nn.py 144.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16 17 18 19 20
"""
All layers just related to the neural network.
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
22
from layer_function_generator import autodoc
Y
yangyaming 已提交
23
from tensor import concat
C
chengduoZH 已提交
24
import utils
Y
Yu Yang 已提交
25 26

__all__ = [
Y
ying 已提交
27 28 29
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
30
    'dynamic_lstmp',
G
guosheng 已提交
31
    'dynamic_gru',
Y
ying 已提交
32 33 34 35 36 37 38 39 40 41
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'sequence_pool',
42 43
    'sequence_softmax',
    'softmax',
Y
ying 已提交
44 45 46 47 48 49 50 51 52 53
    'pool2d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
54
    'reduce_prod',
Y
ying 已提交
55 56 57 58
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
59 60
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
61 62
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
63
    'topk',
Y
ying 已提交
64 65
    'warpctc',
    'sequence_reshape',
66
    'transpose',
67
    'im2sequence',
68
    'nce',
Q
Qiao Longfei 已提交
69
    'beam_search',
70
    'row_conv',
71
    'multiplex',
G
guosheng 已提交
72
    'layer_norm',
73 74
    'softmax_with_cross_entropy',
    'smooth_l1',
75
    'one_hot',
Y
Yu Yang 已提交
76
    'autoincreased_step_counter',
C
caoying03 已提交
77
    'reshape',
Y
yangyaming 已提交
78
    'lod_reset',
D
dragonwarrior 已提交
79
    'lrn',
G
guosheng 已提交
80
    'pad',
81
    'label_smooth',
82
    'roi_pool',
W
whs 已提交
83
    'dice_loss',
Y
Yu Yang 已提交
84 85 86 87 88 89 90 91
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
K
Kexin Zhao 已提交
92
       use_cudnn=False,
93
       use_mkldnn=False,
Y
Yu Yang 已提交
94
       act=None,
J
Jacek Czaja 已提交
95
       is_test=False,
96
       name=None):
Y
Yu Yang 已提交
97
    """
98
    **Fully Connected Layer**
Y
Yu Yang 已提交
99

C
caoying03 已提交
100
    The fully connected layer can take multiple tensors as its inputs. It
R
ranqiu 已提交
101 102 103 104 105 106
    creates a variable called weights for each input tensor, which represents
    a fully connected weight matrix from each input unit to each output unit.
    The fully connected layer multiplies each input tensor with its coresponding
    weight to produce an output Tensor. If multiple input tensors are given,
    the results of multiple multiplications will be sumed up. If bias_attr is
    not None, a bias variable will be created and added to the output. Finally,
Y
ying 已提交
107
    if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
108

C
caoying03 已提交
109
    This process can be formulated as follows:
110 111 112

    .. math::

113
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
114 115 116

    In the above equation:

C
caoying03 已提交
117 118 119 120
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
121
    * :math:`Act`: The activation function.
C
caoying03 已提交
122
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
123 124

    Args:
R
ranqiu 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to None, no bias will be added to the output units.
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
142
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
143 144
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
145
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
146

147
    Returns:
R
ranqiu 已提交
148
        A tensor variable storing the transformation result.
149 150

    Raises:
C
caoying03 已提交
151
        ValueError: If rank of the input tensor is less than 2.
152 153 154 155

    Examples:
        .. code-block:: python

C
caoying03 已提交
156
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
157
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
158
    """
C
caoying03 已提交
159

C
caoying03 已提交
160
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
161 162 163 164

    dtype = helper.input_dtype()

    mul_results = []
165 166
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
167 168 169
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
170

Y
Yu Yang 已提交
171
        w = helper.create_parameter(
172 173
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
174
        helper.append_op(
175 176 177
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
178
            outputs={"Out": tmp},
J
Jacek Czaja 已提交
179
            attrs={
180 181 182
                "x_num_col_dims": num_flatten_dims,
                "y_num_col_dims": 1,
                "use_mkldnn": use_mkldnn
J
Jacek Czaja 已提交
183
            })
184 185 186 187
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
188
    else:
189 190 191 192 193 194 195
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
196 197


198 199 200
def embedding(input,
              size,
              is_sparse=False,
201
              is_distributed=False,
202 203 204
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
205
    """
206 207
    **Embedding Layer**

208
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
209 210
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
211 212 213

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
214 215

    Args:
216 217 218 219 220 221 222
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
223 224
            with zeros whenever lookup encounters it in :attr:`input`. If
            :math:`padding_idx < 0`, the padding_idx to use in lookup is
225 226
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
227
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
228

229 230 231
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
232

233 234
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
235

C
chengduoZH 已提交
236
          dict_size = len(dataset.ids)
237
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
238
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
239 240 241 242 243 244
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
245 246
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
247 248 249 250 251
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
252 253 254 255 256
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269
    return tmp


# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
270 271
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
272 273 274 275 276 277
    """
    **Dynamic LSTM Layer**

    The defalut implementation is diagonal/peephole connection
    (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:

Y
Yibing Liu 已提交
278
    .. math::
Y
Yibing Liu 已提交
279

280
        i_t & = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
281

282
        f_t & = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
283

284
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)
Y
Yibing Liu 已提交
285

286 287 288
        o_t & = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
289

Y
Yibing Liu 已提交
290
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
291

292
    where the :math:`W` terms denote weight matrices (e.g. :math:`W_{xi}` is
293
    the matrix of weights from the input gate to the input), :math:`W_{ic}, \
294 295 296
    W_{fc}, W_{oc}` are diagonal weight matrices for peephole connections. In
    our implementation, we use vectors to reprenset these diagonal weight
    matrices. The :math:`b` terms denote bias vectors (:math:`b_i` is the input
Y
Yibing Liu 已提交
297
    gate bias vector), :math:`\sigma` is the non-linear activations, such as
298 299
    logistic sigmoid function, and :math:`i, f, o` and :math:`c` are the input
    gate, forget gate, output gate, and cell activation vectors, respectively,
300 301
    all of which have the same size as the cell output activation vector :math:`h`.

