nn.py 192.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#   Copyright (c ) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
16
#
D
dzhwinter 已提交
17 18 19
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
20
#
D
dzhwinter 已提交
21
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
22
#
D
dzhwinter 已提交
23 24 25 26 27
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
28
"""
29
All layers just related to the neural network.
Y
Yu Yang 已提交
30 31 32 33 34
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
35
from ..param_attr import ParamAttr
Y
yuyang18 已提交
36
from layer_function_generator import autodoc, templatedoc
Y
yangyaming 已提交
37
from tensor import concat
C
chengduoZH 已提交
38
import utils
Y
yuyang18 已提交
39
import random
F
fengjiayi 已提交
40
from .. import unique_name
Y
Yu Yang 已提交
41 42

__all__ = [
Y
ying 已提交
43 44 45
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
46
    'dynamic_lstmp',
G
guosheng 已提交
47
    'dynamic_gru',
Y
ying 已提交
48 49 50 51 52 53 54 55 56
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
57
    'conv3d',
Y
ying 已提交
58
    'sequence_pool',
59 60
    'sequence_softmax',
    'softmax',
Y
ying 已提交
61
    'pool2d',
Y
yuyang18 已提交
62
    'pool3d',
Y
ying 已提交
63 64 65
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
66
    'conv3d_transpose',
Y
ying 已提交
67 68 69 70 71 72
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
73
    'reduce_prod',
Y
ying 已提交
74 75 76 77
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
78 79
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
80 81
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
82
    'topk',
Y
ying 已提交
83 84
    'warpctc',
    'sequence_reshape',
85
    'transpose',
86
    'im2sequence',
87
    'nce',
W
weixing02 已提交
88
    'hsigmoid',
Q
Qiao Longfei 已提交
89
    'beam_search',
90
    'row_conv',
91
    'multiplex',
G
guosheng 已提交
92
    'layer_norm',
93 94
    'softmax_with_cross_entropy',
    'smooth_l1',
95
    'one_hot',
Y
Yu Yang 已提交
96
    'autoincreased_step_counter',
C
caoying03 已提交
97
    'reshape',
Y
yangyaming 已提交
98
    'lod_reset',
D
dragonwarrior 已提交
99
    'lrn',
G
guosheng 已提交
100
    'pad',
101
    'label_smooth',
102
    'roi_pool',
W
whs 已提交
103
    'dice_loss',
F
fengjiayi 已提交
104 105
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
106
    'resize_bilinear',
W
whs 已提交
107
    'gather',
108
    'random_crop',
Y
yuyang18 已提交
109 110 111
    'mean_iou',
    'relu',
    'log',
112
    'crop',
Y
Yu Yang 已提交
113 114 115 116 117 118 119 120
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
121
       use_mkldnn=False,
Y
Yu Yang 已提交
122
       act=None,
J
Jacek Czaja 已提交
123
       is_test=False,
124
       name=None):
Y
Yu Yang 已提交
125
    """
126
    **Fully Connected Layer**
Y
Yu Yang 已提交
127

128 129 130 131 132 133 134 135
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
136
    to the output as well.
C
caoying03 已提交
137

C
caoying03 已提交
138
    This process can be formulated as follows:
139 140 141

    .. math::

142
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
143 144 145

    In the above equation:

C
caoying03 已提交
146 147 148 149
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
150
    * :math:`Act`: The activation function.
C
caoying03 已提交
151
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
152 153

    Args:
R
ranqiu 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
169 170
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
171
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
172
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
173 174
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
175
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
176

177
    Returns:
F
fengjiayi 已提交
178
        Variable: The transformation result.
179 180

    Raises:
C
caoying03 已提交
181
        ValueError: If rank of the input tensor is less than 2.
182 183 184 185

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
186
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
187
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
188
    """
C
caoying03 已提交
189

C
caoying03 已提交
190
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
191 192 193 194

    dtype = helper.input_dtype()

    mul_results = []
195 196
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
197 198 199
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
200

Y
Yu Yang 已提交
201
        w = helper.create_parameter(
202 203
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
204
        helper.append_op(
205 206 207
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
208
            outputs={"Out": tmp},
M
mozga-intel 已提交
209 210
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
211 212 213 214
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
215
    else:
216 217
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
218 219 220 221
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
222 223 224 225
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
226 227


228 229 230
def embedding(input,
              size,
              is_sparse=False,
231
              is_distributed=False,
232 233 234
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
235
    """
236 237
    **Embedding Layer**

238
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
239 240
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
241 242 243

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
244 245

    Args:
246 247 248 249 250
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
251
        is_distributed(bool): Whether to run lookup table from remote parameter server.
252 253
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
254
            with zeros whenever lookup encounters it in :attr:`input`. If
255
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
256 257
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
258
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
259

260 261 262
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
263

264 265
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
266

C
chengduoZH 已提交
267
          dict_size = len(dataset.ids)
268
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
269
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
270 271 272 273 274 275
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
276 277
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
278 279 280 281 282
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
283 284 285 286 287
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
288 289 290
    return tmp


Y
yi.wu 已提交
291
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
292 293
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
294 295
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
296 297 298 299 300 301 302
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
303 304
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
305
    """
Y
yi.wu 已提交
306
    ${comment}
Y
Yibing Liu 已提交
307 308

    Args:
Y
yi.wu 已提交
309 310
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
311 312 313 314 315 316 317
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

318
        param_attr(ParamAttr|None): The parameter attribute for the learnable
319
                               hidden-hidden weights.
Y
Yibing Liu 已提交
320 321 322

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
323 324
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
325
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
326 327 328
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
329

330
                              1. `use_peepholes = False`
Y
yi.wu 已提交
331 332
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
333
                              2. `use_peepholes = True`
Y
yi.wu 已提交
334
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
335
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
336
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
337 338 339 340 341 342 343 344
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
345 346

    Returns:
Y
Yibing Liu 已提交
347 348
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
349

Y
Yibing Liu 已提交
350
    Examples:
Y
Yibing Liu 已提交
351 352
        .. code-block:: python

Y
Yibing Liu 已提交
353 354
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
355
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
356 357
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
358
    """
359

Y
Yu Yang 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
374 375 376 377 378 379 380 381 382 383
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
384 385 386

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
387
        inputs=inputs,
Y
Yu Yang 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
404 405 406 407 408 409 410 411 412 413 414
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
415 416
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
417 418 419
    """
    **Dynamic LSTMP Layer**

420 421 422 423 424 425
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
426 427 428 429 430

    The formula is as follows:

    .. math::

431
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
432

433
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
434

435
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
436

437
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
438

439
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
440

441
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
442

443
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
444

Y
Yibing Liu 已提交
445 446 447 448 449 450
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
451
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
452
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
453
          bias vector).
Y
Yibing Liu 已提交
454 455 456
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
457
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
458
    * :math:`h`: The hidden state.
459
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
460 461
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
462
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
463
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
464
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
465 466
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
467 468 469 470

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
471

Y
Yibing Liu 已提交
472 473 474 475 476 477 478 479 480 481 482 483
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
484
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
485 486
                               hidden-hidden weight and projection weight.

