nn.py 261.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
112
    'margin_rank_loss',
X
Xin Pan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
156
    'affine_channel',
Y
Yu Yang 已提交
157 158 159 160 161 162 163 164 165
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
166
       is_test=False,
167
       name=None):
Y
Yu Yang 已提交
168
    """
169
    **Fully Connected Layer**
Y
Yu Yang 已提交
170

171 172 173 174 175 176 177 178
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
179
    to the output as well.
C
caoying03 已提交
180

C
caoying03 已提交
181
    This process can be formulated as follows:
182 183 184

    .. math::

185
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
186 187 188

    In the above equation:

C
caoying03 已提交
189 190 191 192
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
193
    * :math:`Act`: The activation function.
C
caoying03 已提交
194
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
195 196

    Args:
R
ranqiu 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
212 213
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
214
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
215
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
216
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
217

218
    Returns:
F
fengjiayi 已提交
219
        Variable: The transformation result.
220 221

    Raises:
C
caoying03 已提交
222
        ValueError: If rank of the input tensor is less than 2.
223 224 225 226

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
227
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
228
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
229
    """
C
caoying03 已提交
230

C
caoying03 已提交
231
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
232 233 234 235

    dtype = helper.input_dtype()

    mul_results = []
236 237
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
238 239 240
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
241

Y
Yu Yang 已提交
242
        w = helper.create_parameter(
243 244
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
245
        helper.append_op(
246 247 248
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
249
            outputs={"Out": tmp},
M
mozga-intel 已提交
250 251
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
252 253 254 255
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
256
    else:
257 258
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
259 260 261
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
262
            attrs={"use_mkldnn": False})
263 264 265 266
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
267 268


269 270 271
def embedding(input,
              size,
              is_sparse=False,
272
              is_distributed=False,
273 274 275
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
276
    """
277 278
    **Embedding Layer**

279
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
280 281
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
282 283 284

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
285 286

    Args:
287 288 289 290 291
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
292
        is_distributed(bool): Whether to run lookup table from remote parameter server.
293 294
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
295
            with zeros whenever lookup encounters it in :attr:`input`. If
296
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
297 298
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
299
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
300

301 302 303
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
304

305 306
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
307

C
chengduoZH 已提交
308
          dict_size = len(dataset.ids)
309
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
310
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
311 312 313 314 315 316
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
317 318
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
319 320 321 322 323
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
324 325 326 327 328
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
329 330 331
    return tmp


Y
yi.wu 已提交
332
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
333 334
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
335 336
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
337 338 339 340 341 342 343
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
344 345
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
346
    """
Y
yi.wu 已提交
347
    ${comment}
Y
Yibing Liu 已提交
348 349

    Args:
Y
yi.wu 已提交
350 351
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
352 353 354 355 356 357
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
358
        param_attr(ParamAttr|None): The parameter attribute for the learnable
359
                               hidden-hidden weights.
Y
Yibing Liu 已提交
360 361 362

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
363 364
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
365 366 367 368 369

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
370
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
371 372 373
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
374

375
                              1. `use_peepholes = False`
Y
yi.wu 已提交
376 377
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
378
                              2. `use_peepholes = True`
Y
yi.wu 已提交
379
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
380
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
381
                                 - The shape is (1 x 7D).
C
chengduo 已提交
382 383 384 385 386

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
387 388 389 390 391 392 393 394
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
395 396

    Returns:
Y
Yibing Liu 已提交
397 398
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
399

Y
Yibing Liu 已提交
400
    Examples:
Y
Yibing Liu 已提交
401 402
        .. code-block:: python

Y
Yibing Liu 已提交
403 404
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
405
                                           bias_attr=False)
Y
Yibing Liu 已提交
406 407
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
408
    """
C
chengduo 已提交
409
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
410
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
411
    size = size // 4
Y
Yu Yang 已提交
412 413 414 415 416 417 418 419 420 421 422 423
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
424 425 426 427 428 429 430 431 432 433
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
434 435 436

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
437
        inputs=inputs,
Y
Yu Yang 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
454 455 456 457 458 459 460 461 462 463 464
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
465 466
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
467 468 469
    """
    **Dynamic LSTMP Layer**

470 471 472 473 474 475
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
476 477 478 479 480

    The formula is as follows:

    .. math::

481
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
482

483
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
484

485
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
486

487
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
488

489
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
490

491
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
492

493
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
494

Y
Yibing Liu 已提交
495 496 497 498 499 500
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
501
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
502
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
503
          bias vector).
Y
Yibing Liu 已提交
504 505 506
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
507
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
508
    * :math:`h`: The hidden state.
509
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
510 511
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
512
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
513
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
514
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
515 516
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
517 518 519 520

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
521

Y
Yibing Liu 已提交
522 523 524 525 526 527 528 529 530 531 532 533
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
534
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
535 536
                               hidden-hidden weight and projection weight.

537 538
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
539 540
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
541 542
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
543
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
544 545 546 547 548

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
549
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
550 551 552 553 554 555
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
556
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
557 558 559
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
560
                                - The shape is (1 x 7D).
C
chengduo 已提交
561 562 563 564 565

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
566 567 568 569 570 571 572 573 574
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
575
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
576 577
                              default "tanh".
        proj_activation(str): The activation for projection output.
578
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
579 580
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
581 582
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
583 584

    Returns:
585 586 587 588
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
589 590

    Examples:
591

Y
Yibing Liu 已提交
592 593
        .. code-block:: python

594 595 596 597
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
598
            hidden_dim, proj_dim = 512, 256
599
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
600
                                     act=None, bias_attr=None)
601 602 603
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
604 605 606 607
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
608
    """
609

C
chengduo 已提交
610
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
611
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
612
    size = size // 4
Y
Yibing Liu 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
657 658 659 660 661 662 663 664 665
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
666
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
667

668
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
669
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
670

G
guosheng 已提交
671 672 673 674 675 676 677 678 679
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
680

G
guosheng 已提交
681
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
682

G
guosheng 已提交
683
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
684 685
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
686 687 688 689
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
690
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
691 692

    Args:
693 694
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
695
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
696
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
697 698
            is the hidden size.
        size(int): The dimension of the gru cell.
699
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
700 701
            hidden-hidden weight matrix. Note:

702
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
703
              :math:`D` is the hidden size.
704
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
705
              The first part are weights of the update gate and reset gate with
706
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
707
              candidate hidden state with shape :math:`(D \\times D)`.
708
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
709
            hidden-hidden bias.
710
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
711 712 713
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
714
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
715
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
716 717 718 719
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
720 721

    Returns:
G
guosheng 已提交
722
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
723
            and sequence length is the same with the input.
724

G
guosheng 已提交
725
    Examples:
726

G
guosheng 已提交
727 728
        .. code-block:: python

729 730 731 732
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
733
            hidden_dim = 512
734
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
735 736 737 738 739 740 741 742 743 744
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
745
    batch_size = input.shape[0]
G
guosheng 已提交
746 747 748
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
749 750 751
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
775 776 777
def gru_unit(input,
             hidden,
             size,
778 779
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
780
             activation='tanh',
781
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
782
    """
783
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
784

785 786
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
787

788
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
789

790
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
791

792
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
793 794

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
795 796 797
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
798 799
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

800 801
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
802 803 804
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
805 806 807 808 809

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
810 811
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
812 813 814 815
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
816

817 818 819 820 821 822
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
823

824
             # assuming we have x_t_data and prev_hidden of size=10
825
             x_t = fluid.layers.fc(input=x_t_data, size=30)
826 827
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
828 829 830 831 832 833 834 835 836 837 838 839

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
840
    size = size // 3
Y
Yu Yang 已提交
841 842

    # create weight
843 844
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
845

846 847 848 849
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
850
    # create bias
851
    if helper.bias_attr:
Y
Yu Yang 已提交
852 853 854
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
855
        inputs['Bias'] = bias
Y
Yu Yang 已提交
856 857 858

    helper.append_op(
        type='gru_unit',
859
        inputs=inputs,
Y
Yu Yang 已提交
860 861 862 863 864 865
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
866 867
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
868 869 870 871 872
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
873
@templatedoc()
874
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
875 876 877 878 879 880 881
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
882
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
883 884 885 886
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
887 888 889
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
890 891

    """
Y
Yu Yang 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
917
@templatedoc()
918
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
919 920 921 922 923
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
924