302 303 304 305
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
    and :math:`act_h` are the cell input and cell output activation functions
    and `tanh` is usually used for them. :math:`\\tilde{c_t}` is also called
    candidate hidden state, which is computed based on the current input and
306 307 308
    the previous hidden state.

    Set `use_peepholes` to `False` to disable peephole connection. The formula
Y
Yibing Liu 已提交
309 310 311
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.

Y
Yibing Liu 已提交
312 313 314
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connect layer before LSTM layer.
Y
Yibing Liu 已提交
315 316

    Args:
317 318 319 320
        input(Variable): The input of dynamic_lstm layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
Y
Yibing Liu 已提交
321 322
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
323
        param_attr(ParamAttr|None): The parameter attribute for the learnable
324
                               hidden-hidden weights.
Y
Yibing Liu 已提交
325 326 327

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
328 329 330
                               - The shape is (D x 4D), where D is the hidden
                                 size.
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
331 332 333
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
334

335
                              1. `use_peepholes = False`
Y
Yibing Liu 已提交
336
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
337
                                - The shape is (1 x 4D).
338
                              2. `use_peepholes = True`
Y
Yibing Liu 已提交
339 340
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
341
                                - The shape is (1 x 7D).
342
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
Y
Yibing Liu 已提交
343 344
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
345 346
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
Y
Yibing Liu 已提交
347
                              "identity"], default "sigmoid".
348
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
Y
Yibing Liu 已提交
349 350 351 352 353
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
354 355
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
356 357

    Returns:
Y
Yibing Liu 已提交
358 359
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
360

Y
Yibing Liu 已提交
361
    Examples:
Y
Yibing Liu 已提交
362 363
        .. code-block:: python

Y
Yibing Liu 已提交
364 365
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
366
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
367 368
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
369
    """
370

Y
Yu Yang 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
407 408 409 410 411 412 413 414 415 416 417
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
418 419
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
420 421 422
    """
    **Dynamic LSTMP Layer**

423 424 425 426 427 428
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
429 430 431 432 433

    The formula is as follows:

    .. math::

434
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
435

436
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
437

438
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
439

440
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
441

442
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
443

444
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
445

446
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
447

Y
Yibing Liu 已提交
448 449 450 451 452 453
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
454
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
455
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
456
          bias vector).
Y
Yibing Liu 已提交
457 458 459
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
460
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
461
    * :math:`h`: The hidden state.
462
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
463 464
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
465
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
466
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
467
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
468 469
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
470 471 472 473

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
474

Y
Yibing Liu 已提交
475 476 477 478 479 480 481 482 483 484 485 486
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
487
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
488 489
                               hidden-hidden weight and projection weight.

490 491
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
492 493
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
494 495
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
496 497
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
498 499 500 501 502 503
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
504
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
505 506 507
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
508
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        proj_activation(str): The activation for projection output.
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
524 525
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
526 527

    Returns:
528 529
        tuple: The projection of hidden state, and cell state of LSTMP. The \
               shape of projection is (T x P), for the cell state which is \
Y
Yibing Liu 已提交
530 531 532 533 534
               (T x D), and both LoD is the same with the `input`.

    Examples:
        .. code-block:: python

Y
Yibing Liu 已提交
535
            hidden_dim, proj_dim = 512, 256
Y
Yibing Liu 已提交
536 537
            fc_out = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                     act=None, bias_attr=None)
538 539 540
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
541 542 543 544
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
545
    """
546

Y
Yibing Liu 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    helper = LayerHelper('lstmp', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
593 594 595 596 597 598 599 600 601 602 603
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
    **Dynamic GRU Layer**

604
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
G
guosheng 已提交
605
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_
606

G
guosheng 已提交
607 608 609 610 611 612 613 614 615
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
616

G
guosheng 已提交
617
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
618

G
guosheng 已提交
619
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
620 621
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
622 623 624 625
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
626
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
627 628

    Args:
629 630
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
631
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
632
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
633 634
            is the hidden size.
        size(int): The dimension of the gru cell.
635
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
636 637
            hidden-hidden weight matrix. Note:

638
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
639
              :math:`D` is the hidden size.
640
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
641
              The first part are weights of the update gate and reset gate with
642
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
643
              candidate hidden state with shape :math:`(D \\times D)`.
644
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
645
            hidden-hidden bias.
646
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
647 648 649
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
650
        activation(str): The activation for candidate hidden state.
G
guosheng 已提交
651 652 653
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".

