1960 1961 1962 1963 1964
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1965

C
chengduoZH 已提交
1966 1967 1968 1969 1970
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1971 1972 1973
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1974

C
chengduoZH 已提交
1975 1976
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1977

1978 1979
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1980 1981 1982 1983
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1984
        type=l_type,
Y
Yu Yang 已提交
1985 1986 1987 1988 1989 1990 1991
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1992
            "paddings": pool_padding,
1993
            "use_cudnn": use_cudnn,
1994 1995
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2008
               data_layout='NCHW',
Y
Yang Yang 已提交
2009
               in_place=False,
2010
               use_mkldnn=False,
2011 2012
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2013
               moving_variance_name=None,
2014 2015
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2016
    """
Q
qiaolongfei 已提交
2017 2018 2019 2020
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2021

Q
qiaolongfei 已提交
2022
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2023

Q
qiaolongfei 已提交
2024 2025
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2026 2027 2028
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2041 2042

    Args:
Q
qiaolongfei 已提交
2043
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2044 2045 2046 2047
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2048 2049 2050
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qingqing01 已提交
2051
        in_place(bool, Default False): This argument is deprecated since 0.15.0.
Q
qiaolongfei 已提交
2052 2053 2054 2055 2056
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2057
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2058
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2059 2060

    Returns:
Q
qiaolongfei 已提交
2061
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2062 2063 2064 2065 2066 2067 2068

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2069 2070 2071 2072
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

Q
qingqing01 已提交
2073 2074 2075 2076
    if in_place:
        raise warnings.warn("The argument in_place is deprecated since 0.15.0, "
                            "please do not set it True.")

Y
Yu Yang 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2096
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2097

2098 2099
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2100 2101 2102
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2103
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2104
        shape=param_shape,
2105 2106 2107 2108 2109 2110 2111
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2112
            trainable=False,
W
wanghaoshuang 已提交
2113
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2114
        shape=param_shape,
2115 2116
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2117 2118 2119 2120 2121 2122

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2123 2124
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2125

Q
qingqing01 已提交
2126
    batch_norm_out = helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2144 2145 2146 2147
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2148 2149
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2150
        })
Y
Yu Yang 已提交
2151 2152 2153 2154

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2155
@templatedoc()
G
guosheng 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2166
    ${comment}
G
guosheng 已提交
2167 2168 2169

    The formula is as follows:

Y
yuyang18 已提交
2170
    ..  math::
G
guosheng 已提交
2171 2172 2173 2174 2175 2176 2177

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2178 2179 2180 2181 2182 2183 2184 2185
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2186

G
guosheng 已提交
2187 2188
    Args:
        input(Variable): The input tensor variable.
2189
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2190
            normalization.
2191
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2192
            normalization.
2193
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2194
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2195
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2196 2197 2198 2199 2200 2201
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2202
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2203 2204

    Returns:
Y
yuyang18 已提交
2205
        ${y_comment}
G
guosheng 已提交
2206 2207 2208

    Examples:

Y
yuyang18 已提交
2209 2210 2211
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2227
    if shift:
G
guosheng 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2252 2253 2254 2255
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2256 2257 2258
                     padding=0,
                     stride=1,
                     dilation=1,
2259
                     groups=None,
C
caoying03 已提交
2260
                     param_attr=None,
2261
                     bias_attr=None,
C
chengduoZH 已提交
2262
                     use_cudnn=True,
2263
                     act=None,
C
caoying03 已提交
2264
                     name=None):
Y
Yu Yang 已提交
2265
    """
2266 2267 2268 2269 2270 2271 2272 2273
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2274 2275
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2276 2277 2278
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2279 2280 2281 2282 2283

    For each input :math:`X`, the equation is:

    .. math::

2284
        Out = \sigma (W \\ast X + b)
2285

2286
    Where:
2287 2288 2289

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2290 2291 2292 2293
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2294

2295 2296 2297 2298
    Example:

        - Input:

2299
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2300

2301
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2302 2303 2304

        - Output:

2305
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2306 2307

        Where
Y
Yu Yang 已提交
2308

2309 2310 2311 2312
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2313 2314

    Args:
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2348 2349

    Returns:
2350
        Variable: The tensor variable storing the convolution transpose result.
2351 2352

    Raises:
2353 2354
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2355 2356 2357 2358