487 488
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
489 490
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
491 492
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
493 494
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
495 496 497 498 499 500
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
501
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
502 503 504
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
505
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
506 507 508 509 510 511 512 513 514
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
515
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
516 517
                              default "tanh".
        proj_activation(str): The activation for projection output.
518
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
519 520
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
521 522
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
523 524

    Returns:
525 526 527 528
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
529 530

    Examples:
531

Y
Yibing Liu 已提交
532 533
        .. code-block:: python

534 535 536 537
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
538
            hidden_dim, proj_dim = 512, 256
539
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
540
                                     act=None, bias_attr=None)
541 542 543
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
544 545 546 547
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
548
    """
549

Y
Yibing Liu 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
596 597 598 599 600 601 602 603 604
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
605
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
606

607
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
608
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
609

G
guosheng 已提交
610 611 612 613 614 615 616 617 618
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
619

G
guosheng 已提交
620
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
621

G
guosheng 已提交
622
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
623 624
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
625 626 627 628
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
629
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
630 631

    Args:
632 633
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
634
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
635
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
636 637
            is the hidden size.
        size(int): The dimension of the gru cell.
638
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
639 640
            hidden-hidden weight matrix. Note:

641
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
642
              :math:`D` is the hidden size.
643
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
644
              The first part are weights of the update gate and reset gate with
645
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
646
              candidate hidden state with shape :math:`(D \\times D)`.
647
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
648
            hidden-hidden bias.
649
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
650 651 652
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
653
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
654
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
655 656 657 658
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
659 660

    Returns:
G
guosheng 已提交
661
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
662
            and sequence length is the same with the input.
663

G
guosheng 已提交
664
    Examples:
665

G
guosheng 已提交
666 667
        .. code-block:: python

668 669 670 671
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
672
            hidden_dim = 512
673
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
674 675 676 677 678 679 680 681 682 683
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
684
    batch_size = input.shape[0]
G
guosheng 已提交
685 686 687
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
688 689 690
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
714 715 716
def gru_unit(input,
             hidden,
             size,
717 718
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
719
             activation='tanh',
720
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
721
    """
722
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
723

724 725
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
726

727
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
728

729
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
730

731
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
732 733

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
734 735 736
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
737 738
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

739 740
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
741 742 743
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
744 745 746 747 748

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
749 750
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
751 752 753 754
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
755

756 757 758 759 760 761
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
762

763
             # assuming we have x_t_data and prev_hidden of size=10
764
             x_t = fluid.layers.fc(input=x_t_data, size=30)
765 766
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
782 783
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
784

785 786 787 788
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
789
    # create bias
790
    if helper.bias_attr:
Y
Yu Yang 已提交
791 792 793
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
794
        inputs['Bias'] = bias
Y
Yu Yang 已提交
795 796 797

    helper.append_op(
        type='gru_unit',
798
        inputs=inputs,
Y
Yu Yang 已提交
799 800 801 802 803 804
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
805 806
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
807 808 809 810 811
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
812
@templatedoc()
813
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
814 815 816 817 818 819 820
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
821
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
822 823 824 825
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
826 827 828
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
829 830

    """
Y
Yu Yang 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
856
@templatedoc()
857
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
858 859 860 861 862
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
863

Y
yuyang18 已提交
864
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
865

Y
yuyang18 已提交
866 867 868
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
869
        Variable: ${viterbi_path_comment}
870

Y
yi.wu 已提交
871 872 873 874 875
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
876
    """
Y
Yu Yang 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
890
@templatedoc()
F
fengjiayi 已提交
891
def cos_sim(X, Y):
Y
Yu Yang 已提交
892
    """
Y
yi.wu 已提交
893 894 895
    ${comment}

    Args:
896 897
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
898

Y
yi.wu 已提交
899
    Returns:
900
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
901
    """
F
fengjiayi 已提交
902
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
903 904 905 906 907 908 909 910 911 912 913 914 915
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


916
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
917 918 919 920 921
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
922
    training. The dropout operator randomly sets (according to the given dropout
923 924 925 926
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
927 928
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
929 930 931 932 933 934 935
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
936 937

    Returns:
938
        Variable: A tensor variable is the shape with `x`.
939 940

    Examples:
941

942 943
        .. code-block:: python

944 945
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
946 947
    """

F
fengjiayi 已提交
948
    helper = LayerHelper('dropout', **locals())
949 950 951 952 953 954 955
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
956 957 958 959 960 961
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
962 963 964
    return out


F
fengjiayi 已提交
965
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
966
    """
Y
Yibing Liu 已提交
967 968
    **Cross Entropy Layer**

969 970 971
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
972 973

    1) One-hot cross-entropy:
F
fengjiayi 已提交
974
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
975

Y
Yibing Liu 已提交
976
        .. math::
Y
yangyaming 已提交
977

Y
Yibing Liu 已提交
978 979 980
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
981 982
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
983 984 985 986 987

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
988
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
989 990 991
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
992 993
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
994
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
995

Y
Yibing Liu 已提交
996
    Args:
Y
yangyaming 已提交
997
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
998 999 1000 1001
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1002
        label (Variable|list): the ground truth which is a 2-D tensor. When
1003 1004 1005 1006
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1007
        soft_label (bool): a flag indicating whether to
1008 1009
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
1010 1011 1012 1013 1014

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1015 1016 1017 1018 1019
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1020 1021 1022 1023 1024 1025

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1026
    """
F
fengjiayi 已提交
1027
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1028 1029 1030 1031 1032 1033
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
1034
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
1035 1036 1037
    return out


F
fengjiayi 已提交
1038
def square_error_cost(input, label):
Y
Yu Yang 已提交
1039
    """
1040 1041
    **Square error cost layer**

1042 1043
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1058 1059
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1060 1061

    Returns:
G
guosheng 已提交
1062
        Variable: The tensor variable storing the element-wise squared error \
1063
                  difference of input and label.
1064 1065 1066 1067 1068 1069 1070 1071

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1072
    """
F
fengjiayi 已提交
1073
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1083 1084
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1085 1086 1087
    return square_out


Y
yi.wu 已提交
1088
@templatedoc()
Y
Yu Yang 已提交
1089 1090 1091 1092
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1093
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1094
    """
Y
yi.wu 已提交
1095
    **Chunk Evaluator**
Y
yi.wu 已提交
1096