    Returns:
G
guosheng 已提交
654 655
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
            and lod is the same with the input.
656

G
guosheng 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    Examples:
        .. code-block:: python

            hidden_dim = 512
            x = fluid.layers.fc(input=data, size=hidden_dim * 3)
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
            size, size), 'The shape of h0 should be(%d, %d)' % (size, size)
        inputs['h0'] = h_0

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
700 701 702
def gru_unit(input,
             hidden,
             size,
703 704
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
705
             activation='tanh',
706
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
707
    """
708
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
709

710 711
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
712

713
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
714

715
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
716

717
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
718 719

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
720 721 722
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
723 724
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

725 726
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
727 728 729
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
730 731 732 733 734

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
735 736
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
737 738 739 740
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
741

742 743 744 745 746 747
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
748

749
             # assuming we have x_t_data and prev_hidden of size=10
750
             x_t = fluid.layers.fc(input=x_t_data, size=30)
751 752
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
768 769
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
770

771 772 773 774
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
775
    # create bias
776
    if helper.bias_attr:
Y
Yu Yang 已提交
777 778 779
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
780
        inputs['Bias'] = bias
Y
Yu Yang 已提交
781 782 783

    helper.append_op(
        type='gru_unit',
784
        inputs=inputs,
Y
Yu Yang 已提交
785 786 787 788 789 790
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
791 792
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
793 794 795 796 797
        })

    return updated_hidden, reset_hidden_pre, gate


798
def linear_chain_crf(input, label, param_attr=None):
Y
Yu Yang 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


824
def crf_decoding(input, param_attr, label=None):
Y
Yu Yang 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


F
fengjiayi 已提交
838
def cos_sim(X, Y):
Y
Yu Yang 已提交
839 840 841 842
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
F
fengjiayi 已提交
843
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


F
fengjiayi 已提交
857
def dropout(x, dropout_prob, is_test=False, seed=None):
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
    training. The dropout operator randomly set (according to the given dropout
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
       x(variable): The input tensor.
       dropout_prob(float): Probability of setting units to zero.
       is_test(bool): A flag indicating whether it is in test phrase or not.
       seed(int): A Python integer used to create random seeds. If this
                  parameter is set to None, a random seed is used.
                  NOTE: If an integer seed is given, always the same output
                  units will be dropped. DO NOT use a fixed seed in training.

    Returns:
        Variable: A tensor variable.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
          droped = fluid.layers.dropout(input=x, dropout_rate=0.5)
    """

F
fengjiayi 已提交
886
    helper = LayerHelper('dropout', **locals())
887 888 889 890 891 892 893
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
894 895 896 897 898 899
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
900 901 902
    return out


F
fengjiayi 已提交
903
def cross_entropy(input, label, soft_label=False):
Y
Yu Yang 已提交
904
    """
Y
Yibing Liu 已提交
905 906
    **Cross Entropy Layer**

907 908 909
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
910 911

    1) One-hot cross-entropy:
F
fengjiayi 已提交
912
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
913

Y
Yibing Liu 已提交
914
        .. math::
Y
yangyaming 已提交
915

Y
Yibing Liu 已提交
916 917 918
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
919 920
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
921 922 923 924 925

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
926
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
927 928 929
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
930 931
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
932
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
933

Y
Yibing Liu 已提交
934
    Args:
Y
yangyaming 已提交
935
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
936 937 938 939
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
940
        label (Variable|list): the ground truth which is a 2-D tensor. When
941 942 943 944
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
945
        soft_label (bool): a flag indicating whether to
946 947
                                           interpretate the given labels as soft
                                           labels, default `False`.
Y
Yibing Liu 已提交
948 949 950 951 952

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
953 954 955 956 957
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
958 959 960 961 962 963

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
964
    """
F
fengjiayi 已提交
965
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
966 967 968 969 970 971
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
F
fengjiayi 已提交
972
        attrs={"soft_label": soft_label})
Y
Yu Yang 已提交
973 974 975
    return out


F
fengjiayi 已提交
976
def square_error_cost(input, label):
Y
Yu Yang 已提交
977
    """
978 979
    **Square error cost layer**

980 981
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
982

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
       input(Variable): Input tensor, has predictions.
       label(Variable): Label tensor, has target labels.

    Returns:
G
guosheng 已提交
1000
        Variable: The tensor variable storing the element-wise squared error \
1001
                  difference of input and label.
1002 1003 1004 1005 1006 1007 1008 1009

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1010
    """
F
fengjiayi 已提交
1011
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1021 1022
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1023 1024 1025 1026 1027 1028 1029
    return square_out


def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1030
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1031
    """
Y
yangyaming 已提交
1032
    This function computes and outputs the precision, recall and
1033
    F1-score of chunk detection.
Y
Yu Yang 已提交
1034
    """
F
fengjiayi 已提交
1035
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1036 1037 1038 1039 1040

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1041 1042 1043
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1044 1045 1046 1047 1048 1049 1050 1051

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1052 1053 1054 1055
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1056 1057 1058
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1059 1060
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1061
        })
1062 1063
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072


def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1073
                  act=None):
Y
Yu Yang 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1131 1132 1133
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1134 1135
           stride=1,
           padding=0,
1136
           dilation=1,
Y
Yu Yang 已提交
1137 1138 1139
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1140
           use_cudnn=True,
1141
           use_mkldnn=False,
1142 1143
           act=None,
           name=None):
Y
Yu Yang 已提交
1144
    """
C
chengduoZH 已提交
1145 1146 1147
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
1148 1149 1150
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCHW format. Where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
C
chengduoZH 已提交
1151 1152
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
1153 1154 1155
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1156

1157
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1158

C
chengduoZH 已提交
1159 1160
    .. math::

C
refine  
chengduoZH 已提交
1161
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1162