    Examples:
       .. code-block:: python

2359 2360
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2361
    """
2362 2363 2364 2365 2366 2367 2368 2369 2370

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2371 2372 2373
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2374 2375 2376
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2377

C
chengduoZH 已提交
2378 2379
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2380

Y
Yu Yang 已提交
2381 2382 2383 2384 2385
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2386

Y
Yu Yang 已提交
2387 2388
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2389

C
chengduoZH 已提交
2390
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2391
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2392
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2393
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2394
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2395 2396 2397
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2398

2399
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2400
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2401 2402 2403
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2404
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2405
    helper.append_op(
2406
        type=op_type,
Y
Yu Yang 已提交
2407 2408
        inputs={'Input': [input],
                'Filter': [img_filter]},
2409
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2410
        attrs={
2411 2412 2413 2414 2415
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2416 2417
        })

2418 2419 2420
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2421 2422


2423
def conv3d_transpose(input,
Y
Yu Yang 已提交
2424 2425 2426
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2427 2428 2429
                     padding=0,
                     stride=1,
                     dilation=1,
2430
                     groups=None,
C
caoying03 已提交
2431
                     param_attr=None,
2432
                     bias_attr=None,
C
chengduoZH 已提交
2433
                     use_cudnn=True,
2434
                     act=None,
C
caoying03 已提交
2435
                     name=None):
Y
Yu Yang 已提交
2436
    """
2437
    **Convlution3D transpose layer**
2438

2439
    The convolution3D transpose layer calculates the output based on the input,
2440
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2441 2442 2443 2444 2445 2446
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2447 2448 2449
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2450 2451 2452 2453 2454

    For each input :math:`X`, the equation is:

    .. math::

2455
        Out = \sigma (W \\ast X + b)
2456 2457 2458

    In the above equation:

2459 2460
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2461 2462 2463 2464
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2465

2466 2467 2468 2469
    Example:

        - Input:

2470
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2471

2472
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2473 2474 2475

        - Output:

2476
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2477 2478

        Where
Y
Yu Yang 已提交
2479

2480 2481
        .. math::

2482 2483 2484
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2485 2486

    Args:
2487
        input(Variable): The input image with [N, C, D, H, W] format.
2488 2489 2490
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2491
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2492 2493
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2494
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2495 2496 2497
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2498 2499
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2500
        stride(int|tuple): The stride size. If stride is a tuple, it must
2501 2502
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2503
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2504 2505 2506
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2507 2508 2509 2510 2511
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2512 2513 2514
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2515 2516 2517 2518 2519
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2520 2521

    Returns:
2522
        Variable: The tensor variable storing the convolution transpose result.
2523 2524

    Raises:
2525 2526
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2527 2528 2529 2530

    Examples:
       .. code-block:: python

2531 2532
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2533
    """
2534 2535
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2536
    if not isinstance(input, Variable):
2537
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2538 2539
    input_channel = input.shape[1]

2540 2541 2542
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2543

C
chengduoZH 已提交
2544 2545 2546
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2547 2548 2549 2550 2551 2552
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2553 2554 2555
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2556

2557
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2558
                         padding[0] - 1) // dilation[0] + 1
2559
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2560
                         padding[1] - 1) // dilation[1] + 1
2561
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2562
                         padding[2] - 1) // dilation[2] + 1
2563
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2564
    else:
2565 2566
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2567

2568
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2569
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2570 2571 2572
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2573
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2574
    helper.append_op(
2575
        type=l_type,
Y
Yu Yang 已提交
2576 2577
        inputs={'Input': [input],
                'Filter': [img_filter]},
2578
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2579 2580 2581 2582
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2583
            'groups': groups,
C
chengduoZH 已提交
2584 2585
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2586

2587 2588
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2589
    return out
Y
yangyaming 已提交
2590 2591


Y
yangyaming 已提交
2592
def sequence_expand(x, y, ref_level=-1, name=None):
2593
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2594 2595 2596 2597
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2598 2599 2600 2601 2602

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2603
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2604
                x.data = [[a], [b], [c], [d]]
2605 2606 2607
                x.dims = [4, 1]

            y is a LoDTensor:
2608 2609
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2610