Y
yangyaming 已提交
1097
    This function computes and outputs the precision, recall and
1098
    F1-score of chunk detection.
Y
yi.wu 已提交
1099

Y
yi.wu 已提交
1100 1101 1102 1103 1104 1105 1106 1107
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1108

Y
yi.wu 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1134

Y
yi.wu 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1159
    Args:
1160 1161 1162 1163 1164
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1165

Y
yi.wu 已提交
1166
    Returns:
Y
update  
yi.wu 已提交
1167 1168 1169
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1170

Y
yi.wu 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1183
    """
F
fengjiayi 已提交
1184
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1185 1186 1187 1188 1189

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1190 1191 1192
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1193 1194 1195 1196 1197 1198 1199 1200

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1201 1202 1203 1204
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1205 1206 1207
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1208 1209
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1210
        })
1211 1212
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1213 1214


1215
@templatedoc()
Y
Yu Yang 已提交
1216 1217 1218 1219 1220 1221 1222
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1223
                  act=None):
Y
Yu Yang 已提交
1224 1225 1226 1227
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1238

1239 1240
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1266
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1267 1268 1269
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1270
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1313
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    """
    The input of the softmax layer is a 2-D tensor with shape N x K (N is the
    batch_size, K is the dimension of input feature). The output tensor has the
    same shape as the input tensor.

    For each row of the input tensor, the softmax operator squashes the
    K-dimensional vector of arbitrary real values to a K-dimensional vector of real
    values in the range [0, 1] that add up to 1.

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in Input(X), we have:

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1364 1365 1366
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1367 1368
           stride=1,
           padding=0,
1369
           dilation=1,
Y
Yu Yang 已提交
1370 1371 1372
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1373
           use_cudnn=True,
1374
           use_mkldnn=False,
1375 1376
           act=None,
           name=None):
Y
Yu Yang 已提交
1377
    """
C
chengduoZH 已提交
1378
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1379 1380
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1381
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1382 1383 1384 1385 1386 1387 1388
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1389 1390 1391
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1392

1393
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1394

C
chengduoZH 已提交
1395 1396
    .. math::

C
refine  
chengduoZH 已提交
1397
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1398

T
tensor-tang 已提交
1399
    Where:
C
chengduoZH 已提交
1400

1401 1402 1403 1404 1405
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1406
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1407 1408 1409

    Example:

1410 1411
        - Input:

W
weixing02 已提交
1412
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1413

W
weixing02 已提交
1414
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1415

1416
        - Output:
T
tensor-tang 已提交
1417

W
weixing02 已提交
1418
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1419

C
chengduoZH 已提交
1420
        Where
1421 1422

        .. math::
C
chengduoZH 已提交
1423

W
weixing02 已提交
1424 1425
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1426 1427

    Args:
1428
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1429
        num_filters(int): The number of filter. It is as same as the output
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1452 1453
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1454 1455 1456
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1457 1458

    Returns:
G
guosheng 已提交
1459
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1460 1461
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1462
    Raises:
1463 1464
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1465

C
chengduoZH 已提交
1466 1467 1468
    Examples:
        .. code-block:: python

1469 1470
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1471 1472 1473
    """

    num_channels = input.shape[1]
1474 1475

    l_type = 'conv2d'
X
xzl 已提交
1476 1477
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1478
        l_type = 'depthwise_conv2d'
1479 1480 1481 1482

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1483 1484 1485 1486 1487 1488 1489
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1490 1491 1492
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1493
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1494

C
chengduoZH 已提交
1495 1496
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1514
        type=l_type,
Y
Yu Yang 已提交
1515 1516 1517 1518 1519
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1520 1521 1522
        attrs={
            'strides': stride,
            'paddings': padding,
1523
            'dilations': dilation,
C
chengduoZH 已提交
1524
            'groups': groups,
1525 1526
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1527
        })
Y
Yu Yang 已提交
1528 1529 1530 1531 1532 1533

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1552 1553 1554 1555 1556 1557
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1567 1568
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1569 1570 1571
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1572
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1598
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1599 1600
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1601
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1602 1603
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1604
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1605 1606
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1607
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1634 1635
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1691
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1692 1693 1694 1695

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1696
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1697
    """
Y
yangyaming 已提交
1698 1699 1700
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1712
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1713 1714 1715 1716 1717
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1718
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1719 1720 1721 1722 1723 1724 1725

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1726 1727
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1728

L
Luo Tao 已提交
1729 1730
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1731
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1732 1733 1734 1735 1736 1737 1738 1739
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1740

Y
yangyaming 已提交
1741
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1742 1743 1744 1745 1746
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1747 1748
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1749
    """
F
fengjiayi 已提交
1750
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1762 1763 1764 1765 1766
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1767 1768 1769
    return pool_out


F
fengjiayi 已提交
1770
def sequence_first_step(input):
L
Luo Tao 已提交
1771
    """
L
Luo Tao 已提交
1772
    This function gets the first step of sequence.
L
Luo Tao 已提交
1773 1774 1775 1776

    .. code-block:: text

       x is a 1-level LoDTensor:
1777
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1778 1779 1780 1781 1782
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1783
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1784
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1785

L
Luo Tao 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1795

Y
yangyaming 已提交
1796
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1797 1798 1799
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1800 1801 1802
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1803
def sequence_last_step(input):
L
Luo Tao 已提交
1804
    """
L
Luo Tao 已提交
1805
    This function gets the last step of sequence.
L
Luo Tao 已提交
1806 1807 1808 1809

    .. code-block:: text

       x is a 1-level LoDTensor:
1810
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1811 1812 1813 1814 1815
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1816
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1817
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1818

L
Luo Tao 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1828

Y
yangyaming 已提交
1829
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1830 1831 1832
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1833 1834 1835
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1836
@templatedoc()
Y
Yu Yang 已提交
1837
def pool2d(input,
C
chengduoZH 已提交
1838 1839
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1840 1841
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1842
           global_pooling=False,
C
chengduoZH 已提交
1843
           use_cudnn=True,
1844
           ceil_mode=False,
1845
           use_mkldnn=False,
C
caoying03 已提交
1846
           name=None):
Y
Yu Yang 已提交
1847
    """
F
fengjiayi 已提交
1848
    ${comment}
1849 1850

    Args:
1851 1852 1853
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1854
                          feature, and W is the width of the feature.
1855
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1856
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1857
        pool_type: ${pooling_type_comment}
1858 1859
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1860 1861 1862 1863
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1864
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1865 1866
                        layer will be named automatically.