C
chengduoZH 已提交
1163
    In the above equation:
C
chengduoZH 已提交
1164

1165 1166 1167 1168 1169
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1170 1171
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
C
chengduoZH 已提交
1172 1173 1174

    Example:

1175 1176 1177
        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$
C
refine  
chengduoZH 已提交
1178

1179
          Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
refine  
chengduoZH 已提交
1180

1181 1182
        - Output:
          Output shape: $(N, C_{out}, H_{out}, W_{out})$
C
refine  
chengduoZH 已提交
1183

C
chengduoZH 已提交
1184
        Where
1185 1186

        .. math::
C
chengduoZH 已提交
1187

C
chengduoZH 已提交
1188 1189
        H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
        W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1190 1191

    Args:
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
       input(Variable): The input image with [N, C, H, W] format.
       num_filters(int): The number of filter. It is as same as the output
           image channel.
       filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
           it must contain two integers, (filter_size_H, filter_size_W).
           Otherwise, the filter will be a square.
       stride(int|tuple): The stride size. If stride is a tuple, it must
           contain two integers, (stride_H, stride_W). Otherwise, the
           stride_H = stride_W = stride. Default: stride = 1.
       padding(int|tuple): The padding size. If padding is a tuple, it must
           contain two integers, (padding_H, padding_W). Otherwise, the
           padding_H = padding_W = padding. Default: padding = 0.
1204 1205 1206
       dilation(int|tuple): The dilation size. If dilation is a tuple, it must
           contain two integers, (dilation_H, dilation_W). Otherwise, the
           dilation_H = dilation_W = dilation. Default: dilation = 1.
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
       groups(int): The groups number of the Conv2d Layer. According to grouped
           convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
           the first half of the filters is only connected to the first half
           of the input channels, while the second half of the filters is only
           connected to the second half of the input channels. Default: groups=1
       param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
       bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
       use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
           library is installed. Default: True
       act(str): Activation type. Default: None
1217 1218
       name(str|None): A name for this layer(optional). If set None, the layer
           will be named automatically.
C
chengduoZH 已提交
1219 1220

    Returns:
G
guosheng 已提交
1221
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1222 1223
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1224
    Raises:
1225 1226
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1227

C
chengduoZH 已提交
1228 1229 1230
    Examples:
        .. code-block:: python

1231 1232 1233 1234
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(
              input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1235 1236 1237 1238 1239
    """
    if stride is None:
        stride = [1, 1]

    num_channels = input.shape[1]
1240 1241

    l_type = 'conv2d'
X
xzl 已提交
1242 1243
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1244
        l_type = 'depthwise_conv2d'
1245 1246 1247 1248

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1249 1250 1251 1252 1253 1254 1255
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

C
chengduoZH 已提交
1256 1257 1258
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1259
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1260

C
chengduoZH 已提交
1261 1262
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1280
        type=l_type,
Y
Yu Yang 已提交
1281 1282 1283 1284 1285
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1286 1287 1288
        attrs={
            'strides': stride,
            'paddings': padding,
1289
            'dilations': dilation,
C
chengduoZH 已提交
1290
            'groups': groups,
1291 1292
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1293
        })
Y
Yu Yang 已提交
1294 1295 1296 1297 1298 1299

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1300
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1301
    """
Y
yangyaming 已提交
1302 1303 1304
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1330 1331
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1332

L
Luo Tao 已提交
1333 1334
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1335
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1336 1337 1338 1339 1340 1341 1342 1343
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1344

Y
yangyaming 已提交
1345
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1346 1347 1348 1349 1350
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1351 1352
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1353
    """
F
fengjiayi 已提交
1354
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1366 1367 1368 1369 1370
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1371 1372 1373
    return pool_out


F
fengjiayi 已提交
1374
def sequence_first_step(input):
L
Luo Tao 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    """
    This funciton get the first step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1389

L
Luo Tao 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1399

Y
yangyaming 已提交
1400
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1401 1402 1403
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1404 1405 1406
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1407
def sequence_last_step(input):
L
Luo Tao 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    """
    This funciton get the last step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1422

L
Luo Tao 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1432

Y
yangyaming 已提交
1433
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1434 1435 1436
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1437 1438 1439
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
1440
def pool2d(input,
C
chengduoZH 已提交
1441 1442
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1443 1444
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1445
           global_pooling=False,
C
chengduoZH 已提交
1446
           use_cudnn=True,
1447
           ceil_mode=False,
1448
           use_mkldnn=False,
C
caoying03 已提交
1449
           name=None):
Y
Yu Yang 已提交
1450 1451 1452 1453 1454 1455 1456 1457
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1458

C
chengduoZH 已提交
1459 1460 1461 1462 1463
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1464 1465 1466 1467
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1468 1469
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
1484
            "paddings": pool_padding,
1485
            "use_cudnn": use_cudnn,
1486 1487
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1500
               data_layout='NCHW',
Y
Yang Yang 已提交
1501
               in_place=False,
1502
               use_mkldnn=False,
1503 1504
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
1505
               moving_variance_name=None,
W
wanghaoshuang 已提交
1506
               do_model_average_for_mean_and_var=False):
Y
Yu Yang 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1533
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1534

1535 1536
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
1537 1538 1539
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
1540
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1541
        shape=param_shape,
1542 1543 1544 1545 1546 1547 1548
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
1549
            trainable=False,
W
wanghaoshuang 已提交
1550
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
1551
        shape=param_shape,
1552 1553
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
1554 1555 1556 1557 1558 1559