Y
yangyaming 已提交
2611
            ref_level: 0
2612

Y
yangyaming 已提交
2613
            then output is a 1-level LoDTensor:
2614
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2615
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2616 2617 2618 2619
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2620
                x.data = [[a], [b], [c]]
2621 2622 2623
                x.dims = [3, 1]

            y is a LoDTensor:
2624
                y.lod = [[2, 0, 3]]
2625

Y
yangyaming 已提交
2626
            ref_level: -1
2627

Y
yangyaming 已提交
2628 2629 2630
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2631 2632 2633
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2634 2635
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2636
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2637
                        will be named automatically.
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2648
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2649
    """
Y
yangyaming 已提交
2650
    helper = LayerHelper('sequence_expand', input=x, **locals())
2651 2652 2653
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2654 2655 2656 2657 2658
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2659
    return tmp
2660 2661


2662 2663 2664 2665 2666 2667 2668 2669 2670
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2671 2672
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2673 2674 2675

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2676 2677

    This layer does the search in beams for one time step. Specifically, it
2678 2679 2680 2681 2682 2683
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2684

2685 2686 2687 2688 2689 2690 2691 2692
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2693

2694
    Args:
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2720

2721
    Returns:
2722 2723
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2724 2725 2726 2727

    Examples:
        .. code-block:: python

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2756
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2774 2775 2776 2777 2778 2779 2780
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2781

2782 2783 2784 2785 2786 2787 2788 2789 2790
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2791

2792 2793 2794 2795 2796 2797
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2798

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2824 2825 2826 2827
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2828
              param_attr=None,
C
caoying03 已提交
2829 2830
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2831 2832 2833 2834
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2835
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2836

2837
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2838

2839
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2840

2841
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2842 2843 2844

            h_t & = o_t tanh(c_t)

2845 2846 2847 2848 2849 2850
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2851 2852 2853

        .. math::

2854
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2855 2856 2857 2858 2859 2860 2861 2862

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2863
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2864 2865

    Args:
Y
yangyaming 已提交
2866 2867 2868 2869 2870 2871
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2872
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2873 2874
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2875 2876
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2877 2878
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2879 2880

    Returns:
Y
yangyaming 已提交
2881
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2882 2883

    Raises:
2884 2885 2886 2887
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2888 2889 2890 2891 2892 2893

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2894
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2895
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2896
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2913
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2914 2915 2916 2917
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2918 2919
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2920 2921 2922
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2923
    size = cell_t_prev.shape[1]
2924
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2925 2926
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2927
                param_attr=param_attr,
2928
                bias_attr=bias_attr)
Y
yangyaming 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2941
    return h, c
G
guosheng 已提交
2942 2943


C
caoying03 已提交
2944
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2945
    """
Y
yangyaming 已提交
2946
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2947 2948 2949

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2950
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2951 2952
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2953 2954
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2955
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2956
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2957
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2958 2959
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2960 2961 2962

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2963

G
guosheng 已提交
2964 2965 2966 2967 2968 2969
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2970
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
2971 2972 2973 2974
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2975 2976 2977 2978

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2979
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
2980 2981 2982
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2983 2984 2985
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2986 2987
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2988 2989 2990 2991 2992
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2993
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2994 2995 2996 2997
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2998 2999


C
caoying03 已提交
3000
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3001
    """
Y
Yibing Liu 已提交
3002
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3003 3004 3005

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3006 3007 3008
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3009
            must be in the range :math:`[-rank(input), rank(input))`. If
3010
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3011
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3012 3013
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3014
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3015
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3016
                       will be named automatically.
G
guosheng 已提交
3017 3018

    Returns:
Y
Yibing Liu 已提交
3019
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3020

G
guosheng 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3031 3032
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3033 3034 3035 3036 3037 3038 3039

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3040 3041 3042
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3043 3044
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3045 3046 3047 3048 3049
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3050
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3051 3052 3053 3054
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3055 3056


C
caoying03 已提交
3057
def reduce_max(input, dim=None, keep_dim=False, name=None):
3058
    """
Y
yangyaming 已提交
3059
    Computes the maximum of tensor elements over the given dimension.
3060 3061 3062

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3063
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3064 3065 3066
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3067
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3068 3069
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3070
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3071 3072
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3073 3074 3075

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3076

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3088 3089 3090 3091 3092 3093 3094