Y
yuyang18 已提交
925
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
926

Y
yuyang18 已提交
927 928 929
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
930
        Variable: ${viterbi_path_comment}
931

Y
yi.wu 已提交
932 933 934 935 936
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
937
    """
Y
Yu Yang 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
951
@templatedoc()
F
fengjiayi 已提交
952
def cos_sim(X, Y):
Y
Yu Yang 已提交
953
    """
Y
yi.wu 已提交
954 955 956
    ${comment}

    Args:
957 958
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
959

Y
yi.wu 已提交
960
    Returns:
961
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
962
    """
F
fengjiayi 已提交
963
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


977
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
978 979 980 981 982
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
983
    training. The dropout operator randomly sets (according to the given dropout
984 985 986 987
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
988 989
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
990 991 992 993 994 995 996
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
997 998

    Returns:
999
        Variable: A tensor variable is the shape with `x`.
1000 1001

    Examples:
1002

1003 1004
        .. code-block:: python

1005 1006
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1007 1008
    """

F
fengjiayi 已提交
1009
    helper = LayerHelper('dropout', **locals())
1010 1011
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1012 1013 1014 1015

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1016 1017 1018 1019 1020
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1021 1022 1023 1024 1025 1026
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1027 1028 1029
    return out


1030
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1031
    """
Y
Yibing Liu 已提交
1032 1033
    **Cross Entropy Layer**

1034 1035 1036
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1037 1038

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1039
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1040

Y
Yibing Liu 已提交
1041
        .. math::
Y
yangyaming 已提交
1042

Y
Yibing Liu 已提交
1043 1044 1045
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1046 1047
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1048 1049 1050 1051 1052

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1053
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1054 1055 1056
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1057 1058
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1059
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1060

Y
Yibing Liu 已提交
1061
    Args:
Y
yangyaming 已提交
1062
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1063 1064 1065 1066
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1067
        label (Variable|list): the ground truth which is a 2-D tensor. When
1068 1069 1070 1071
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1072
        soft_label (bool): a flag indicating whether to
1073
                                           interpretate the given labels as soft
1074
                                           labels. Default: `False`.
M
minqiyang 已提交
1075 1076
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1077
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1078 1079 1080 1081 1082

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1083 1084 1085 1086 1087
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1088 1089 1090 1091 1092 1093

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1094
    """
F
fengjiayi 已提交
1095
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1096 1097 1098 1099 1100 1101
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1102 1103
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1104 1105 1106
    return out


F
fengjiayi 已提交
1107
def square_error_cost(input, label):
Y
Yu Yang 已提交
1108
    """
1109 1110
    **Square error cost layer**

1111 1112
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1127 1128
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1129 1130

    Returns:
G
guosheng 已提交
1131
        Variable: The tensor variable storing the element-wise squared error \
1132
                  difference of input and label.
1133 1134 1135 1136 1137 1138 1139 1140

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1141
    """
F
fengjiayi 已提交
1142
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1152 1153
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1154 1155 1156
    return square_out


Y
yi.wu 已提交
1157
@templatedoc()
Y
Yu Yang 已提交
1158 1159 1160 1161
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1162
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1163
    """
Y
yi.wu 已提交
1164
    **Chunk Evaluator**
Y
yi.wu 已提交
1165

Y
yangyaming 已提交
1166
    This function computes and outputs the precision, recall and
1167
    F1-score of chunk detection.
Y
yi.wu 已提交
1168

Y
yi.wu 已提交
1169 1170 1171 1172 1173 1174 1175 1176
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1177

Y
yi.wu 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1203

Y
yi.wu 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1228
    Args:
1229 1230 1231 1232 1233
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1234

Y
yi.wu 已提交
1235
    Returns:
Y
update  
yi.wu 已提交
1236 1237 1238
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1239

Y
yi.wu 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1252
    """
F
fengjiayi 已提交
1253
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1254 1255 1256 1257 1258

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1259 1260 1261
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1262 1263 1264 1265 1266 1267 1268 1269

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1270 1271 1272 1273
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1274 1275 1276
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1277 1278
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1279
        })
1280 1281
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1282 1283


1284
@templatedoc()
Y
Yu Yang 已提交
1285 1286 1287 1288 1289 1290 1291
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1292 1293
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1294 1295 1296 1297
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1298 1299 1300 1301 1302 1303 1304

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1318

1319 1320
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1339
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1340 1341 1342 1343 1344 1345
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1346
def sequence_softmax(input, use_cudnn=False, name=None):
1347 1348 1349
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1350
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1367 1368 1369
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1393
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1394
    """
1395
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1396
    has the same shape as the input.
Q
qiaolongfei 已提交
1397

1398 1399 1400 1401 1402 1403
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1404
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1405 1406 1407 1408 1409 1410 1411

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1412
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1413 1414 1415 1416 1417 1418 1419 1420

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1421 1422 1423
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1447 1448 1449
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1450 1451
           stride=1,
           padding=0,
1452
           dilation=1,
Y
Yu Yang 已提交
1453 1454 1455
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1456
           use_cudnn=True,
1457 1458
           act=None,
           name=None):
Y
Yu Yang 已提交
1459
    """
C
chengduoZH 已提交
1460
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1461 1462
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1463
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1464 1465 1466 1467 1468 1469 1470
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1471 1472 1473
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1474

1475
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1476

C
chengduoZH 已提交
1477 1478
    .. math::

C
refine  
chengduoZH 已提交
1479
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1480

T
tensor-tang 已提交
1481
    Where:
C
chengduoZH 已提交
1482

1483 1484 1485 1486 1487
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1488
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1489 1490 1491

    Example:

1492 1493
        - Input:

W
weixing02 已提交
1494
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1495

W
weixing02 已提交
1496
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1497

1498
        - Output:
T
tensor-tang 已提交
1499

W
weixing02 已提交
1500
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1501

C
chengduoZH 已提交
1502
        Where
1503 1504

        .. math::
C
chengduoZH 已提交
1505

W
weixing02 已提交
1506 1507
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1508 1509

    Args:
1510
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1511
        num_filters(int): The number of filter. It is as same as the output
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1540 1541
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1542 1543
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1544
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1545
            will be named automatically. Default: None
C
chengduoZH 已提交
1546 1547

    Returns:
G
guosheng 已提交
1548
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1549 1550
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1551
    Raises:
1552 1553
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1554

C
chengduoZH 已提交
1555 1556 1557
    Examples:
        .. code-block:: python

1558 1559
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1560 1561 1562
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1563
    assert param_attr is not False, "param_attr should not be False here."
1564
    l_type = 'conv2d'
X
xzl 已提交
1565 1566
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1567
        l_type = 'depthwise_conv2d'
1568 1569 1570 1571

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1572 1573 1574 1575 1576
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1577
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1578

C
chengduoZH 已提交
1579 1580 1581
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1582
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1583

C
chengduoZH 已提交
1584 1585
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1586 1587

    input_shape = input.shape
M
minqiyang 已提交
1588
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1589 1590

    def _get_default_param_initializer():
C
chengduo 已提交
1591 1592
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1604
        type=l_type,
Y
Yu Yang 已提交
1605 1606 1607 1608 1609
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1610 1611 1612
        attrs={
            'strides': stride,
            'paddings': padding,
1613
            'dilations': dilation,
C
chengduoZH 已提交
1614
            'groups': groups,
1615
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1616
            'use_mkldnn': False
C
chengduoZH 已提交
1617
        })
Y
Yu Yang 已提交
1618 1619 1620 1621 1622 1623

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1641 1642 1643 1644 1645 1646
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1656 1657
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1658 1659 1660
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1661
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1687
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1688 1689
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1690
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1691 1692
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1693
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1694 1695
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1696
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1697 1698 1699 1700 1701 1702
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1713 1714
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1715 1716
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1717
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1718
            will be named automatically. Default: None.
C
chengduoZH 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1731 1732
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1733 1734 1735
    """

    l_type = 'conv3d'
C
chengduo 已提交
1736
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1747
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1761 1762 1763
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1787
            'use_mkldnn': False
C
chengduoZH 已提交
1788 1789
        })

1790
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1791 1792 1793 1794

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1795
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1796
    """
Y
yangyaming 已提交
1797 1798 1799
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1811
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1812 1813 1814 1815 1816
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1817
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1818 1819 1820 1821 1822 1823 1824