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1560 1561
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1562

Y
Yang Yang 已提交
1563
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
1581 1582 1583 1584 1585 1586
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
            "use_mkldnn": use_mkldnn
        })
Y
Yu Yang 已提交
1587 1588 1589 1590

    return helper.append_activation(batch_norm_out)


G
guosheng 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
    **Layer Normalization**

1603
    Assume feature vectors exist on dimensions
G
guosheng 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    :attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
    along these dimensions for each feature vector :math:`a` with size
    :math:`H`, then normalize each feature vector using the corresponding
    statistics. After that, apply learnable gain and bias on the normalized
    tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    .. math::

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

    Args:
        input(Variable): The input tensor variable.
1624
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
1625
            normalization.
1626
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
1627
            normalization.
1628
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
1629
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1630
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.

    Returns:
        Variable: A tensor variable with the same shape as the input.

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
            x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
1662
    if shift:
G
guosheng 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


C
caoying03 已提交
1687
def beam_search_decode(ids, scores, name=None):
Y
Yu Yang 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
1708 1709 1710
                     padding=0,
                     stride=1,
                     dilation=1,
1711
                     groups=None,
C
caoying03 已提交
1712
                     param_attr=None,
1713
                     bias_attr=None,
C
chengduoZH 已提交
1714
                     use_cudnn=True,
1715
                     act=None,
C
caoying03 已提交
1716
                     name=None):
Y
Yu Yang 已提交
1717
    """
1718 1719 1720 1721 1722 1723 1724 1725
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
1726 1727
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

    For each input :math:`X`, the equation is:

    .. math::

        Out = W \\ast X

    In the above equation:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast` : Convolution transpose operation.
1740 1741
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be
                   different.
Y
Yu Yang 已提交
1742

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    Example:

        - Input:

          Input shape: $(N, C_{in}, H_{in}, W_{in})$

          Filter shape: $(C_{in}, C_{out}, H_f, W_f)$

        - Output:

          Output shape: $(N, C_{out}, H_{out}, W_{out})$

        Where
Y
Yu Yang 已提交
1756

1757 1758 1759 1760
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
1761 1762

    Args:
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
       input(Variable): The input image with [N, C, H, W] format.
       num_filters(int): The number of the filter. It is as same as the output
           image channel.
       output_size(int|tuple|None): The output image size. If output size is a
           tuple, it must contain two integers, (image_H, image_W). This
           parameter only works when filter_size is None.
       filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
           it must contain two integers, (filter_size_H, filter_size_W).
           Otherwise, the filter will be a square. None if use output size to
           calculate filter_size.
       padding(int|tuple): The padding size. If padding is a tuple, it must
           contain two integers, (padding_H, padding_W). Otherwise, the
           padding_H = padding_W = padding. Default: padding = 0.
       stride(int|tuple): The stride size. If stride is a tuple, it must
           contain two integers, (stride_H, stride_W). Otherwise, the
           stride_H = stride_W = stride. Default: stride = 1.
       dilation(int|tuple): The dilation size. If dilation is a tuple, it must
           contain two integers, (dilation_H, dilation_W). Otherwise, the
           dilation_H = dilation_W = dilation. Default: dilation = 1.
1782 1783 1784 1785 1786 1787
       groups(int): The groups number of the Conv2d transpose layer. Inspired by
           grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
           when group=2, the first half of the filters is only connected to the
           first half of the input channels, while the second half of the
           filters is only connected to the second half of the input channels.
           Default: groups=1
1788 1789
       param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                              Default: None
1790
       bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
1791 1792
       use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
           library is installed. Default: True
1793
       act(str): Activation type. Default: None
1794 1795
       name(str|None): A name for this layer(optional). If set None, the layer
           will be named automatically.
Y
Yu Yang 已提交
1796 1797

    Returns:
1798 1799 1800
       Variable: The tensor variable storing the convolution transpose result.

    Raises:
1801 1802
       ValueError: If the shapes of input, filter_size, stride, padding and
                   groups mismatch.
1803 1804 1805 1806

    Examples:
       .. code-block:: python

1807 1808 1809 1810
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(
              input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
1811 1812 1813 1814 1815 1816
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

C
chengduoZH 已提交
1817 1818 1819
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1820

C
chengduoZH 已提交
1821 1822 1823
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
1824 1825 1826 1827 1828 1829 1830 1831
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1832 1833 1834 1835 1836

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1837
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1838 1839 1840
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
Y
Yu Yang 已提交
1841

1842 1843
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters / groups] + filter_size
Y
Yu Yang 已提交
1844 1845 1846
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

1847
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
1848 1849 1850 1851
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
1852
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
1853 1854 1855 1856 1857 1858
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
1859

1860 1861
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
1862
    return out
Y
yangyaming 已提交
1863 1864


Y
yangyaming 已提交
1865
def sequence_expand(x, y, ref_level=-1, name=None):
1866
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
1867 1868 1869 1870
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
1871 1872 1873 1874 1875

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
Y
yangyaming 已提交
1876 1877
                x.lod  = [[0,   2,        4]]
                x.data = [[a], [b], [c], [d]]
1878 1879 1880 1881 1882 1883
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