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3095 3096 3097
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3098 3099
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3100 3101 3102 3103 3104
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3105
            'dim': dim if dim != None else [0],
3106 3107 3108 3109 3110 3111
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3112
def reduce_min(input, dim=None, keep_dim=False, name=None):
3113
    """
Y
yangyaming 已提交
3114
    Computes the minimum of tensor elements over the given dimension.
3115 3116 3117

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3118
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3119 3120 3121
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3122
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3123 3124
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3125
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3126 3127
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3128 3129 3130

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3143 3144 3145 3146 3147 3148 3149

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3150 3151 3152
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3153 3154
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3155 3156 3157 3158 3159
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3160
            'dim': dim if dim != None else [0],
3161 3162 3163 3164
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3165 3166


3167 3168 3169 3170 3171 3172
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3173
        dim (list|int|None): The dimensions along which the product is performed. If
3174 3175
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3176 3177
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3178 3179 3180
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3181
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3182
            layer will be named automatically.
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3197
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3198
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3199 3200 3201 3202 3203 3204 3205

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3206 3207 3208
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3209 3210
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3211 3212 3213 3214 3215
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3216
            'dim': dim if dim != None else [0],
3217 3218 3219 3220 3221 3222
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3223
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3224
    """
C
caoying03 已提交
3225
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3226 3227 3228

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3229 3230 3231 3232 3233
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3234
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3235
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3236
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3237 3238
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3239 3240

    Returns:
D
dzhwinter 已提交
3241
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3242 3243 3244 3245 3246 3247 3248 3249 3250

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3251 3252
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3291
    .. math::
3292 3293

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3294 3295 3296 3297 3298

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3299
        x(Variable|list): The input tensor to l2_normalize layer.
3300
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3301 3302
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3303
        epsilon(float): The epsilon value is used to avoid division by zero, \
3304
            the defalut value is 1e-10.
3305
        name(str|None): A name for this layer(optional). If set None, the layer \
3306
            will be named automatically.
C
caoying03 已提交
3307 3308

    Returns:
3309
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3310 3311

    Examples:
3312

C
caoying03 已提交
3313 3314
        .. code-block:: python

3315 3316 3317 3318
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3319 3320
    """

F
fengjiayi 已提交
3321 3322
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3323 3324
    helper = LayerHelper("l2_normalize", **locals())

3325 3326
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3327
    helper.append_op(
3328 3329 3330 3331
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3332
        attrs={
3333 3334
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3335 3336
        })
    return out
3337 3338


3339
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3340
    """
Y
ying 已提交
3341 3342 3343 3344
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3345

C
chengduoZH 已提交
3346
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3347
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3348

3349 3350 3351 3352 3353
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3354
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3355

C
chengduoZH 已提交
3356
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3357
      performs in the following way.
G
guosheng 已提交
3358

3359
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3360
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3361
        last two dimensions and a batched matrix multiply supporting broadcast
3362
        applies on the two tensors.
G
guosheng 已提交
3363

Y
ying 已提交
3364 3365
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3366
    removed after matrix multiplication.
G
guosheng 已提交
3367 3368 3369

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3370 3371 3372
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3373
        name(str|None): A name for this layer(optional). If set None, the layer
3374
            will be named automatically.
G
guosheng 已提交
3375 3376

    Returns:
3377
        Variable: The product Tensor variable.
G
guosheng 已提交
3378

G
guosheng 已提交
3379 3380 3381
    Examples:
        .. code-block:: python

3382
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3383 3384
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3385

3386 3387
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3388

3389 3390
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3391

3392 3393
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3394 3395 3396 3397

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3398 3399
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3400

Y
ying 已提交
3401
            # x: [M], y: [N]
3402
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3403
    """
Y
ying 已提交
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3416
            y_shape = y_shape + [1]
Y
ying 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3433
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3434
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3435
    helper.append_op(
3436 3437 3438 3439 3440 3441 3442
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3443 3444


3445
def topk(input, k, name=None):
Q
qingqing01 已提交
3446 3447 3448 3449
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3450
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3451 3452 3453 3454 3455 3456
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3478 3479 3480
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3481
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3482
                 of input.
3483
        name(str|None): A name for this layer(optional). If set None, the layer
3484
                       will be named automatically.
F
fengjiayi 已提交
3485
                       Default: None
Q
qingqing01 已提交
3486 3487

    Returns:
3488 3489 3490
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3491
        within the last dimension of input.
Q
qingqing01 已提交
3492