1867
    Returns:
F
fengjiayi 已提交
1868
        Variable: The pooling result.
F
fengjiayi 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1882 1883 1884 1885
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1886
                            global_pooling=False)
Y
Yu Yang 已提交
1887 1888 1889 1890 1891
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1892

C
chengduoZH 已提交
1893 1894 1895 1896 1897
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1898 1899 1900 1901
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1902 1903
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1904

C
Add doc  
chengduoZH 已提交
1905
    l_type = 'pool2d'
1906 1907

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1908 1909 1910 1911
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1941
    pooling configurations mentioned in input parameters.
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1955

1956
    Returns:
1957
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1958 1959 1960 1961 1962
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1963

C
chengduoZH 已提交
1964 1965 1966 1967 1968
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1969 1970 1971
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1972

C
chengduoZH 已提交
1973 1974
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1975

1976 1977
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1978 1979 1980 1981
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1982
        type=l_type,
Y
Yu Yang 已提交
1983 1984 1985 1986 1987 1988 1989
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1990
            "paddings": pool_padding,
1991
            "use_cudnn": use_cudnn,
1992 1993
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2006
               data_layout='NCHW',
Y
Yang Yang 已提交
2007
               in_place=False,
2008
               use_mkldnn=False,
2009 2010
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2011
               moving_variance_name=None,
2012 2013
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2014
    """
Q
qiaolongfei 已提交
2015 2016 2017 2018
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2019

Q
qiaolongfei 已提交
2020
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2021

Q
qiaolongfei 已提交
2022 2023
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2024 2025 2026
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2039 2040

    Args:
Q
qiaolongfei 已提交
2041
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2042 2043 2044 2045
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2046 2047 2048
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
2049
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2050 2051 2052 2053 2054
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2055
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2056
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2057 2058

    Returns:
Q
qiaolongfei 已提交
2059
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2060 2061 2062 2063 2064 2065 2066

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2090
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2091

2092 2093
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2094 2095 2096
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2097
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2098
        shape=param_shape,
2099 2100 2101 2102 2103 2104 2105
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2106
            trainable=False,
W
wanghaoshuang 已提交
2107
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2108
        shape=param_shape,
2109 2110
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2111 2112 2113 2114 2115 2116

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2117 2118
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2119

Y
Yang Yang 已提交
2120
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2138 2139 2140 2141
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2142 2143
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2144
        })
Y
Yu Yang 已提交
2145 2146 2147 2148

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2149
@templatedoc()
G
guosheng 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2160
    ${comment}
G
guosheng 已提交
2161 2162 2163

    The formula is as follows:

Y
yuyang18 已提交
2164
    ..  math::
G
guosheng 已提交
2165 2166 2167 2168 2169 2170 2171

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2172 2173 2174 2175 2176 2177 2178 2179
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2180

G
guosheng 已提交
2181 2182
    Args:
        input(Variable): The input tensor variable.
2183
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2184
            normalization.
2185
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2186
            normalization.
2187
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2188
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2189
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2190 2191 2192 2193 2194 2195
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2196
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2197 2198

    Returns:
Y
yuyang18 已提交
2199
        ${y_comment}
G
guosheng 已提交
2200 2201 2202

    Examples:

Y
yuyang18 已提交
2203 2204 2205
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2221
    if shift:
G
guosheng 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2246 2247 2248 2249
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2250 2251 2252
                     padding=0,
                     stride=1,
                     dilation=1,
2253
                     groups=None,
C
caoying03 已提交
2254
                     param_attr=None,
2255
                     bias_attr=None,
C
chengduoZH 已提交
2256
                     use_cudnn=True,
2257
                     act=None,
C
caoying03 已提交
2258
                     name=None):
Y
Yu Yang 已提交
2259
    """
2260 2261 2262 2263 2264 2265 2266 2267
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2268 2269
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2270 2271 2272
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2273 2274 2275 2276 2277

    For each input :math:`X`, the equation is:

    .. math::

2278
        Out = \sigma (W \\ast X + b)
2279

2280
    Where:
2281 2282 2283

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2284 2285 2286 2287
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2288

2289 2290 2291 2292
    Example:

        - Input:

2293
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2294

2295
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2296 2297 2298

        - Output:

2299
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2300 2301

        Where
Y
Yu Yang 已提交
2302

2303 2304 2305 2306
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2307 2308

    Args:
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2342 2343

    Returns:
2344
        Variable: The tensor variable storing the convolution transpose result.
2345 2346

    Raises:
2347 2348
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2349 2350 2351 2352

    Examples:
       .. code-block:: python

2353 2354
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2355
    """
2356 2357 2358 2359 2360 2361 2362 2363 2364

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2365 2366 2367
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2368 2369 2370
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2371

C
chengduoZH 已提交
2372 2373
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2374

Y
Yu Yang 已提交
2375 2376 2377 2378 2379
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2380

Y
Yu Yang 已提交
2381 2382
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2383

C
chengduoZH 已提交
2384 2385 2386 2387
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
2388
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2389 2390 2391
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2392

2393 2394
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2395 2396 2397
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2398
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2399
    helper.append_op(
2400
        type=op_type,
Y
Yu Yang 已提交
2401 2402
        inputs={'Input': [input],
                'Filter': [img_filter]},
2403
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2404
        attrs={
2405 2406 2407 2408 2409
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2410 2411
        })

2412 2413 2414
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2415 2416


2417
def conv3d_transpose(input,
Y
Yu Yang 已提交
2418 2419 2420
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2421 2422 2423
                     padding=0,
                     stride=1,
                     dilation=1,
2424
                     groups=None,
C
caoying03 已提交
2425
                     param_attr=None,
2426
                     bias_attr=None,
C
chengduoZH 已提交
2427
                     use_cudnn=True,
2428
                     act=None,
C
caoying03 已提交
2429
                     name=None):
Y
Yu Yang 已提交
2430
    """
2431
    **Convlution3D transpose layer**
2432

2433
    The convolution3D transpose layer calculates the output based on the input,
2434
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2435 2436 2437 2438 2439 2440
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2441 2442 2443
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2444 2445 2446 2447 2448

    For each input :math:`X`, the equation is:

    .. math::

2449
        Out = \sigma (W \\ast X + b)
2450 2451 2452

    In the above equation:

2453 2454
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2455 2456 2457 2458
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2459

2460 2461 2462 2463
    Example:

        - Input:

2464
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2465

2466
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2467 2468 2469

        - Output:

2470
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2471 2472

        Where
Y
Yu Yang 已提交
2473

2474 2475
        .. math::

2476 2477 2478
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2479 2480

    Args:
2481
        input(Variable): The input image with [N, C, D, H, W] format.
2482 2483 2484
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2485
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2486 2487
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2488
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2489 2490 2491
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2492 2493
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2494
        stride(int|tuple): The stride size. If stride is a tuple, it must
2495 2496
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2497
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2498 2499 2500
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2501 2502 2503 2504 2505
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2506 2507 2508
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2509 2510 2511 2512 2513
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2514 2515