Y
yangyaming 已提交
1884
            ref_level: 0
1885

Y
yangyaming 已提交
1886 1887 1888
            then output is a 1-level LoDTensor:
                out.lod =  [[0,   2,        4,        6,        8]]
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
1889 1890 1891 1892
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
1893
                x.data = [[a], [b], [c]]
1894 1895 1896
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1897
                y.lod = [[0, 2, 2, 5]]
1898

Y
yangyaming 已提交
1899
            ref_level: -1
1900

Y
yangyaming 已提交
1901 1902 1903
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
1904 1905 1906
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1907 1908
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
1909
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
1910
                        will be named automatically.
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
1921
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
1922
    """
Y
yangyaming 已提交
1923
    helper = LayerHelper('sequence_expand', input=x, **locals())
1924 1925 1926
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
1927 1928 1929 1930 1931
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
1932
    return tmp
1933 1934


Q
Qiao Longfei 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
def beam_search(pre_ids, ids, scores, beam_size, end_id, level=0):
    '''
    This function implements the beam search algorithm.
    '''
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


Y
yangyaming 已提交
1967 1968 1969 1970
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
1971
              param_attr=None,
C
caoying03 已提交
1972 1973
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
1974 1975 1976 1977
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

1978
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
1979

1980
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
1981

1982
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
1983

1984
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
1985 1986 1987

            h_t & = o_t tanh(c_t)

1988 1989 1990 1991 1992 1993
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
1994 1995 1996

        .. math::

1997
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
1998 1999 2000 2001 2002 2003 2004 2005

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2006
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2007 2008

    Args:
Y
yangyaming 已提交
2009 2010 2011 2012 2013 2014
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2015
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2016 2017
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2018 2019
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2020 2021
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2022 2023

    Returns:
Y
yangyaming 已提交
2024
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2025 2026

    Raises:
2027 2028 2029 2030
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2031 2032 2033 2034 2035 2036

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2037
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2038
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2039
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2056
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2057 2058 2059 2060
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2061 2062
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2063 2064 2065
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
2066
    size = cell_t_prev.shape[1]
2067
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
2068 2069
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
2070
                param_attr=param_attr,
2071
                bias_attr=bias_attr)
Y
yangyaming 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
2084
    return h, c
G
guosheng 已提交
2085 2086


C
caoying03 已提交
2087
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2088
    """
Y
yangyaming 已提交
2089
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2090 2091 2092

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2093
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2094 2095
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2096 2097
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2098
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2099
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2100
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2101 2102
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2103 2104 2105

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2106

G
guosheng 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2118 2119 2120 2121 2122 2123 2124 2125

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
2126 2127 2128
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2129 2130
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2131 2132 2133 2134 2135
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2136
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2137 2138 2139 2140
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2141 2142


C
caoying03 已提交
2143
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2144
    """
Y
yangyaming 已提交
2145
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
2146 2147 2148

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2149
        dim (list|int|None): The dimensions along which the mean is computed. If
Y
yangyaming 已提交
2150 2151 2152
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
W
whs 已提交
2153
            :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2154 2155
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
2156
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2157 2158
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2159 2160 2161

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
2162

G
guosheng 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
2174 2175 2176 2177 2178 2179 2180

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
2181 2182 2183
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2184 2185
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
2186 2187 2188 2189 2190
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2191
            'dim': dim if dim != None else [0],
G
guosheng 已提交
2192 2193 2194 2195
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
2196 2197


C
caoying03 已提交
2198
def reduce_max(input, dim=None, keep_dim=False, name=None):
2199
    """
Y
yangyaming 已提交
2200
    Computes the maximum of tensor elements over the given dimension.
2201 2202 2203

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2204
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
2205 2206 2207
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2208
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2209 2210
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2211
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2212 2213
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2214 2215 2216

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2217

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
2229 2230 2231 2232 2233 2234 2235

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
2236 2237 2238
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2239 2240
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2241 2242 2243 2244 2245
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2246
            'dim': dim if dim != None else [0],
2247 2248 2249 2250 2251 2252
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2253
def reduce_min(input, dim=None, keep_dim=False, name=None):
2254
    """
Y
yangyaming 已提交
2255
    Computes the minimum of tensor elements over the given dimension.
2256 2257 2258

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2259
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
2260 2261 2262
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
2263
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
2264 2265
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
2266
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
2267 2268
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
2269 2270 2271

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
2272

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
2284 2285 2286 2287 2288 2289 2290

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
2291 2292 2293
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2294 2295
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2296 2297 2298 2299 2300
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2301
            'dim': dim if dim != None else [0],
2302 2303 2304 2305
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
2306 2307


2308 2309 2310 2311 2312 2313
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
2314
        dim (list|int|None): The dimensions along which the product is performed. If
2315 2316
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2317 2318
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2319 2320 2321
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
2322
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
2323
            layer will be named automatically.
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
2338
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
2339
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
2340 2341 2342 2343 2344 2345 2346

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
2347 2348 2349
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
2350 2351
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
2352 2353 2354 2355 2356
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
2357
            'dim': dim if dim != None else [0],
2358 2359 2360 2361 2362 2363
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
2364
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2365
    """
C
caoying03 已提交
2366
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
2367 2368 2369

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
2370 2371 2372 2373 2374
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
2375
            :attr:`dim` dimension orderly.
C
caoying03 已提交
2376
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
2377
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
2378 2379
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

    output = x / sqrt(max(sum(x**2), epsilon))