F
fengjiayi 已提交
3493 3494
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3495 3496 3497 3498 3499 3500 3501

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3502
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3520
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3521
    """
Y
ying 已提交
3522 3523 3524 3525 3526 3527 3528 3529 3530
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3531

Y
ying 已提交
3532
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3533

3534
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3535 3536
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3537
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3538

3539
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3540 3541
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3542

3543 3544 3545
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3546
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3547
                          the length of reference string.
3548
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3549
                                     calculating edit distance.
3550
        name (str): The name of this layer. It is optional.
3551

W
wanghaoshuang 已提交
3552
    Returns:
W
wanghaoshuang 已提交
3553
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3554 3555 3556 3557 3558

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3559
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3560
            cost = fluid.layers.edit_distance(input=x,label=y)
3561
    """
3562
    helper = LayerHelper("edit_distance", **locals())
3563

3564
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3565
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3566 3567 3568 3569 3570 3571 3572
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3573
            attrs={"tokens": ignored_tokens})
3574 3575 3576 3577 3578
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3579
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3580
            attrs={"tokens": ignored_tokens})
3581 3582
        label = erased_label

3583 3584
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3585
    sequence_num = helper.create_tmp_variable(dtype="int64")
3586 3587 3588 3589
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3590 3591
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3592 3593
        attrs={"normalized": normalized})

3594
    return edit_distance_out, sequence_num
3595 3596 3597 3598 3599


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3600

Y
ying 已提交
3601 3602 3603 3604
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3622
        input.lod = [[4, 4]]
3623 3624 3625 3626 3627 3628 3629

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3630
        output.lod = [[2, 1]]
3631 3632 3633

    Args:

Y
ying 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3643
        name (str): The name of this layer. It is optional.
3644 3645

    Returns:
3646
        Variable: CTC greedy decode result. If all the sequences in result were
3647
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3648 3649 3650 3651 3652

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3653

3654
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3655
    """
3656
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3657
    _, topk_indices = topk(input, k=1)
3658 3659 3660 3661 3662 3663

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3664
        outputs={"Output": [ctc_out]},
3665 3666
        attrs={"merge_repeated": True,
               "blank": blank})
3667
    return ctc_out
3668 3669


F
fengjiayi 已提交
3670
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3671
    """
3672 3673
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3674
    to compute Connectionist Temporal Classification (CTC) loss.
3675 3676
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3677 3678 3679
    input tensor.

    Args:
3680
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3681 3682 3683 3684
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3685
       label (Variable): The ground truth of variable-length sequence,
3686 3687 3688
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3689 3690
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3691 3692 3693
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3694
         follewed by a mean_op.
W
wanghaoshuang 已提交
3695 3696

    Returns:
3697 3698
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3699 3700

    Examples:
3701

W
wanghaoshuang 已提交
3702
        .. code-block:: python
3703

3704 3705 3706
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3707 3708

    """
F
fengjiayi 已提交
3709
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3736 3737 3738
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3739 3740 3741 3742 3743
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3744

3745
            out.lod  = [[0, 1, 3]]
3746 3747 3748 3749

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3750 3751 3752 3753 3754 3755 3756
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3757 3758 3759

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3760 3761

    Returns:
3762

3763 3764 3765 3766 3767
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3768
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3769
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3770 3771 3772 3773 3774 3775 3776 3777 3778
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3779 3780


3781 3782 3783 3784
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3785 3786 3787 3788 3789 3790 3791
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3792 3793 3794 3795 3796 3797 3798
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3799 3800
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3801
            sample is 1.0.
3802 3803 3804
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3805

3806
    Returns:
Y
Yibing Liu 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3834
    """
Y
Yang Yu 已提交
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3854 3855 3856 3857 3858 3859 3860 3861 3862
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3879
    return cost / (num_neg_samples + 1)
3880 3881


G
guosheng 已提交
3882
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3883 3884
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3885
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3886 3887 3888 3889 3890 3891 3892 3893 3894
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3895

W
weixing02 已提交
3896
    Args:
M
minqiyang 已提交
3897
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3898 3899 3900 3901 3902
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3903 3904
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
3905
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
3906 3907
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3908 3909 3910 3911 3912 3913 3914 3915