    Returns:
2516
        Variable: The tensor variable storing the convolution transpose result.
2517 2518

    Raises:
2519 2520
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2521 2522 2523 2524

    Examples:
       .. code-block:: python

2525 2526
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2527
    """
2528 2529
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2530
    if not isinstance(input, Variable):
2531
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2532 2533
    input_channel = input.shape[1]

2534 2535 2536
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2537

C
chengduoZH 已提交
2538 2539 2540
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2541 2542 2543 2544 2545 2546
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2547 2548 2549
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2550

2551
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
C
chengduoZH 已提交
2552
                         padding[0] - 1) / dilation[0] + 1
2553
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
C
chengduoZH 已提交
2554
                         padding[1] - 1) / dilation[1] + 1
2555 2556 2557
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
                         padding[2] - 1) / dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2558
    else:
2559 2560
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2561

2562 2563
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
2564 2565 2566
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2567
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2568
    helper.append_op(
2569
        type=l_type,
Y
Yu Yang 已提交
2570 2571
        inputs={'Input': [input],
                'Filter': [img_filter]},
2572
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2573 2574 2575 2576
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2577
            'groups': groups,
C
chengduoZH 已提交
2578 2579
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2580

2581 2582
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2583
    return out
Y
yangyaming 已提交
2584 2585


Y
yangyaming 已提交
2586
def sequence_expand(x, y, ref_level=-1, name=None):
2587
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2588 2589 2590 2591
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2592 2593 2594 2595 2596

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2597
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2598
                x.data = [[a], [b], [c], [d]]
2599 2600 2601
                x.dims = [4, 1]

            y is a LoDTensor:
2602 2603
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2604

Y
yangyaming 已提交
2605
            ref_level: 0
2606

Y
yangyaming 已提交
2607
            then output is a 1-level LoDTensor:
2608
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2609
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2610 2611 2612 2613
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2614
                x.data = [[a], [b], [c]]
2615 2616 2617
                x.dims = [3, 1]

            y is a LoDTensor:
2618
                y.lod = [[2, 0, 3]]
2619

Y
yangyaming 已提交
2620
            ref_level: -1
2621

Y
yangyaming 已提交
2622 2623 2624
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2625 2626 2627
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2628 2629
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2630
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2631
                        will be named automatically.
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2642
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2643
    """
Y
yangyaming 已提交
2644
    helper = LayerHelper('sequence_expand', input=x, **locals())
2645 2646 2647
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2648 2649 2650 2651 2652
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2653
    return tmp
2654 2655


2656 2657 2658 2659 2660 2661 2662 2663 2664
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2665 2666
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2667 2668 2669

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
2670 2671 2672 2673 2674 2675 2676 2677
    
    This layer does the search in beams for one time step. Specifically, it 
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
2678 2679 2680 2681 2682 2683 2684 2685 2686
 
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2687

2688
    Args:
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2714

2715
    Returns:
2716 2717
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2718 2719 2720 2721

    Examples:
        .. code-block:: python

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2750
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2768 2769 2770 2771 2772 2773 2774
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2775

2776 2777 2778 2779 2780 2781 2782 2783 2784
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2785

2786 2787 2788 2789 2790 2791
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2792

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2818 2819 2820 2821
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2822
              param_attr=None,
C
caoying03 已提交
2823 2824
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2825 2826 2827 2828
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2829
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2830

2831
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2832

2833
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2834

2835
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2836 2837 2838

            h_t & = o_t tanh(c_t)

2839 2840 2841 2842 2843 2844
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2845 2846 2847

        .. math::

2848
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2849 2850 2851 2852 2853 2854 2855 2856

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2857
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2858 2859

    Args:
Y
yangyaming 已提交
2860 2861 2862 2863 2864 2865
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2866
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2867 2868
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2869 2870
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2871 2872
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2873 2874

    Returns:
Y
yangyaming 已提交
2875
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2876 2877

    Raises:
2878 2879 2880 2881
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2882 2883 2884 2885 2886 2887

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2888
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2889
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2890
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2907
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2908 2909 2910 2911
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2912 2913
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2914 2915 2916
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2917
    size = cell_t_prev.shape[1]
2918
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2919 2920
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2921
                param_attr=param_attr,
2922
                bias_attr=bias_attr)
Y
yangyaming 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2935
    return h, c
G
guosheng 已提交
2936 2937


C
caoying03 已提交
2938
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2939
    """
Y
yangyaming 已提交
2940
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2941 2942 2943

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2944
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2945 2946
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2947 2948
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2949
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2950
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2951
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2952 2953
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2954 2955 2956

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2957

G
guosheng 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2969 2970 2971 2972 2973 2974 2975 2976

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2977 2978 2979
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2980 2981
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2982 2983 2984 2985 2986
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2987
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2988 2989 2990 2991
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2992 2993


C
caoying03 已提交
2994
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2995
    """
Y
Yibing Liu 已提交
2996
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
2997 2998 2999

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3000 3001 3002
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3003
            must be in the range :math:`[-rank(input), rank(input))`. If
3004
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3005
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3006 3007
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3008
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3009
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3010
                       will be named automatically.
G
guosheng 已提交
3011 3012

    Returns:
Y
Yibing Liu 已提交
3013
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3014

G
guosheng 已提交
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3025 3026
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3027 3028 3029 3030 3031 3032 3033

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3034 3035 3036
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3037 3038
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3039 3040 3041 3042 3043
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3044
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3045 3046 3047 3048
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3049 3050


C
caoying03 已提交
3051
def reduce_max(input, dim=None, keep_dim=False, name=None):
3052
    """
Y
yangyaming 已提交
3053
    Computes the maximum of tensor elements over the given dimension.
3054 3055 3056

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3057
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3058 3059 3060
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3061
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3062 3063
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3064
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3065 3066
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3067 3068 3069

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3070

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3082 3083 3084 3085 3086 3087 3088

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3089 3090 3091
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3092 3093
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3094 3095 3096 3097 3098
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3099
            'dim': dim if dim != None else [0],
3100 3101 3102 3103 3104 3105
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3106
def reduce_min(input, dim=None, keep_dim=False, name=None):
3107
    """
Y
yangyaming 已提交
3108
    Computes the minimum of tensor elements over the given dimension.
3109 3110 3111

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3112
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3113 3114 3115
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3116
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3117 3118
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3119
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3120 3121
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3122 3123 3124

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3125

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3137 3138 3139 3140 3141 3142 3143

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3144 3145 3146
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3147 3148
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3149 3150 3151 3152 3153
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3154
            'dim': dim if dim != None else [0],
3155 3156 3157 3158
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3159 3160