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1825 1826
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1827

L
Luo Tao 已提交
1828 1829
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1830
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1831 1832 1833 1834 1835 1836 1837 1838
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1839

Y
yangyaming 已提交
1840
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1841 1842 1843 1844 1845
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1846 1847
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1848
    """
F
fengjiayi 已提交
1849
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1861 1862 1863 1864 1865
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1866 1867 1868
    return pool_out


C
add doc  
chengduoZH 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1894
def sequence_first_step(input):
L
Luo Tao 已提交
1895
    """
L
Luo Tao 已提交
1896
    This function gets the first step of sequence.
L
Luo Tao 已提交
1897 1898 1899 1900

    .. code-block:: text

       x is a 1-level LoDTensor:
1901
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1902 1903 1904 1905 1906
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1907
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1908
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1909

L
Luo Tao 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1919

Y
yangyaming 已提交
1920
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1921 1922 1923
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1924 1925 1926
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1927
def sequence_last_step(input):
L
Luo Tao 已提交
1928
    """
L
Luo Tao 已提交
1929
    This function gets the last step of sequence.
L
Luo Tao 已提交
1930 1931 1932 1933

    .. code-block:: text

       x is a 1-level LoDTensor:
1934
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1935 1936 1937 1938 1939
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1940
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1941
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1942

L
Luo Tao 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1952

Y
yangyaming 已提交
1953
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1954 1955 1956
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1957 1958 1959
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start 
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
    
	- Case:

1973 1974 1975 1976 1977
            Given the input Variable **input**:
                
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
1978

1979
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
1980

1981 1982 1983 1984 1985
            the output Variable will be
                
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
Y
Yibing Liu 已提交
1986
	
1987 1988
    NOTE: The first dimension size of **input**, **offset** and **length** 
          should be equal. The **offset** should start from 0.
Y
Yibing Liu 已提交
1989 1990 1991
    
    Args:
        input(Variable): The input Variable which consists of the complete 
Y
Yibing Liu 已提交
1992
                         sequences.
Y
Yibing Liu 已提交
1993 1994 1995 1996 1997 1998
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
1999
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, 
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2030
@templatedoc()
Y
Yu Yang 已提交
2031
def pool2d(input,
C
chengduoZH 已提交
2032 2033
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2034 2035
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2036
           global_pooling=False,
C
chengduoZH 已提交
2037
           use_cudnn=True,
2038
           ceil_mode=False,
C
caoying03 已提交
2039
           name=None):
Y
Yu Yang 已提交
2040
    """
F
fengjiayi 已提交
2041
    ${comment}
2042 2043

    Args:
2044 2045 2046
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2047
                          feature, and W is the width of the feature.
2048
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2049
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2050
        pool_type: ${pooling_type_comment}
2051 2052
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2053 2054 2055
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2056
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2057 2058
                        layer will be named automatically.

2059
    Returns:
F
fengjiayi 已提交
2060
        Variable: The pooling result.
F
fengjiayi 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2074 2075 2076 2077
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2078
                            global_pooling=False)
Y
Yu Yang 已提交
2079 2080 2081 2082 2083
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2084

C
chengduoZH 已提交
2085 2086 2087 2088 2089
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2090 2091 2092 2093
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2094 2095
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2096

C
Add doc  
chengduoZH 已提交
2097
    l_type = 'pool2d'
2098 2099

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2100 2101 2102 2103
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2115
            "use_mkldnn": False
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2132
    pooling configurations mentioned in input parameters.
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2145

2146
    Returns:
2147
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2148 2149 2150 2151 2152
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2153

C
chengduoZH 已提交
2154 2155 2156 2157 2158
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2159 2160 2161
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2162

C
chengduoZH 已提交
2163 2164
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2165

2166 2167
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2168 2169 2170 2171
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2172
        type=l_type,
Y
Yu Yang 已提交
2173 2174 2175 2176 2177 2178 2179
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2180
            "paddings": pool_padding,
2181
            "use_cudnn": use_cudnn,
2182
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2183
            "use_mkldnn": False
Y
Yu Yang 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2196
               data_layout='NCHW',
Y
Yang Yang 已提交
2197
               in_place=False,
2198 2199
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2200
               moving_variance_name=None,
2201 2202
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2203
    """
Q
qiaolongfei 已提交
2204 2205 2206 2207
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2208

Q
qiaolongfei 已提交
2209
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2210

Q
qiaolongfei 已提交
2211 2212
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2213 2214 2215
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2228 2229

    Args:
Q
qiaolongfei 已提交
2230
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2231 2232 2233 2234
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2235 2236 2237 2238 2239 2240 2241 2242
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2243
        data_layout(string, default NCHW): NCHW|NHWC
2244
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2245 2246 2247 2248
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2249
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2250
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2251 2252

    Returns:
Q
qiaolongfei 已提交
2253
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2254 2255 2256 2257 2258 2259 2260

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2261
    """
C
chengduo 已提交
2262
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2285
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2286

2287 2288
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2289 2290 2291
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2292
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2293
        shape=param_shape,
2294 2295 2296 2297 2298 2299 2300
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2301
            trainable=False,
W
wanghaoshuang 已提交
2302
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2303
        shape=param_shape,
2304 2305
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2306 2307 2308 2309 2310 2311

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2312 2313
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2314

2315
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2333 2334 2335 2336
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2337
            "use_mkldnn": False,
2338
            "fuse_with_relu": fuse_with_relu
2339
        })
Y
Yu Yang 已提交
2340 2341 2342 2343

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2344
@templatedoc()
G
guosheng 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2355
    ${comment}
G
guosheng 已提交
2356 2357 2358

    The formula is as follows:

Y
yuyang18 已提交
2359
    ..  math::
G
guosheng 已提交
2360 2361 2362 2363 2364 2365 2366

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2367 2368 2369 2370 2371 2372 2373 2374
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2375

G
guosheng 已提交
2376 2377
    Args:
        input(Variable): The input tensor variable.
2378
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2379
            normalization. Default True.
2380
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2381 2382
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2383
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2384
            Default 1.
2385
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2386
            division by zero. Default 1e-05.
G
guosheng 已提交
2387
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2388 2389 2390 2391
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The 
            :attr:`param_attr` is initialized as 1 if it is added. Default None. 
G
guosheng 已提交
2392
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2393 2394 2395 2396
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The 
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2397
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2398 2399 2400
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2401 2402

    Returns:
Y
yuyang18 已提交
2403
        ${y_comment}
G
guosheng 已提交
2404 2405 2406

    Examples:

Y
yuyang18 已提交
2407 2408 2409
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2425
    if shift:
G
guosheng 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2450 2451 2452 2453
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2454 2455 2456
                     padding=0,
                     stride=1,
                     dilation=1,
2457
                     groups=None,
C
caoying03 已提交
2458
                     param_attr=None,
2459
                     bias_attr=None,
C
chengduoZH 已提交
2460
                     use_cudnn=True,
2461
                     act=None,
C
caoying03 已提交
2462
                     name=None):
Y
Yu Yang 已提交
2463
    """
2464 2465 2466 2467 2468 2469 2470 2471
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2472 2473
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2474 2475 2476
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2477 2478 2479 2480 2481

    For each input :math:`X`, the equation is:

    .. math::

2482
        Out = \sigma (W \\ast X + b)
2483

2484
    Where:
2485 2486 2487

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2488 2489 2490 2491
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2492

2493 2494 2495 2496
    Example:

        - Input:

2497
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2498

2499
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2500 2501 2502

        - Output:

2503
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2504 2505

        Where
Y
Yu Yang 已提交
2506

2507 2508
        .. math::

2509 2510 2511 2512
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2513 2514

    Args:
2515 2516 2517 2518
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2519 2520 2521 2522
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2551
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2552 2553 2554
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2555
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2556
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2557 2558

    Returns:
2559
        Variable: The tensor variable storing the convolution transpose result.
2560 2561

    Raises:
2562 2563
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2564 2565 2566 2567

    Examples:
       .. code-block:: python

2568 2569
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2570
    """
C
chengduo 已提交
2571
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2572 2573 2574 2575 2576 2577 2578 2579
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2580 2581 2582
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2583 2584 2585
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2586

C
chengduoZH 已提交
2587 2588
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2589