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3916 3917 3918
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3919 3920 3921 3922 3923 3924 3925 3926
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3927
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3928 3929 3930 3931 3932
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3933 3934 3935 3936 3937 3938 3939 3940
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3941 3942
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3943
        inputs=inputs,
W
weixing02 已提交
3944 3945 3946 3947 3948 3949
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3950
def transpose(x, perm, name=None):
Y
ying 已提交
3951 3952 3953 3954 3955 3956 3957
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3958 3959 3960
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3961 3962 3963 3964 3965 3966 3967 3968

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3969
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3970 3971
    """

Y
fix ci.  
ying 已提交
3972
    if len(perm) != len(x.shape):
Y
ying 已提交
3973 3974 3975
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3976 3977 3978 3979 3980 3981
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3982 3983

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3984
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3985 3986
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3987
        inputs={'X': [x]},
Y
ying 已提交
3988 3989 3990
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3991 3992


3993 3994 3995 3996 3997 3998 3999
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4000
    """
4001 4002 4003 4004 4005 4006 4007
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4036 4037 4038 4039 4040 4041 4042 4043 4044
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4045 4046 4047
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4048 4049 4050 4051 4052
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4080 4081 4082
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4095
            output.dims = {8, 8}
4096

4097
            output.lod = [[4, 4]]
4098

D
dzhwinter 已提交
4099
     Examples:
4100 4101 4102

        .. code-block:: python

4103 4104
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4105 4106

    """
W
wanghaoshuang 已提交
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4117 4118 4119 4120 4121 4122 4123
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4124
    helper = LayerHelper('im2sequence', **locals())
4125 4126
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4127
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4128
    return out
4129 4130


Y
yuyang18 已提交
4131
@templatedoc()
4132
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4133 4134
    """
    ${comment}
4135 4136

    Args:
Y
yuyang18 已提交
4137
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4138 4139
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4140 4141 4142 4143 4144
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4145
        ${out_comment}.
4146 4147

    Examples:
Y
yuyang18 已提交
4148 4149 4150 4151
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4164
    return helper.append_activation(out)
4165 4166


Y
yuyang18 已提交
4167
@templatedoc()
4168 4169
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4170 4171 4172 4173 4174 4175 4176
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4177 4178

    Args:
Y
yuyang18 已提交
4179 4180
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4181 4182

    Returns:
Y
yuyang18 已提交
4183
        ${out_comment}.
4184 4185
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4186 4187 4188 4189 4190 4191

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4192 4193 4194 4195 4196 4197
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4198 4199 4200 4201 4202


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4203

4204 4205 4206 4207
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4208

4209 4210 4211
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4212

4213 4214 4215
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4216

4217
    The equation is as follows:
4218

4219
    1) Hard label (one-hot label, so every sample has exactly one class)
4220

4221 4222 4223 4224
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4225

4226 4227 4228
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4229

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4251 4252
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4269 4270
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4271
    For each instance, it computes the smooth L1 loss element by element first
4272
    and then sums all the losses. So the shape of ouput Variable is
4273
    [batch_size, 1].
4274

4275 4276
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4277
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4278
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4279
            L1 loss op with same shape as :attr:`x`.
4280
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4281 4282
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4283
            by this tensor element by element.
4284
        outside_weight (Variable|None): A tensor with rank at least 2. This
4285 4286
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4287
            element by element.
4288
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4289 4290
           scalar with default value 1.0.

4291
    Returns:
4292
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4293 4294 4295 4296 4297

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4298 4299
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4300
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4301
            out = fluid.layers.smooth_l1(x=fc, y=label)
4302
    """
4303

4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4319 4320 4321 4322


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4323
    This layer creates the one-hot representations for input indices.
4324 4325

    Args:
Y
Yibing Liu 已提交
4326 4327
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4328 4329

    Returns:
Y
Yibing Liu 已提交
4330
        Variable: The one-hot representations of input.
4331 4332

    Examples:
C
caoying03 已提交
4333
        .. code-block:: python
4334

Y
Yibing Liu 已提交
4335 4336
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4337 4338 4339 4340 4341 4342 4343 4344 4345
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4346 4347


Y
Yu Yang 已提交
4348
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4349
    """
Y
yi.wu 已提交
4350 4351 4352
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4353 4354 4355 4356 4357 4358

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4359 4360
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4361 4362 4363 4364 4365 4366

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4367 4368
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4369 4370
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4371 4372 4373 4374 4375
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4376
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4377
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4378 4379
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4380 4381
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4382 4383 4384
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4385 4386


4387
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4388
    """
C
caoying03 已提交
4389 4390
    Gives a new shape to the input Tensor without changing its data.