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
       x(Variable|list): The input tensor to l2_normalize layer.
       axis(int): Dimension along which to normalize the input.
       epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will
                       be used as the divisor if the l2 norm of `x` is less than
                       sqrt(epsilon).
       name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
Y
ying 已提交
2455
          normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
2456 2457
    """

F
fengjiayi 已提交
2458 2459
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
    helper = LayerHelper("l2_normalize", **locals())

    square = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square})

    reduced_sum = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reduce_sum",
        inputs={"X": square},
        outputs={"Out": reduced_sum},
        attrs={
W
whs 已提交
2471
            "dim": [1] if axis is None else [axis],
C
caoying03 已提交
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
            "keep_dim": True,
            "reduce_all": False
        })

    # TODO(caoying) A lower bound value epsilon for the norm is needed to
    # imporve the numeric stability of reciprocal. This requires a maximum_op.
    rsquare = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare})

    # TODO(caoying) the current elementwise_mul operator does not support a
    # general broadcast rule which broadcasts input(Y) to have the same
    # dimension with Input(X) starting from a specified dimension. So this
2485
    # exanpsion is requred. Once a general broadcast rule is spported, this
C
caoying03 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
    # expanding canbe removed.
    rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype)
    expand_times = [1] * len(x.shape)
    expand_times[axis] = int(x.shape[axis])
    helper.append_op(
        type="expand",
        inputs={"X": rsquare},
        outputs={"Out": rsquare_expanded},
        attrs={"expand_times": expand_times})

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="elementwise_mul",
        inputs={"X": x,
                "Y": rsquare_expanded},
        outputs={"Out": out})
    return out
2503 2504


2505
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
2506
    """
Y
ying 已提交
2507 2508 2509 2510
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2511

C
chengduoZH 已提交
2512
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2513
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2514

2515 2516 2517 2518 2519
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2520
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2521

C
chengduoZH 已提交
2522
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2523
      performs in the following way.
G
guosheng 已提交
2524

2525
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2526
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2527
        last two dimensions and a batched matrix multiply supporting broadcast
2528
        applies on the two tensors.
G
guosheng 已提交
2529

Y
ying 已提交
2530 2531
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2532
    removed after matrix multiplication.
G
guosheng 已提交
2533 2534 2535

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2536 2537 2538
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
2539
        name(str|None): A name for this layer(optional). If set None, the layer
2540
            will be named automatically.
G
guosheng 已提交
2541 2542

    Returns:
2543
        Variable: The product Tensor variable.
G
guosheng 已提交
2544

G
guosheng 已提交
2545 2546 2547
    Examples:
        .. code-block:: python

2548
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2549 2550
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2551

2552 2553
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2554

2555 2556
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2557

2558 2559
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2560 2561 2562 2563

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

2564 2565
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
2566

Y
ying 已提交
2567
            # x: [M], y: [N]
2568
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
2569
    """
Y
ying 已提交
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
2582
            y_shape = y_shape + [1]
Y
ying 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

2599
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
2600
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
2601
    helper.append_op(
2602 2603 2604 2605 2606 2607 2608
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
2609 2610


Q
qingqing01 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
def topk(input, k):
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

    If the input is a vector (rank=1), finds the k largest entries in the vector
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
        k(int): An integer value to specify the top k largest elements.

    Returns:
        values(Variable): The k largest elements along each last dimensional
            slice.
        indices(Variable): The indices of values within the last dimension of
            input.

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    shape = input.shape
    if k < 1 and k >= shape[-1]:
        raise ValueError("k must be greater than 0 and less than %d." %
                         (shape[-1]))

    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


W
wanghaoshuang 已提交
2658
def edit_distance(input, label, normalized=True, ignored_tokens=None,
W
wanghaoshuang 已提交
2659
                  name=None):
2660
    """
Y
ying 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
2670

Y
ying 已提交
2671
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
2672

Y
ying 已提交
2673 2674 2675 2676
    Input(Hyps) is a LoDTensor consisting of all the hypothesis strings with
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
    in order in the same way in the LoDTensor Input(Refs).
W
wanghaoshuang 已提交
2677

Y
ying 已提交
2678 2679 2680
    Output(Out) contains the `batch_size` results and each stands for the edit
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
2681

2682 2683 2684 2685 2686
    Args:

        input(Variable): The indices for hypothesis strings.

        label(Variable): The indices for reference strings.
W
wanghaoshuang 已提交
2687

Y
ying 已提交
2688 2689
        normalized(bool): Indicated whether to normalize the edit distance by
                          the length of reference string.
2690

Y
ying 已提交
2691 2692
        ignored_tokens(list of int): Tokens that should be removed before
                                     calculating edit distance.
2693

W
wanghaoshuang 已提交
2694
    Returns:
W
wanghaoshuang 已提交
2695
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
2696 2697 2698 2699 2700

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
2701 2702
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')

2703
            cost = fluid.layers.edit_distance(input=x,label=y)
2704
    """
2705
    helper = LayerHelper("edit_distance", **locals())
2706

2707
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
2708
    if ignored_tokens is not None and len(ignored_tokens) > 0:
2709 2710 2711 2712 2713 2714 2715
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
2716
            attrs={"tokens": ignored_tokens})
2717 2718 2719 2720 2721
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
2722
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
2723
            attrs={"tokens": ignored_tokens})
2724 2725
        label = erased_label

2726 2727
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
2728
    sequence_num = helper.create_tmp_variable(dtype="int64")
2729 2730 2731 2732
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
2733 2734
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
2735 2736
        attrs={"normalized": normalized})