Y
Yu Yang 已提交
2590 2591 2592 2593 2594
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2595

Y
Yu Yang 已提交
2596 2597
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2598

C
chengduoZH 已提交
2599
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2600
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2601
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2602
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2603
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2604 2605 2606
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2607

2608 2609 2610 2611 2612 2613 2614
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2615
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2616
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2617

Y
Yu Yang 已提交
2618 2619 2620
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2621
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2622
    helper.append_op(
2623
        type=op_type,
Y
Yu Yang 已提交
2624 2625
        inputs={'Input': [input],
                'Filter': [img_filter]},
2626
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2627
        attrs={
2628
            'output_size': output_size,
2629 2630 2631 2632 2633
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2634 2635
        })

2636 2637 2638
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2639 2640


2641
def conv3d_transpose(input,
Y
Yu Yang 已提交
2642 2643 2644
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2645 2646 2647
                     padding=0,
                     stride=1,
                     dilation=1,
2648
                     groups=None,
C
caoying03 已提交
2649
                     param_attr=None,
2650
                     bias_attr=None,
C
chengduoZH 已提交
2651
                     use_cudnn=True,
2652
                     act=None,
C
caoying03 已提交
2653
                     name=None):
Y
Yu Yang 已提交
2654
    """
2655
    **Convlution3D transpose layer**
2656

2657
    The convolution3D transpose layer calculates the output based on the input,
2658
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2659 2660 2661 2662 2663 2664
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2665 2666 2667
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2668 2669 2670 2671 2672

    For each input :math:`X`, the equation is:

    .. math::

2673
        Out = \sigma (W \\ast X + b)
2674 2675 2676

    In the above equation:

2677 2678
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2679 2680 2681 2682
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2683

2684 2685 2686 2687
    Example:

        - Input:

2688
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2689

2690
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2691 2692 2693

        - Output:

2694
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2695 2696

        Where
Y
Yu Yang 已提交
2697

2698 2699
        .. math::

2700 2701 2702
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2703 2704

    Args:
2705
        input(Variable): The input image with [N, C, D, H, W] format.
2706 2707 2708
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2709
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2710 2711
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2712
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2713 2714 2715
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2716 2717
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2718
        stride(int|tuple): The stride size. If stride is a tuple, it must
2719 2720
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2721
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2722 2723 2724
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2725 2726 2727 2728 2729
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2739 2740
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2741 2742
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2743 2744
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2745 2746

    Returns:
2747
        Variable: The tensor variable storing the convolution transpose result.
2748 2749

    Raises:
2750 2751
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2752 2753 2754 2755

    Examples:
       .. code-block:: python

2756 2757
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2758
    """
C
chengduo 已提交
2759
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2760 2761
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2762
    if not isinstance(input, Variable):
2763
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2764 2765
    input_channel = input.shape[1]

2766 2767 2768
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2769

C
chengduoZH 已提交
2770 2771 2772
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2773 2774 2775 2776 2777 2778
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2779 2780 2781
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2782

2783
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2784
                         padding[0] - 1) // dilation[0] + 1
2785
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2786
                         padding[1] - 1) // dilation[1] + 1
2787
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2788
                         padding[2] - 1) // dilation[2] + 1
2789
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2790
    else:
2791 2792
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2793

2794
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2795
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2796 2797 2798
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2799
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2800
    helper.append_op(
2801
        type=l_type,
Y
Yu Yang 已提交
2802 2803
        inputs={'Input': [input],
                'Filter': [img_filter]},
2804
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2805 2806 2807 2808
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2809
            'groups': groups,
C
chengduoZH 已提交
2810 2811
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2812

2813 2814
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2815
    return out
Y
yangyaming 已提交
2816 2817


Y
yangyaming 已提交
2818
def sequence_expand(x, y, ref_level=-1, name=None):
2819
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2820 2821 2822 2823
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2824 2825 2826 2827 2828

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2829
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2830
                x.data = [[a], [b], [c], [d]]
2831 2832 2833
                x.dims = [4, 1]

            y is a LoDTensor:
2834 2835
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2836

Y
yangyaming 已提交
2837
            ref_level: 0
2838

Y
yangyaming 已提交
2839
            then output is a 1-level LoDTensor:
2840
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2841
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2842 2843 2844 2845
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2846
                x.data = [[a], [b], [c]]
2847 2848 2849
                x.dims = [3, 1]

            y is a LoDTensor:
2850
                y.lod = [[2, 0, 3]]
2851

Y
yangyaming 已提交
2852
            ref_level: -1
2853

Y
yangyaming 已提交
2854 2855 2856
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2857 2858 2859
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2860 2861
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2862
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2863
                        will be named automatically.
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2874
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2875
    """
Y
yangyaming 已提交
2876
    helper = LayerHelper('sequence_expand', input=x, **locals())
2877 2878 2879
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2880 2881 2882 2883 2884
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2885
    return tmp
2886 2887


C
chengduo 已提交
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2953
@templatedoc()
2954
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2955 2956 2957 2958 2959
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2960 2961 2962
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2963
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2964 2965 2966 2967
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
2968 2969 2970
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
2971

F
fengjiayi 已提交
2972
    Returns:
M
minqiyang 已提交
2973
        Variable: The padded sequence batch and the original lengths before
2974
                  padding. All sequences has the same length.
M
minqiyang 已提交
2975

F
fengjiayi 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2990 2991 2992 2993 2994
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2995 2996 2997 2998 2999 3000
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3001 3002
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3003
        attrs={'padded_length': maxlen})
3004
    return out, length
F
fengjiayi 已提交
3005 3006


3007
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3008
    """
3009
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024

    This layer removes the padding data in the input sequences and convert 
    them into sequences with actual length as output, identitied by lod 
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]], 
     
	in which there are 3 sequences padded to length 5, and the acutal length 
3025
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3026 3027 3028 3029 3030 3031

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3032
	    out.lod = [[2, 3, 4]]      
Y
Yibing Liu 已提交
3033 3034 3035 3036 3037 3038

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3039 3040
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3067 3068 3069 3070 3071 3072 3073 3074 3075
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3076 3077
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3078 3079 3080

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3081 3082

    This layer does the search in beams for one time step. Specifically, it
3083 3084 3085 3086 3087 3088
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3089

3090 3091 3092 3093 3094 3095 3096 3097
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3098

3099
    Args:
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3125

3126
    Returns:
3127 3128
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3129 3130 3131 3132

    Examples:
        .. code-block:: python

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3161
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3179 3180 3181 3182 3183 3184 3185
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3186

3187 3188 3189 3190 3191 3192 3193 3194 3195
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3196

3197 3198 3199 3200 3201 3202
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3203

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3229 3230 3231 3232
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3233
              param_attr=None,
C
caoying03 已提交
3234 3235
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3236 3237 3238 3239
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3240
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3241

3242
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3243

3244
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3245

3246
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3247 3248 3249

            h_t & = o_t tanh(c_t)

3250 3251 3252 3253 3254 3255
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3256 3257 3258

        .. math::

3259
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3260 3261 3262 3263 3264 3265 3266 3267

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3268
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3269 3270

    Args:
Y
yangyaming 已提交
3271 3272 3273 3274 3275 3276
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3277
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3290 3291
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3292 3293

    Returns:
Y
yangyaming 已提交
3294
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3295 3296

    Raises:
3297 3298 3299 3300
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3301 3302 3303 3304 3305 3306

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3307
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3308
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3309
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3326
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3327 3328 3329 3330
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3331 3332
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3333 3334 3335
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3336
    size = cell_t_prev.shape[1]
3337
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3338 3339
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3340
                param_attr=param_attr,
3341
                bias_attr=bias_attr)
Y
yangyaming 已提交
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3354
    return h, c
G
guosheng 已提交
3355 3356


C
caoying03 已提交
3357
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3358
    """
Y
yangyaming 已提交
3359
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3360 3361 3362

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3363
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3364 3365
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3366 3367
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3368
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3369
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3370
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3371 3372
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3373 3374 3375

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3376

G
guosheng 已提交
3377 3378 3379 3380 3381 3382
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3383
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3384 3385 3386 3387
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3388 3389 3390 3391

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3392
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3393 3394 3395
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3396 3397 3398
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3399 3400
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3401 3402 3403 3404 3405
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3406
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3407 3408 3409 3410
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3411 3412