4391 4392 4393 4394 4395
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4396

4397
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4398

4399 4400 4401 4402
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4403
    2. 0 means the actual dimension value is going to be copied from the
4404 4405 4406 4407
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4408 4409

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4410
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4411
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4412

4413
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4414 4415
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4416 4417
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4418
    dimensions.
C
caoying03 已提交
4419

4420
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4421 4422 4423 4424
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4425 4426

    Args:
4427
        x(variable): The input tensor.
C
caoying03 已提交
4428 4429
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4430 4431 4432 4433 4434
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4435
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4436 4437 4438 4439
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4440
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4441

4442 4443
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4444

X
Xin Pan 已提交
4445 4446 4447
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4448 4449
    Examples:
        .. code-block:: python
G
guosheng 已提交
4450

4451
            data = fluid.layers.data(
4452
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4453
            reshaped = fluid.layers.reshape(
4454
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4455 4456 4457 4458
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4459 4460 4461 4462 4463
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4464

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4480
    helper = LayerHelper("reshape", **locals())
D
dzhwinter 已提交
4481
    out = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4482 4483
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4484
        inputs=inputs,
D
dzhwinter 已提交
4485 4486
        attrs={"shape": shape},
        outputs={"Out": out})
C
caoying03 已提交
4487

D
dzhwinter 已提交
4488
    return helper.append_activation(out)
4489 4490


Y
yangyaming 已提交
4491
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4492
    """
Y
Yibing Liu 已提交
4493
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4494 4495 4496 4497
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4498
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4499 4500 4501 4502 4503 4504

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4505
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4506 4507 4508
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4509
            target_lod: [4, 2]
Y
yangyaming 已提交
4510 4511

            then we get a 1-level LoDTensor:
4512
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4513 4514 4515 4516 4517 4518
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4519
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4520 4521 4522 4523
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4524
                y.data = [[2, 4]]
Y
yangyaming 已提交
4525 4526 4527
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4528
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4529 4530 4531 4532 4533 4534
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4535
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4536 4537 4538 4539
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4540
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4541 4542 4543 4544
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4545
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4546 4547 4548 4549 4550
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4551
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4552
                           from :attr:`y`.
Y
yangyaming 已提交
4553
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4554
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4555 4556

    Returns:
Y
Yibing Liu 已提交
4557
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4558 4559

    Raises:
Y
Yibing Liu 已提交
4560
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4596
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4625 4626
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4654 4655 4656 4657


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4658
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4659
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4660

G
guosheng 已提交
4661 4662 4663 4664
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4687
                         The length of :attr:paddings must be
G
guosheng 已提交
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4698

G
guosheng 已提交
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4713 4714 4715 4716 4717 4718 4719 4720 4721


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4722 4723
    called label-smoothing regularization (LSR).

4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4747
                              be :math:`(1, class\_num)`.
4748 4749
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4750
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4778 4779


Y
yi.wu 已提交
4780
@templatedoc()
4781 4782
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4783
    ${comment}
4784 4785

    Args:
Y
yi.wu 已提交
4786 4787
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4788 4789 4790
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4791 4792

    Returns:
Y
update  
yi.wu 已提交
4793
        Variable: ${out_comment}.
4794 4795

    Examples:
4796 4797
        .. code-block:: python

4798
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4844 4845
        .. code-block:: python

W
whs 已提交
4846 4847 4848 4849
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
4850
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
4851 4852 4853 4854 4855 4856
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4857 4858


4859 4860 4861 4862 4863
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4864
    """
Q
qiaolongfei 已提交
4865
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4866

4867
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4868 4869 4870
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4871

4872
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4873

4874
    Args:
4875
        input (Variable): The input tensor of image resize layer,
4876 4877
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4878
        out_shape(list|tuple|Variable|None): Output shape of image resize
4879 4880
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4881
        scale(float|None): The multiplier for the input height or width.
4882 4883 4884
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4885 4886
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4887 4888
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4889 4890

    Returns:
Q
update  
qiaolongfei 已提交
4891 4892
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4893