3161 3162 3163 3164 3165 3166
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3167
        dim (list|int|None): The dimensions along which the product is performed. If
3168 3169
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3170 3171
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3172 3173 3174
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3175
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3176
            layer will be named automatically.
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3191
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3192
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3193 3194 3195 3196 3197 3198 3199

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3200 3201 3202
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3203 3204
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3205 3206 3207 3208 3209
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3210
            'dim': dim if dim != None else [0],
3211 3212 3213 3214 3215 3216
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3217
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3218
    """
C
caoying03 已提交
3219
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3220 3221 3222

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3223 3224 3225 3226 3227
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3228
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3229
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3230
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3231 3232
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3233 3234

    Returns:
D
dzhwinter 已提交
3235
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3245 3246
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3276 3277 3278 3279 3280 3281 3282 3283 3284


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3285
    .. math::
3286 3287

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3288 3289 3290 3291 3292

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3293
        x(Variable|list): The input tensor to l2_normalize layer.
3294
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3295 3296
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3297
        epsilon(float): The epsilon value is used to avoid division by zero, \
3298
            the defalut value is 1e-10.
3299
        name(str|None): A name for this layer(optional). If set None, the layer \
3300
            will be named automatically.
C
caoying03 已提交
3301 3302

    Returns:
3303
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3304 3305

    Examples:
3306

C
caoying03 已提交
3307 3308
        .. code-block:: python

3309 3310 3311 3312
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3313 3314
    """

F
fengjiayi 已提交
3315 3316
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3317 3318
    helper = LayerHelper("l2_normalize", **locals())

3319 3320
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3321
    helper.append_op(
3322 3323 3324 3325
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3326
        attrs={
3327 3328
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3329 3330
        })
    return out
3331 3332


3333
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3334
    """
Y
ying 已提交
3335 3336 3337 3338
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3339

C
chengduoZH 已提交
3340
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3341
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3342

3343 3344 3345 3346 3347
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3348
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3349

C
chengduoZH 已提交
3350
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3351
      performs in the following way.
G
guosheng 已提交
3352

3353
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3354
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3355
        last two dimensions and a batched matrix multiply supporting broadcast
3356
        applies on the two tensors.
G
guosheng 已提交
3357

Y
ying 已提交
3358 3359
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3360
    removed after matrix multiplication.
G
guosheng 已提交
3361 3362 3363

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3364 3365 3366
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3367
        name(str|None): A name for this layer(optional). If set None, the layer
3368
            will be named automatically.
G
guosheng 已提交
3369 3370

    Returns:
3371
        Variable: The product Tensor variable.
G
guosheng 已提交
3372

G
guosheng 已提交
3373 3374 3375
    Examples:
        .. code-block:: python

3376
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3377 3378
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3379

3380 3381
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3382

3383 3384
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3385

3386 3387
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3388 3389 3390 3391

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3392 3393
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3394

Y
ying 已提交
3395
            # x: [M], y: [N]
3396
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3397
    """
Y
ying 已提交
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3410
            y_shape = y_shape + [1]
Y
ying 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3427
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3428
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3429
    helper.append_op(
3430 3431 3432 3433 3434 3435 3436
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3437 3438


3439
def topk(input, k, name=None):
Q
qingqing01 已提交
3440 3441 3442 3443
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3444
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3445 3446 3447 3448 3449 3450
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3472 3473 3474
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3475
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3476
                 of input.
3477
        name(str|None): A name for this layer(optional). If set None, the layer
3478
                       will be named automatically.
F
fengjiayi 已提交
3479
                       Default: None
Q
qingqing01 已提交
3480 3481

    Returns:
3482 3483 3484
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3485
        within the last dimension of input.
Q
qingqing01 已提交
3486

F
fengjiayi 已提交
3487 3488
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3489 3490 3491 3492 3493 3494 3495

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
F
fengjiayi 已提交
3496
    if k < 1 or k >= shape[-1]:
Q
qingqing01 已提交
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3514
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3515
    """
Y
ying 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3525

Y
ying 已提交
3526
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3527

3528
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3529 3530
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3531
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3532

3533
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3534 3535
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3536

3537 3538 3539
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3540
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3541
                          the length of reference string.
3542
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3543
                                     calculating edit distance.
3544
        name (str): The name of this layer. It is optional.
3545

W
wanghaoshuang 已提交
3546
    Returns:
W
wanghaoshuang 已提交
3547
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3548 3549 3550 3551 3552

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3553
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3554
            cost = fluid.layers.edit_distance(input=x,label=y)
3555
    """
3556
    helper = LayerHelper("edit_distance", **locals())
3557

3558
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3559
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3560 3561 3562 3563 3564 3565 3566
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3567
            attrs={"tokens": ignored_tokens})
3568 3569 3570 3571 3572
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3573
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3574
            attrs={"tokens": ignored_tokens})
3575 3576
        label = erased_label

3577 3578
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3579
    sequence_num = helper.create_tmp_variable(dtype="int64")
3580 3581 3582 3583
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3584 3585
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3586 3587
        attrs={"normalized": normalized})

3588
    return edit_distance_out, sequence_num
3589 3590 3591 3592 3593


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3594

Y
ying 已提交
3595 3596 3597 3598
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3616
        input.lod = [[4, 4]]
3617 3618 3619 3620 3621 3622 3623

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3624
        output.lod = [[2, 1]]
3625 3626 3627

    Args:

Y
ying 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3637
        name (str): The name of this layer. It is optional.
3638 3639

    Returns:
3640
        Variable: CTC greedy decode result. If all the sequences in result were
3641
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3642 3643 3644 3645 3646

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3647

3648
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3649
    """
3650
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3651
    _, topk_indices = topk(input, k=1)
3652 3653 3654 3655 3656 3657

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3658
        outputs={"Output": [ctc_out]},
3659 3660
        attrs={"merge_repeated": True,
               "blank": blank})
3661
    return ctc_out
3662 3663


F
fengjiayi 已提交
3664
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3665
    """
3666 3667
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3668
    to compute Connectionist Temporal Classification (CTC) loss.
3669 3670
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3671 3672 3673
    input tensor.