C
caoying03 已提交
3413
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3414
    """
Y
Yibing Liu 已提交
3415
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3416 3417 3418

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3419 3420 3421
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3422
            must be in the range :math:`[-rank(input), rank(input))`. If
3423
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3424
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3425 3426
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3427
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3428
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3429
                       will be named automatically.
G
guosheng 已提交
3430 3431

    Returns:
Y
Yibing Liu 已提交
3432
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3433

G
guosheng 已提交
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3444 3445
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3446 3447 3448 3449 3450 3451 3452

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3453 3454 3455
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3456 3457
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3458 3459 3460 3461 3462
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3463
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3464 3465 3466 3467
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3468 3469


C
caoying03 已提交
3470
def reduce_max(input, dim=None, keep_dim=False, name=None):
3471
    """
Y
yangyaming 已提交
3472
    Computes the maximum of tensor elements over the given dimension.
3473 3474 3475

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3476
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3477 3478 3479
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3480
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3481 3482
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3483
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3484 3485
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3486 3487 3488

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3489

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3501 3502 3503 3504 3505 3506 3507

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3508 3509 3510
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3511 3512
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3513 3514 3515 3516 3517
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3518
            'dim': dim if dim != None else [0],
3519 3520 3521 3522 3523 3524
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3525
def reduce_min(input, dim=None, keep_dim=False, name=None):
3526
    """
Y
yangyaming 已提交
3527
    Computes the minimum of tensor elements over the given dimension.
3528 3529 3530

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3531
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3532 3533 3534
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3535
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3536 3537
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3538
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3539 3540
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3541 3542 3543

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3544

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3556 3557 3558 3559 3560 3561 3562

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3563 3564 3565
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3566 3567
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3568 3569 3570 3571 3572
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3573
            'dim': dim if dim != None else [0],
3574 3575 3576 3577
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3578 3579


3580 3581 3582 3583 3584 3585
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3586
        dim (list|int|None): The dimensions along which the product is performed. If
3587 3588
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3589 3590
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3591 3592 3593
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3594
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3595
            layer will be named automatically.
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3610
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3611
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3612 3613 3614 3615 3616 3617 3618

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3619 3620 3621
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3622 3623
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3624 3625 3626 3627 3628
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3629
            'dim': dim if dim != None else [0],
3630 3631 3632 3633 3634 3635
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3636
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3637
    """
C
caoying03 已提交
3638
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3639 3640 3641

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3642 3643 3644 3645 3646
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3647
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3648
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3649
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3650 3651
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3652 3653

    Returns:
D
dzhwinter 已提交
3654
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3655 3656 3657 3658 3659 3660 3661 3662 3663

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3664 3665
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3695 3696 3697 3698 3699 3700 3701 3702 3703


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3704
    .. math::
3705 3706

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3707 3708 3709 3710 3711

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3712
        x(Variable|list): The input tensor to l2_normalize layer.
3713
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3714 3715
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3716
        epsilon(float): The epsilon value is used to avoid division by zero, \
3717
            the defalut value is 1e-10.
3718
        name(str|None): A name for this layer(optional). If set None, the layer \
3719
            will be named automatically.
C
caoying03 已提交
3720 3721

    Returns:
3722
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3723 3724

    Examples:
3725

C
caoying03 已提交
3726 3727
        .. code-block:: python

3728 3729 3730 3731
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3732 3733
    """

F
fengjiayi 已提交
3734 3735
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3736 3737
    helper = LayerHelper("l2_normalize", **locals())

3738 3739
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3740
    helper.append_op(
3741 3742 3743 3744
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3745
        attrs={
3746 3747
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3748 3749
        })
    return out
3750 3751


S
sneaxiy 已提交
3752
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3753
    """
Y
ying 已提交
3754 3755 3756 3757
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3758

C
chengduoZH 已提交
3759
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3760
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3761

3762 3763 3764 3765 3766
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3767
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3768

C
chengduoZH 已提交
3769
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3770
      performs in the following way.
G
guosheng 已提交
3771

3772
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3773
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3774
        last two dimensions and a batched matrix multiply supporting broadcast
3775
        applies on the two tensors.
G
guosheng 已提交
3776

Y
ying 已提交
3777 3778
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3779
    removed after matrix multiplication.
G
guosheng 已提交
3780 3781 3782

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3783 3784 3785
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3786
        alpha (float): The scale of output. Default 1.0.
3787
        name(str|None): A name for this layer(optional). If set None, the layer
3788
            will be named automatically.
G
guosheng 已提交
3789 3790

    Returns:
3791
        Variable: The product Tensor variable.
G
guosheng 已提交
3792

G
guosheng 已提交
3793 3794 3795
    Examples:
        .. code-block:: python

3796
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3797 3798
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3799

3800 3801
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3802

3803 3804
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3805

3806 3807
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3808 3809 3810 3811

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3812 3813
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3814

Y
ying 已提交
3815
            # x: [M], y: [N]
3816
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3817
    """
Y
ying 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3830
            y_shape = y_shape + [1]
Y
ying 已提交
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3847
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3848
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3849
    helper.append_op(
3850 3851 3852 3853
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3854 3855 3856
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3857
            'alpha': float(alpha),
S
sneaxiy 已提交
3858
        })
3859
    return out
3860 3861


3862
def topk(input, k, name=None):
Q
qingqing01 已提交
3863 3864 3865 3866
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3867
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3868 3869 3870 3871 3872 3873
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3895 3896 3897
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3898
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3899
                 of input.
3900
        name(str|None): A name for this layer(optional). If set None, the layer
3901
                       will be named automatically.
F
fengjiayi 已提交
3902
                       Default: None
Q
qingqing01 已提交
3903 3904

    Returns:
3905 3906 3907
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3908
        within the last dimension of input.
Q
qingqing01 已提交
3909

F
fengjiayi 已提交
3910 3911
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3932
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3933
    """
Y
ying 已提交
3934 3935 3936 3937 3938 3939 3940 3941 3942
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3943

Y
ying 已提交
3944
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3945

3946
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3947 3948
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3949
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3950

3951
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3952 3953
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3954

3955 3956 3957
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3958
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3959
                          the length of reference string.
3960
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3961
                                     calculating edit distance.
3962
        name (str): The name of this layer. It is optional.
3963

W
wanghaoshuang 已提交
3964
    Returns:
W
wanghaoshuang 已提交
3965
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3966 3967 3968 3969 3970

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3971
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3972
            cost = fluid.layers.edit_distance(input=x,label=y)
3973
    """
3974
    helper = LayerHelper("edit_distance", **locals())
3975

3976
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3977
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3978 3979 3980 3981 3982 3983 3984
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3985
            attrs={"tokens": ignored_tokens})
3986 3987 3988 3989 3990
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3991
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3992
            attrs={"tokens": ignored_tokens})
3993 3994
        label = erased_label

3995 3996
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3997
    sequence_num = helper.create_tmp_variable(dtype="int64")
3998 3999 4000 4001
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4002 4003
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4004 4005
        attrs={"normalized": normalized})

4006
    return edit_distance_out, sequence_num
4007 4008 4009 4010 4011


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4012

Y
ying 已提交
4013 4014 4015 4016
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4034
        input.lod = [[4, 4]]
4035 4036 4037 4038 4039 4040 4041

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4042
        output.lod = [[2, 1]]
4043 4044 4045

    Args:

Y
ying 已提交
4046 4047 4048 4049 4050 4051 4052 4053 4054
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4055
        name (str): The name of this layer. It is optional.
4056 4057

    Returns:
4058
        Variable: CTC greedy decode result. If all the sequences in result were
4059
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4060 4061 4062 4063 4064

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4065

4066
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4067
    """
4068
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4069
    _, topk_indices = topk(input, k=1)
4070 4071 4072 4073 4074 4075

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4076
        outputs={"Output": [ctc_out]},
4077 4078
        attrs={"merge_repeated": True,
               "blank": blank})
4079
    return ctc_out
4080 4081


F
fengjiayi 已提交
4082
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4083
    """
4084 4085
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4086
    to compute Connectionist Temporal Classification (CTC) loss.
4087 4088
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4089 4090 4091
    input tensor.