4894 4895 4896
    Examples:
        .. code-block:: python

4897
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4898
    """
4899 4900 4901 4902
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4903 4904
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4905 4906
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4907 4908 4909 4910

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4911 4912 4913
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4914
    if out_shape is not None:
B
baiyf 已提交
4915 4916 4917
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4918 4919 4920 4921 4922 4923
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4924 4925 4926 4927
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4928 4929
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4930
        type=resample_methods[resample],
4931
        inputs=inputs,
4932 4933 4934 4935
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4936 4937


Y
yuyang18 已提交
4938
@templatedoc(op_type="bilinear_interp")
4939 4940
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4941 4942 4943 4944 4945 4946
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4947

Y
yuyang18 已提交
4948 4949 4950 4951 4952 4953 4954 4955
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4956 4957 4958 4959 4960 4961 4962
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4963 4964 4965
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4966 4967 4968 4969 4970 4971 4972
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4973
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4974

4975
    Returns:
Q
update  
qiaolongfei 已提交
4976
        Variable: The output is a 4-D tensor of the shape
4977
        (num_batches, channls, out_h, out_w).
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4988 4989 4990
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4991 4992 4993
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4994 4995
def gather(input, index):
    """
Q
qiaolongfei 已提交
4996 4997
    **Gather Layer**

4998
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
4999 5000 5001 5002
    of X indexed by `index` and concatenate them together.

    .. math::

5003
        Out = X[Index]
W
whs 已提交
5004 5005 5006 5007 5008 5009 5010


    .. code-block:: text


                Given:

5011 5012
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5023
        input (Variable): The source input with rank>=1.
W
whs 已提交
5024 5025 5026 5027 5028 5029
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5030

W
whs 已提交
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5100

5101 5102 5103
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5104
    """
F
stash  
fengjiayi 已提交
5105
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5106
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5107
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5108 5109
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5110
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5111
    if isinstance(seed, int):
F
fengjiayi 已提交
5112 5113 5114 5115 5116
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5117 5118 5119 5120
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5121
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5122 5123
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5124 5125
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5126
    return out
W
whs 已提交
5127 5128


5129
def log(x, name=None):
W
wanghaoshuang 已提交
5130 5131 5132 5133 5134
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5135
        Out = \\ln(x)
W
wanghaoshuang 已提交
5136 5137

    Args:
5138
        x (Variable): Input tensor.
5139 5140
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5141 5142 5143 5144 5145 5146 5147 5148

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5149
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5150 5151
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5152
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5153
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5154
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5155 5156 5157
    return out


5158
def relu(x, name=None):
W
wanghaoshuang 已提交
5159 5160
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5161
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5162 5163 5164 5165
    the tensor elementwise.

    .. math::

5166
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5167 5168

    Args:
5169
        x (Variable): The input tensor.
5170 5171
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5172 5173 5174 5175 5176 5177 5178 5179

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5180
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5181 5182
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5183
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5184
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5185
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5186
    return out
5187 5188


W
whs 已提交
5189 5190 5191
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5192 5193 5194 5195
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5196
    .. math::
5197 5198

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5199

5200
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5201 5202 5203 5204 5205
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5206
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5207
                           Its shape should be the same as input.
5208
        num_classes (int): The possible number of labels.
W
whs 已提交
5209 5210 5211 5212

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5213
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5214 5215 5216 5217

    Examples:

        .. code-block:: python
5218

W
whs 已提交
5219 5220 5221 5222 5223 5224 5225 5226 5227
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5228 5229
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5230
        outputs={
W
whs 已提交
5231 5232 5233
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5234 5235 5236
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5345

5346 5347
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5348

5349 5350 5351 5352
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5353

5354 5355 5356 5357 5358
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5359 5360 5361

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5406 5407


J
jerrywgz 已提交
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
	  name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5474

5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5485 5486
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5502
        ValueError: If axis is not in range [0, rank(x)].
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
    helper.append_op(
        type='flatten',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={"axis": axis})
    return out
Q
qingqing01 已提交
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537


def sequence_mask(x, max_len, mask_dtype='int64'):
    helper = LayerHelper('sequence_mask', **locals())
    y = helper.create_tmp_variable(dtype=mask_dtype)
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
        outputs={'Y': y},
        attrs={'max_len': max_len,
               'out_dtype': y.dtype})
    return y