    Args:
3674
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3675 3676 3677 3678
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3679
       label (Variable): The ground truth of variable-length sequence,
3680 3681 3682
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3683 3684
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3685 3686 3687
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3688
         follewed by a mean_op.
W
wanghaoshuang 已提交
3689 3690

    Returns:
3691 3692
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3693 3694

    Examples:
3695

W
wanghaoshuang 已提交
3696
        .. code-block:: python
3697

3698 3699 3700
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3701 3702

    """
F
fengjiayi 已提交
3703
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3730 3731 3732
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3733 3734 3735 3736 3737
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3738

3739
            out.lod  = [[0, 1, 3]]
3740 3741 3742 3743

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3744 3745 3746 3747 3748 3749 3750
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3751 3752 3753

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3754 3755

    Returns:
3756

3757 3758 3759 3760 3761
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3762
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3763
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3764 3765 3766 3767 3768 3769 3770 3771 3772
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3773 3774


3775 3776 3777 3778
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3779 3780 3781 3782 3783 3784 3785
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3786 3787 3788 3789 3790 3791 3792
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3793 3794
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3795
            sample is 1.0.
3796 3797 3798
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3799

3800
    Returns:
Y
Yibing Liu 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3828
    """
Y
Yang Yu 已提交
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3873
    return cost / (num_neg_samples + 1)
3874 3875


G
guosheng 已提交
3876
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3877 3878 3879
    """
    The hierarchical sigmoid operator is used to accelerate the training
    process of language model. This operator organizes the classes into a 
G
guosheng 已提交
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
    
W
weixing02 已提交
3890
    Args:
G
guosheng 已提交
3891 3892 3893 3894 3895 3896
        input (Variable): The input tensor variable with shape 
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3897 3898 3899
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter 
G
guosheng 已提交
3900 3901
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3902 3903 3904 3905 3906 3907 3908 3909

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3910 3911 3912
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3913 3914 3915 3916 3917 3918 3919 3920
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
3921
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
3922 3923 3924 3925 3926
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
3927 3928 3929 3930 3931 3932 3933 3934
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
3935 3936
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
3937
        inputs=inputs,
W
weixing02 已提交
3938 3939 3940 3941 3942 3943
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
3944
def transpose(x, perm, name=None):
Y
ying 已提交
3945 3946 3947 3948 3949 3950 3951
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
3952 3953 3954
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
3955 3956 3957 3958 3959 3960 3961 3962

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
3963
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
3964 3965
    """

Y
fix ci.  
ying 已提交
3966
    if len(perm) != len(x.shape):
Y
ying 已提交
3967 3968 3969
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3970 3971 3972 3973 3974 3975
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3976 3977

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3978
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3979 3980
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3981
        inputs={'X': [x]},
Y
ying 已提交
3982 3983 3984
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3985 3986


3987 3988 3989 3990 3991 3992 3993
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
3994
    """
3995 3996 3997 3998 3999 4000 4001
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4030 4031 4032 4033 4034 4035 4036 4037 4038
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4039 4040 4041
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4042 4043 4044 4045 4046
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4074 4075 4076
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4089
            output.dims = {8, 8}
4090

4091
            output.lod = [[4, 4]]
4092

D
dzhwinter 已提交
4093
     Examples:
4094 4095 4096

        .. code-block:: python

4097 4098
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4099 4100

    """
W
wanghaoshuang 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4111 4112 4113 4114 4115 4116 4117
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4118
    helper = LayerHelper('im2sequence', **locals())
4119 4120
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4121
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4122
    return out
4123 4124


Y
yuyang18 已提交
4125
@templatedoc()
4126
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4127 4128
    """
    ${comment}
4129 4130

    Args:
Y
yuyang18 已提交
4131
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4132 4133
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4134 4135 4136 4137 4138
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4139
        ${out_comment}.
4140 4141

    Examples:
Y
yuyang18 已提交
4142 4143 4144 4145
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4158
    return helper.append_activation(out)
4159 4160


Y
yuyang18 已提交
4161
@templatedoc()
4162 4163
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4164 4165 4166 4167 4168 4169 4170
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4171 4172

    Args:
Y
yuyang18 已提交
4173 4174
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4175 4176

    Returns:
Y
yuyang18 已提交
4177
        ${out_comment}.
4178 4179
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4180 4181 4182 4183 4184 4185

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4186 4187 4188 4189 4190 4191
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4192 4193 4194 4195 4196


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
4197

4198 4199 4200 4201
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4202

4203 4204 4205
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4206

4207 4208 4209
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4210

4211
    The equation is as follows:
4212

4213
    1) Hard label (one-hot label, so every sample has exactly one class)
4214

4215 4216 4217 4218
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4219

4220 4221 4222
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4223

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4245 4246
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4263 4264
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4265
    For each instance, it computes the smooth L1 loss element by element first
4266
    and then sums all the losses. So the shape of ouput Variable is
4267
    [batch_size, 1].
4268

4269 4270
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4271
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4272
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4273
            L1 loss op with same shape as :attr:`x`.
4274
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4275 4276
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4277
            by this tensor element by element.
4278
        outside_weight (Variable|None): A tensor with rank at least 2. This
4279 4280
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4281
            element by element.
4282
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4283 4284
           scalar with default value 1.0.

4285
    Returns:
4286
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4287 4288 4289 4290 4291

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4292 4293
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4294
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4295
            out = fluid.layers.smooth_l1(x=fc, y=label)
4296
    """
4297

4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4313 4314 4315 4316


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4317
    This layer creates the one-hot representations for input indices.
4318 4319

    Args:
Y
Yibing Liu 已提交
4320 4321
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4322 4323

    Returns:
Y
Yibing Liu 已提交
4324
        Variable: The one-hot representations of input.
4325 4326

    Examples:
C
caoying03 已提交
4327
        .. code-block:: python
4328

Y
Yibing Liu 已提交
4329 4330
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4331 4332 4333 4334 4335 4336 4337 4338 4339
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4340 4341


Y
Yu Yang 已提交
4342
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4343
    """
Y
yi.wu 已提交
4344 4345 4346
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4347 4348 4349 4350 4351 4352

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4353 4354
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4355 4356 4357 4358 4359 4360

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4361 4362
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4363 4364
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4365 4366 4367 4368 4369
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4370
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4371
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4372 4373
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4374 4375
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4376 4377 4378
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4379 4380


4381
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4382
    """
C
caoying03 已提交
4383 4384
    Gives a new shape to the input Tensor without changing its data.