    Args:
4092
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4093 4094 4095 4096
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4097
       label (Variable): The ground truth of variable-length sequence,
4098 4099 4100
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4101 4102
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4103 4104 4105
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4106
         follewed by a mean_op.
W
wanghaoshuang 已提交
4107 4108

    Returns:
4109 4110
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4111 4112

    Examples:
4113

W
wanghaoshuang 已提交
4114
        .. code-block:: python
4115

4116 4117 4118
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4119 4120

    """
F
fengjiayi 已提交
4121
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4148 4149 4150
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4151 4152 4153 4154 4155
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4156

4157
            out.lod  = [[0, 1, 3]]
4158 4159 4160 4161

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4162 4163 4164 4165 4166 4167 4168
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4169 4170 4171

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4172 4173

    Returns:
4174

4175 4176 4177 4178 4179
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4180
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4181
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4182 4183 4184 4185 4186 4187 4188 4189 4190
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4191 4192


4193 4194 4195 4196
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4197 4198 4199 4200 4201 4202
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4203 4204
        num_neg_samples=None,
        name=None):
4205 4206 4207 4208 4209 4210 4211
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4212 4213
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4214
            sample is 1.0.
C
chengduo 已提交
4215 4216 4217 4218 4219 4220 4221 4222 4223
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4224
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4225 4226
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4227

4228
    Returns:
Y
Yibing Liu 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4256
    """
Y
Yang Yu 已提交
4257 4258 4259
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4260 4261

    dim = input.shape[1]
Y
Yang Yu 已提交
4262 4263 4264 4265 4266 4267
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
Y
Yang Yu 已提交
4281 4282 4283 4284
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4294 4295 4296

    helper.append_op(
        type='nce',
C
chengduo 已提交
4297
        inputs=inputs,
Y
Yang Yu 已提交
4298 4299 4300 4301 4302 4303
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4304
    return cost / (num_neg_samples + 1)
4305 4306


C
chengduo 已提交
4307 4308 4309 4310 4311 4312
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4313 4314
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4315
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4316 4317 4318 4319 4320 4321 4322 4323 4324
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4325

W
weixing02 已提交
4326
    Args:
M
minqiyang 已提交
4327
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4328 4329 4330 4331 4332
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4344 4345 4346 4347 4348 4349 4350 4351

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4352 4353 4354
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4355 4356 4357 4358 4359 4360 4361 4362
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4363
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4364 4365 4366 4367 4368
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4369 4370 4371 4372 4373 4374 4375 4376
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4377 4378
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4379
        inputs=inputs,
W
weixing02 已提交
4380 4381 4382 4383 4384 4385
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4386
def transpose(x, perm, name=None):
Y
ying 已提交
4387 4388 4389 4390 4391 4392 4393
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4394 4395 4396
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4397 4398 4399 4400 4401 4402 4403 4404

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4405
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4406 4407
    """

Y
fix ci.  
ying 已提交
4408
    if len(perm) != len(x.shape):
Y
ying 已提交
4409 4410 4411
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4412 4413 4414 4415 4416 4417
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4418 4419

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4420
    out = helper.create_tmp_variable(x.dtype)
4421
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4422
    helper.append_op(
4423
        type='transpose2',
Y
fix ci.  
ying 已提交
4424
        inputs={'X': [x]},
4425 4426
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4427 4428
        attrs={'axis': perm})
    return out
4429 4430


4431 4432 4433 4434 4435 4436 4437
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4438
    """
4439 4440 4441 4442 4443 4444 4445
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4474 4475 4476 4477 4478 4479 4480 4481 4482
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4483 4484 4485
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4486 4487 4488 4489 4490
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4518 4519 4520
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4533
            output.dims = {8, 8}
4534

4535
            output.lod = [[4, 4]]
4536

D
dzhwinter 已提交
4537
     Examples:
4538 4539 4540

        .. code-block:: python

4541 4542
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4543 4544

    """
W
wanghaoshuang 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4555 4556 4557 4558 4559 4560 4561
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4562
    helper = LayerHelper('im2sequence', **locals())
4563 4564
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4565
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4566
    return out
4567 4568


Y
yuyang18 已提交
4569
@templatedoc()
4570
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4571 4572
    """
    ${comment}
4573 4574

    Args:
Y
yuyang18 已提交
4575
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4576 4577
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4578 4579 4580 4581 4582
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4583
        ${out_comment}.
4584 4585

    Examples:
Y
yuyang18 已提交
4586 4587 4588 4589
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4602
    return helper.append_activation(out)
4603 4604


Y
yuyang18 已提交
4605
@templatedoc()
4606 4607
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4608 4609 4610 4611 4612 4613 4614
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4615 4616

    Args:
Y
yuyang18 已提交
4617 4618
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4619 4620

    Returns:
Y
yuyang18 已提交
4621
        ${out_comment}.
4622 4623
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4624 4625 4626 4627 4628 4629

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4630 4631 4632 4633 4634 4635
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4636 4637


4638 4639 4640 4641
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4642 4643
    """
    **Softmax With Cross Entropy Operator.**
4644

4645 4646 4647 4648
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4649

4650 4651 4652
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4653

4654 4655 4656
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4657

4658
    The equation is as follows:
4659

4660
    1) Hard label (one-hot label, so every sample has exactly one class)
4661

4662 4663 4664 4665
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4666

4667 4668 4669
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4670

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4683 4684
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4685 4686
                            if soft_label is set to False. Default: -100

4687 4688 4689 4690 4691 4692 4693 4694 4695
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4696 4697
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4708 4709
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4710 4711 4712 4713 4714
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4715 4716
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4717
    For each instance, it computes the smooth L1 loss element by element first
4718
    and then sums all the losses. So the shape of ouput Variable is
4719
    [batch_size, 1].
4720

4721 4722
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4723
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4724
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4725
            L1 loss op with same shape as :attr:`x`.
4726
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4727 4728
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4729
            by this tensor element by element.
4730
        outside_weight (Variable|None): A tensor with rank at least 2. This
4731 4732
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4733
            element by element.
4734
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4735 4736
           scalar with default value 1.0.

4737
    Returns:
4738
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4739 4740 4741 4742 4743

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4744 4745
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4746
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4747
            out = fluid.layers.smooth_l1(x=fc, y=label)
4748
    """
4749

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4765 4766 4767 4768


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4769
    This layer creates the one-hot representations for input indices.
4770 4771

    Args:
Y
Yibing Liu 已提交
4772 4773
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4774 4775

    Returns:
Y
Yibing Liu 已提交
4776
        Variable: The one-hot representations of input.
4777 4778

    Examples:
C
caoying03 已提交
4779
        .. code-block:: python
4780

Y
Yibing Liu 已提交
4781 4782
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4783 4784 4785 4786 4787 4788 4789 4790 4791
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4792 4793


Y
Yu Yang 已提交
4794
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4795
    """
Y
yi.wu 已提交
4796 4797 4798
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4799 4800 4801 4802 4803 4804

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4805 4806
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4807 4808 4809 4810 4811 4812

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4813 4814
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4815 4816
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4817 4818 4819 4820 4821
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4822
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4823
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4824 4825
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4826 4827
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4828 4829 4830
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4831 4832


4833
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4834
    """
C
caoying03 已提交
4835 4836
    Gives a new shape to the input Tensor without changing its data.

4837 4838 4839 4840 4841
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4842

4843
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4844

4845 4846 4847 4848
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4849
    2. 0 means the actual dimension value is going to be copied from the
4850 4851 4852 4853
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4854 4855

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4856
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4857
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4858

4859
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4860 4861
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4862 4863
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4864
    dimensions.
C
caoying03 已提交
4865

4866
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4867 4868 4869 4870
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4871 4872

    Args:
4873
        x(variable): The input tensor.
C
caoying03 已提交
4874 4875
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4876 4877 4878 4879 4880
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4881
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4882 4883 4884 4885
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4886
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4887

4888 4889
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4890

X
Xin Pan 已提交
4891 4892 4893
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4894 4895
    Examples:
        .. code-block:: python
G
guosheng 已提交
4896

4897
            data = fluid.layers.data(
4898
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4899
            reshaped = fluid.layers.reshape(
4900
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4901 4902 4903
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4904
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4905 4906 4907 4908 4909
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4910

4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4926
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4927
    out = helper.create_tmp_variable(dtype=x.dtype)
4928
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4929
    helper.append_op(
4930
        type="reshape2",
X
Xin Pan 已提交
4931
        inputs=inputs,
D
dzhwinter 已提交
4932
        attrs={"shape": shape},
4933 4934
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4935

D
dzhwinter 已提交
4936
    return helper.append_activation(out)
4937

4938

4939
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4940
    """
M
minqiyang 已提交
4941 4942 4943
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4944
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4945

Y
Yibing Liu 已提交
4946 4947
    Examples:
    Case 1:
M
minqiyang 已提交
4948
      Given
Y
Yibing Liu 已提交
4949 4950 4951 4952 4953 4954 4955 4956
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4957
        and
Y
Yibing Liu 已提交
4958 4959 4960
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4961

Y
Yibing Liu 已提交
4962
    Args:
4963
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4964
        axes (list): List of integers, indicating the dimensions to be squeezed.
4965
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4966 4967 4968 4969 4970 4971 4972 4973

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4974
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4975 4976
    """
    helper = LayerHelper("squeeze", **locals())
4977
    out = helper.create_tmp_variable(dtype=input.dtype)
4978
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4979
    helper.append_op(
4980
        type="squeeze2",
4981
        inputs={"X": input},
Y
Yibing Liu 已提交
4982
        attrs={"axes": axes},
4983 4984
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4985

4986 4987 4988
    return out


4989
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4990
    """
M
minqiyang 已提交
4991 4992 4993
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4994

M
minqiyang 已提交
4995 4996
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4997
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4998

Y
Yibing Liu 已提交
4999
    Args:
5000
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5001
        axes (list): List of integers, indicating the dimensions to be inserted.
5002
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5003 5004 5005 5006 5007 5008 5009 5010

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5011
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5012 5013
    """
    helper = LayerHelper("unsqueeze", **locals())
5014
    out = helper.create_tmp_variable(dtype=input.dtype)
5015
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
5016
    helper.append_op(
5017
        type="unsqueeze2",
5018
        inputs={"X": input},
Y
Yibing Liu 已提交
5019
        attrs={"axes": axes},
5020 5021
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5022

5023 5024
    return out

5025

Y
yangyaming 已提交
5026
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5027
    """
Y
Yibing Liu 已提交
5028
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5029 5030 5031 5032
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5033
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5034 5035 5036 5037 5038 5039

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5040
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5041 5042 5043
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5044
            target_lod: [4, 2]
Y
yangyaming 已提交
5045 5046

            then we get a 1-level LoDTensor:
5047
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5048 5049 5050 5051 5052 5053
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5054
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5055 5056 5057 5058
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5059
                y.data = [[2, 4]]
Y
yangyaming 已提交
5060 5061 5062
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5063
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5064 5065 5066 5067 5068 5069
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5070
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5071 5072 5073 5074
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5075
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5076 5077 5078 5079
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5080
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5081 5082 5083 5084 5085
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5086
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5087
                           from :attr:`y`.
Y
yangyaming 已提交
5088
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5089
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5090 5091

    Returns:
Y
Yibing Liu 已提交
5092
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5093 5094

    Raises:
Y
Yibing Liu 已提交
5095
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5131
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5160 5161
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5189 5190 5191 5192


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5193
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5194
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5195

G
guosheng 已提交
5196 5197 5198 5199
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5222
                         The length of :attr:paddings must be
G
guosheng 已提交
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5233

G
guosheng 已提交
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5248 5249


C
chengduo 已提交
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5330 5331 5332 5333 5334 5335 5336
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5337 5338
    called label-smoothing regularization (LSR).

5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5362
                              be :math:`(1, class\_num)`.
5363 5364
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5365
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5393 5394


Y
yi.wu 已提交
5395
@templatedoc()
5396 5397
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5398
    ${comment}
5399 5400

    Args:
Y
yi.wu 已提交
5401 5402
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5403 5404 5405
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5406 5407

    Returns:
Y
update  
yi.wu 已提交
5408
        Variable: ${out_comment}.
5409 5410

    Examples:
5411 5412
        .. code-block:: python

5413
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5459 5460
        .. code-block:: python

W
whs 已提交
5461 5462 5463 5464
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5465
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5466 5467 5468 5469 5470 5471
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5472 5473


5474 5475 5476 5477 5478
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5479
    """
Q
qiaolongfei 已提交
5480
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5481

5482
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5483 5484 5485
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5486

5487
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5488

5489
    Args:
5490
        input (Variable): The input tensor of image resize layer,
5491 5492
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5493
        out_shape(list|tuple|Variable|None): Output shape of image resize
5494 5495
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5496
        scale(float|None): The multiplier for the input height or width.
5497 5498 5499
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5500 5501
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5502 5503
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5504 5505

    Returns:
Q
update  
qiaolongfei 已提交
5506 5507
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5508

5509 5510 5511
    Examples:
        .. code-block:: python

5512
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5513
    """
5514 5515 5516 5517
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5518 5519
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5520 5521
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5522 5523 5524 5525

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5526 5527 5528
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5529
    if out_shape is not None:
B
baiyf 已提交
5530 5531 5532
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5533 5534 5535 5536 5537 5538
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5539 5540 5541 5542
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5543 5544
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5545
        type=resample_methods[resample],
5546
        inputs=inputs,
5547 5548 5549 5550
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5551 5552


Y
yuyang18 已提交
5553
@templatedoc(op_type="bilinear_interp")
5554 5555
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5556 5557 5558 5559 5560 5561
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5562

Y
yuyang18 已提交
5563 5564 5565 5566 5567 5568 5569 5570
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5571 5572 5573 5574 5575 5576 5577
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5578 5579 5580
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5581 5582 5583 5584 5585 5586 5587
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5588
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5589

5590
    Returns:
Q
update  
qiaolongfei 已提交
5591
        Variable: The output is a 4-D tensor of the shape
5592
        (num_batches, channls, out_h, out_w).
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5603 5604 5605
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5606 5607 5608
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5609 5610
def gather(input, index):
    """
Q
qiaolongfei 已提交
5611 5612
    **Gather Layer**

5613
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5614 5615 5616 5617
    of X indexed by `index` and concatenate them together.

    .. math::

5618
        Out = X[Index]
W
whs 已提交
5619 5620 5621 5622 5623 5624 5625


    .. code-block:: text


                Given:

5626 5627
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5638
        input (Variable): The source input with rank>=1.
W
whs 已提交
5639 5640 5641 5642 5643 5644
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5645

W
whs 已提交
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5775

5776 5777 5778
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5779
    """
F
stash  
fengjiayi 已提交
5780
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5781
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5782
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5783
    if seed is None:
5784
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5785
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5786
    if isinstance(seed, int):
F
fengjiayi 已提交
5787 5788 5789 5790 5791
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5792 5793 5794 5795
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5796
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5797 5798
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5799 5800
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5801
    return out
W
whs 已提交
5802 5803


5804
def log(x, name=None):
W
wanghaoshuang 已提交
5805 5806 5807 5808 5809
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5810
        Out = \\ln(x)
W
wanghaoshuang 已提交
5811 5812

    Args:
5813
        x (Variable): Input tensor.
5814 5815
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5816 5817 5818 5819 5820 5821 5822 5823

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5824
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5825 5826
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5827
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5828
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5829
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5830 5831 5832
    return out


5833
def relu(x, name=None):
W
wanghaoshuang 已提交
5834 5835
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5836
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5837 5838 5839 5840
    the tensor elementwise.