4385 4386 4387 4388 4389
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4390

4391
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4392

4393 4394 4395 4396
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4397
    2. 0 means the actual dimension value is going to be copied from the
4398 4399 4400 4401
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4402 4403

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4404
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4405
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4406

4407
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4408 4409
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4410 4411
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4412
    dimensions.
C
caoying03 已提交
4413

4414
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4415 4416 4417 4418
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4419 4420

    Args:
4421
        x(variable): The input tensor.
C
caoying03 已提交
4422 4423
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4424 4425 4426 4427 4428
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4429
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4430 4431 4432 4433
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4434
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4435

4436 4437
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4438

X
Xin Pan 已提交
4439 4440 4441
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4442 4443
    Examples:
        .. code-block:: python
G
guosheng 已提交
4444

4445
            data = fluid.layers.data(
4446
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4447
            reshaped = fluid.layers.reshape(
4448
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4449 4450 4451 4452
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")
X
Xin Pan 已提交
4453 4454 4455 4456 4457
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4458

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
4474 4475 4476 4477
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
X
Xin Pan 已提交
4478
        inputs=inputs,
C
caoying03 已提交
4479 4480 4481 4482 4483
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
4484 4485


Y
yangyaming 已提交
4486
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4487
    """
Y
Yibing Liu 已提交
4488
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4489 4490 4491 4492
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4493
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4494 4495 4496 4497 4498 4499

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4500
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4501 4502 4503
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4504
            target_lod: [4, 2]
Y
yangyaming 已提交
4505 4506

            then we get a 1-level LoDTensor:
4507
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4508 4509 4510 4511 4512 4513
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4514
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4515 4516 4517 4518
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4519
                y.data = [[2, 4]]
Y
yangyaming 已提交
4520 4521 4522
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4523
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4524 4525 4526 4527 4528 4529
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4530
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4531 4532 4533 4534
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4535
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4536 4537 4538 4539
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4540
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4541 4542 4543 4544 4545
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4546
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4547
                           from :attr:`y`.
Y
yangyaming 已提交
4548
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4549
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4550 4551

    Returns:
Y
Yibing Liu 已提交
4552
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4553 4554

    Raises:
Y
Yibing Liu 已提交
4555
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4591
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4620 4621
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4649 4650 4651 4652


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4653
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4654
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4655

G
guosheng 已提交
4656 4657 4658 4659
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4682
                         The length of :attr:paddings must be
G
guosheng 已提交
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4693

G
guosheng 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4708 4709 4710 4711 4712 4713 4714 4715 4716


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4717 4718
    called label-smoothing regularization (LSR).

4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4742
                              be :math:`(1, class\_num)`.
4743 4744
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
4745
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
4773 4774


Y
yi.wu 已提交
4775
@templatedoc()
4776 4777
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
4778
    ${comment}
4779 4780

    Args:
Y
yi.wu 已提交
4781 4782
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
4783 4784 4785
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
4786 4787

    Returns:
Y
update  
yi.wu 已提交
4788
        Variable: ${out_comment}.
4789 4790

    Examples:
4791 4792
        .. code-block:: python

4793
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
4839 4840
        .. code-block:: python

W
whs 已提交
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
4852 4853


4854 4855 4856 4857 4858
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
4859
    """
Q
qiaolongfei 已提交
4860
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
4861

4862
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
4863 4864 4865
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
4866

4867
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
4868

4869
    Args:
4870
        input (Variable): The input tensor of image resize layer,
4871 4872
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
4873
        out_shape(list|tuple|Variable|None): Output shape of image resize
4874 4875
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
4876
        scale(float|None): The multiplier for the input height or width.
4877 4878 4879
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
4880 4881
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4882 4883
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
4884 4885

    Returns:
Q
update  
qiaolongfei 已提交
4886 4887
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
4888

4889 4890 4891
    Examples:
        .. code-block:: python

4892
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
4893
    """
4894 4895 4896 4897
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
4898 4899
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
4900 4901
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
4902 4903 4904 4905

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

4906 4907 4908
    out_h = 0
    out_w = 0
    inputs = {"X": input}
4909
    if out_shape is not None:
B
baiyf 已提交
4910 4911 4912
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
4913 4914 4915 4916 4917 4918
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
4919 4920 4921 4922
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

4923 4924
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
4925
        type=resample_methods[resample],
4926
        inputs=inputs,
4927 4928 4929 4930
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
4931 4932


Y
yuyang18 已提交
4933
@templatedoc(op_type="bilinear_interp")
4934 4935
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
4936 4937 4938 4939 4940 4941
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
4942

Y
yuyang18 已提交
4943 4944 4945 4946 4947 4948 4949 4950
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
4951 4952 4953 4954 4955 4956 4957
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
4958 4959 4960
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
4961 4962 4963 4964 4965 4966 4967
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
4968
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
4969

4970
    Returns:
Q
update  
qiaolongfei 已提交
4971
        Variable: The output is a 4-D tensor of the shape
4972
        (num_batches, channls, out_h, out_w).
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
4983 4984 4985
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
4986 4987 4988
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
4989 4990
def gather(input, index):
    """
Q
qiaolongfei 已提交
4991 4992
    **Gather Layer**

4993
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
4994 4995 4996 4997
    of X indexed by `index` and concatenate them together.

    .. math::

4998
        Out = X[Index]
W
whs 已提交
4999 5000 5001 5002 5003 5004 5005


    .. code-block:: text


                Given:

5006 5007
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5018
        input (Variable): The source input with rank>=1.
W
whs 已提交
5019 5020 5021 5022 5023 5024
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5025

W
whs 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5054

5055 5056 5057
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5058
    """
F
stash  
fengjiayi 已提交
5059
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5060
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5061
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5062 5063
    if seed is None:
        seed = random.randint(-65536, 65535)
F
fengjiayi 已提交
5064
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5065
    if isinstance(seed, int):
F
fengjiayi 已提交
5066 5067 5068 5069 5070
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5071 5072 5073 5074
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5075
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5076 5077
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5078 5079
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5080
    return out
W
whs 已提交
5081 5082


5083
def log(x):
W
wanghaoshuang 已提交
5084 5085 5086 5087 5088
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5089
        Out = \\ln(x)
W
wanghaoshuang 已提交
5090 5091

    Args:
5092
        x (Variable): Input tensor.
W
wanghaoshuang 已提交
5093 5094 5095 5096 5097 5098 5099 5100

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5101
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5102 5103
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5104
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5105
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5106
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5107 5108 5109
    return out


5110
def relu(x):
W
wanghaoshuang 已提交
5111 5112
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5113
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5114 5115 5116 5117
    the tensor elementwise.

    .. math::

5118
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5119 5120

    Args:
5121
        x (Variable): The input tensor.
W
wanghaoshuang 已提交
5122 5123 5124 5125 5126 5127 5128 5129

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5130
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5131 5132
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5133
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5134
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5135
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5136
    return out
5137 5138


W
whs 已提交
5139 5140 5141
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5142 5143 5144 5145
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5146
    .. math::
5147 5148

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5149

5150
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5151 5152 5153 5154 5155
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5156
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5157
                           Its shape should be the same as input.
5158
        num_classes (int): The possible number of labels.
W
whs 已提交
5159 5160 5161 5162

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5163
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5164 5165 5166 5167

    Examples:

        .. code-block:: python
5168

W
whs 已提交
5169 5170 5171 5172 5173 5174 5175 5176 5177
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5178 5179
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5180
        outputs={
W
whs 已提交
5181 5182 5183
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5184 5185 5186
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
        isinstance(shape, Variable)):
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out