    .. math::

5841
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5842 5843

    Args:
5844
        x (Variable): The input tensor.
5845 5846
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5847 5848 5849 5850 5851 5852 5853 5854

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5855
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5856 5857
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5858
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5859
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5860
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5861
    return out
5862 5863


W
whs 已提交
5864 5865 5866
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5867 5868 5869 5870
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5871
    .. math::
5872 5873

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5874

5875
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5876 5877 5878 5879 5880
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5881
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5882
                           Its shape should be the same as input.
5883
        num_classes (int): The possible number of labels.
W
whs 已提交
5884 5885 5886 5887

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5888
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5889 5890 5891 5892

    Examples:

        .. code-block:: python
5893

W
whs 已提交
5894 5895 5896 5897 5898 5899 5900 5901 5902
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5903 5904
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5905
        outputs={
W
whs 已提交
5906 5907 5908
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5909 5910 5911
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5986
                    isinstance(shape, Variable)):
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6020

6021 6022
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6023

6024 6025 6026 6027
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6028

6029 6030 6031 6032 6033
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6034 6035 6036

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6081 6082


M
minqiyang 已提交
6083 6084
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6085
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6086
    which compares left score and right score passed in.
M
minqiyang 已提交
6087
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6088 6089 6090 6091 6092 6093

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6094
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6095 6096
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6097
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6098 6099 6100
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6101
       Variable: The ranking loss.
M
minqiyang 已提交
6102
    Raises:
M
minqiyang 已提交
6103
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6104 6105 6106 6107 6108 6109 6110
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6111
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6112 6113 6114 6115 6116 6117
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
M
minqiyang 已提交
6118 6119
    out = helper.create_tmp_variable(left.dtype)
    act = helper.create_tmp_variable(left.dtype)
M
minqiyang 已提交
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6145

W
whs 已提交
6146 6147
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6148

W
whs 已提交
6149
      Case 0:
M
minqiyang 已提交
6150

W
whs 已提交
6151 6152 6153
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6154

W
whs 已提交
6155 6156 6157
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6158

W
whs 已提交
6159
      Case 1:
M
minqiyang 已提交
6160

W
whs 已提交
6161 6162
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6163

W
whs 已提交
6164 6165 6166
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6167

W
whs 已提交
6168
      Case 2:
M
minqiyang 已提交
6169

W
whs 已提交
6170 6171
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6172

W
whs 已提交
6173 6174 6175
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6176 6177


W
whs 已提交
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6375
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6376
                        will be named automatically.
J
jerrywgz 已提交
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6495

6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6506 6507
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6523
        ValueError: If axis is not in range [0, rank(x)].
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6541
    x_shape = helper.create_tmp_variable(x.dtype)
6542
    helper.append_op(
6543
        type='flatten2',
6544
        inputs={"X": x},
6545 6546
        outputs={'Out': out,
                 'XShape': x_shape},
6547 6548
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6549 6550


C
chenweihang 已提交
6551
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6552
    """
C
chenweihang 已提交
6553
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6554
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6555 6556
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6557

C
chenweihang 已提交
6558 6559 6560 6561
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6562
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6563 6564 6565 6566 6567 6568
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6569
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6570 6571 6572
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6573 6574 6575
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6587
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6588 6589 6590 6591 6592 6593
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6594
    return out
6595

6596

S
sneaxiy 已提交
6597 6598 6599 6600 6601 6602 6603 6604 6605
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6606

S
sneaxiy 已提交
6607
    .. math::
6608

S
sneaxiy 已提交
6609 6610 6611
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6612
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6613 6614 6615 6616
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6617 6618 6619
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6620 6621
    Returns:
        Variable: The output sequence mask.
6622

S
sneaxiy 已提交
6623 6624
    """

Q
qingqing01 已提交
6625
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6626 6627 6628 6629 6630
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6631 6632 6633
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6634 6635
        outputs={'Y': out},
        attrs={
6636
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6637 6638 6639
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6640 6641


X
Xin Pan 已提交
6642
def stack(x, axis=0):
S
sneaxiy 已提交
6643 6644 6645 6646
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6647 6648 6649 6650 6651 6652 6653

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6654
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6655
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6656 6657

    Args:
6658
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6659
        axis (int|None): The axis along which all inputs are stacked.
6660

S
sneaxiy 已提交
6661 6662
    Returns:
        Variable: The stacked variable.
6663

S
sneaxiy 已提交
6664 6665
    """

X
Xin Pan 已提交
6666 6667 6668 6669 6670 6671 6672 6673
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6674 6675
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6676

X
Xin Pan 已提交
6677
    return out
D
dzhwinter 已提交
6678 6679 6680 6681 6682 6683 6684


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6685

D
dzhwinter 已提交
6686 6687 6688
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6689
    raised.
D
dzhwinter 已提交
6690 6691

    Args:
M
minqiyang 已提交
6692
        x (Variable): Input variable.
D
dzhwinter 已提交
6693 6694
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6695

D
dzhwinter 已提交
6696 6697
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6698

D
dzhwinter 已提交
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6731

W
whs 已提交
6732 6733 6734 6735
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6736

W
whs 已提交
6737
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6738

W
whs 已提交
6739
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6740

W
whs 已提交
6741 6742 6743 6744
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6745

W
whs 已提交
6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6769 6770


G
fix  
gongweibao 已提交
6771 6772 6773
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6774
@templatedoc()
G
fix  
gongweibao 已提交
6775 6776 6777 6778 6779 6780 6781 6782 6783
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6784
    ${comment}
G
fix  
gongweibao 已提交
6785 6786

    Args:
G
gongweibao 已提交
6787 6788 6789
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6790
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6791 6792 6793
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6794 6795
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6796
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6818 6819


G
gongweibao 已提交
6820
@templatedoc()
X
Xin Pan 已提交
6821
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6822
    """
G
gongweibao 已提交
6823
    ${comment}
G
fix  
gongweibao 已提交
6824 6825

    Args:
G
gongweibao 已提交
6826 6827 6828 6829
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6830 6831 6832
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6833
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6849
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6850 6851 6852 6853 6854
        })

    return out


G
gongweibao 已提交
6855
@templatedoc()
G
fix  
gongweibao 已提交
6856
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6857
    """
G
gongweibao 已提交
6858
    ${comment}
G
fix  
gongweibao 已提交
6859 6860

    Args:
G
gongweibao 已提交
6861 6862 6863 6864
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6865
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6866 6867

    Returns:
G
gongweibao 已提交
6868
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6869 6870 6871 6872

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6873
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6885
@templatedoc()
G
fix  
gongweibao 已提交
6886 6887 6888 6889 6890 6891 6892 6893 6894
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6895
    ${comment}
G
fix  
gongweibao 已提交
6896 6897

    Args:
G
gongweibao 已提交
6898 6899
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6900
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6901 6902 6903 6904
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6905
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6906 6907

    Returns:
G
gongweibao 已提交
6908
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6931
@templatedoc()
X
Xin Pan 已提交
6932
def sum(x):
G
fix  
gongweibao 已提交
6933
    """
G
gongweibao 已提交
6934
    ${comment}
G
fix  
gongweibao 已提交
6935 6936

    Args:
G
gongweibao 已提交
6937
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6938 6939

    Returns:
G
gongweibao 已提交
6940
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6941 6942 6943
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6944
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6945 6946 6947 6948
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
6949
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6950 6951 6952 6953

    return out


G
gongweibao 已提交
6954
@templatedoc()
G
fix  
gongweibao 已提交
6955 6956
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6957
    ${comment}
G
fix  
gongweibao 已提交
6958 6959

    Args:
G
gongweibao 已提交
6960 6961 6962 6963
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6964 6965

    Returns:
G
gongweibao 已提交
6966
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6967 6968 6969 6970

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6971
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6983
@templatedoc()
G
fix  
gongweibao 已提交
6984 6985
def shape(input):
    """
G
gongweibao 已提交
6986
    ${comment}
G
fix  
gongweibao 已提交
6987 6988

    Args:
G
gongweibao 已提交
6989
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6990 6991

    Returns:
G
gongweibao 已提交
6992
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6993 6994 6995 6996

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6997
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6998
    helper.append_op(
G
fix  
gongweibao 已提交
6999
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7000 7001

    return out
G
merge  
gongweibao 已提交
7002 7003


S
sneaxiy 已提交
7004 7005 7006 7007 7008 7009 7010 7011
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7012 7013 7014 7015 7016 7017
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7018

S
sneaxiy 已提交
7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7030
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7031 7032 7033 7034 7035 7036 7037 7038
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7039
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7040
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7041 7042 7043 7044 7045 7046

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7047 7048 7049 7050 7051
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7062
    return helper.append_activation(out)
S
sneaxiy 已提交
7063 7064


X
Xin Pan 已提交
7065
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7066 7067 7068
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7069
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7070 7071 7072
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7073
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7074 7075 7076
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7077
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7078 7079 7080
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7081
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7082 7083 7084
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7085
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7086 7087 7088
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7089
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7101 7102
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7103
        ])
M
minqiyang 已提交
7104 7105


7106
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7107 7108
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7109 7110
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7130
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7149
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7168
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7187
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7324 7325
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429


def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
    
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out