2737
    return edit_distance_out, sequence_num
2738 2739 2740 2741 2742


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
ying 已提交
2743 2744 2745 2746
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

        input.lod = [[0, 4, 8]]

        Then:

        output.data = [[2],
                       [1],
                       [3]]

        output.lod = [[0, 2, 3]]

    Args:

Y
ying 已提交
2776 2777 2778 2779 2780 2781
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
2782

Y
ying 已提交
2783 2784 2785
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
2786 2787

    Returns:
2788
        Variable: CTC greedy decode result. If all the sequences in result were
2789
        empty, the result LoDTensor will be [-1] with LoD [[0]] and dims [1, 1].
2790 2791 2792 2793 2794

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
2795

2796
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
2797
    """
2798
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
2799
    _, topk_indices = topk(input, k=1)
2800 2801 2802 2803 2804 2805

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
2806
        outputs={"Output": [ctc_out]},
2807 2808
        attrs={"merge_repeated": True,
               "blank": blank})
2809
    return ctc_out
2810 2811


F
fengjiayi 已提交
2812
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
2813
    """
2814 2815
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
2816
    to compute Connectionist Temporal Classification (CTC) loss.
2817 2818
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
    input tensor.

    Args:
       input(Variable): (LodTensor, default: LoDTensor<float>),
         the unscaled probabilities of variable-length sequences,
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
       label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
         of variable-length sequence, which is a 2-D Tensor with LoD
         information. It is of the shape [Lg, 1], where Lg is th sum of
         all labels' length.
2832
       blank: (int, default: 0), the blank label index of Connectionist
W
wanghaoshuang 已提交
2833 2834
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
2835
       norm_by_times: (bool, default: false), whether to normalize
W
wanghaoshuang 已提交
2836
       the gradients by the number of time-step, which is also the
2837 2838
       sequence's length. There is no need to normalize the gradients
       if warpctc layer was follewed by a mean_op.
W
wanghaoshuang 已提交
2839 2840

    Returns:
2841 2842
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
2843 2844 2845

    Examples:
        .. code-block:: python
2846 2847 2848 2849
            y = layers.data(
                name='y', shape=[11, 8], dtype='float32', lod_level=1)
            y_predict = layers.data(
                name='y_predict', shape=[11, 1], dtype='float32')
W
wanghaoshuang 已提交
2850 2851 2852
            cost = layers.warpctc(input=y_predict, label=y)

    """
F
fengjiayi 已提交
2853
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
            x.data = [[1, 2], [3, 4],
                      [5, 6], [7, 8], [9, 10], [11, 12]]
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1, 2, 3, 4],
                        [5, 6, 7, 8], [9, 10, 11, 12]]
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
       input (Variable): (LodTensor, default: LoDTensor<float>), a 2-D LoDTensor
                with shape being [N, M] where M for dimension.
       new_dim (int): New dimension which the input LoDTensor is reshaped to.

    Returns:
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 20],
                              dtype='float32', lod_level=1)
            x_reshaped = layers.sequence_reshape(input=x, new_dim=10)
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
2919 2920


2921
@autodoc()
Y
Yang Yu 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
2973
    return cost / (num_neg_samples + 1)
2974 2975


Y
fix ci.  
ying 已提交
2976
def transpose(x, perm, name=None):
Y
ying 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
    """
    **transpose Layer**

    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
       input (Variable): (Tensor), A Tensor.
       perm (list): A permutation of the dimensions of `input`.

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
2996
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
2997 2998
    """

Y
fix ci.  
ying 已提交
2999
    if len(perm) != len(x.shape):
Y
ying 已提交
3000 3001 3002
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
3003 3004 3005 3006 3007 3008
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
3009 3010

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
3011
    out = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
3012 3013
    helper.append_op(
        type='transpose',
Y
fix ci.  
ying 已提交
3014
        inputs={'X': [x]},
Y
ying 已提交
3015 3016 3017
        outputs={'Out': [out]},
        attrs={'axis': perm})
    return out
3018 3019


3020
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
3021
    """
3022 3023 3024 3025 3026 3027 3028
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

3057 3058 3059
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
3060 3061 3062 3063 3064
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093

    Examples:

    As an example:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
3094 3095 3096
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

            output.dims = {8, 9}

            output.lod = [[0, 4, 8]]

        The simple usage is:

        .. code-block:: python

3117 3118
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
3119 3120

    """
W
wanghaoshuang 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])

3132
    helper = LayerHelper('im2sequence', **locals())
3133 3134
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
3135
        type='im2sequence',
3136 3137 3138
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
wanghaoshuang 已提交
3139 3140 3141
            'kernels': filter_size,
            'strides': stride,
            'paddings': padding,
3142 3143
        })
    return out
3144 3145


3146 3147 3148 3149
def row_conv(input, future_context_size, param_attr=None, act=None):
    """Row Conv Operator. This layer will apply lookahead convolution to
    **input**. The input variable should be a 2D LoDTensor with shape [T, D].
    Parameters with shape [future_context_size + 1, D] will be created. The math
Y
yangyaming 已提交
3150
    equation of row convolution is as follows:
3151 3152 3153 3154 3155 3156 3157

    .. math::
        Out_{i} = \sum_{j = i} ^ {i + \\tau} X_{j} \odot W_{i - j}

    In the above equation:

    * :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
Y
yangyaming 已提交
3158
    * :math:`\\tau`: Future context size.
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
    * :math:`X_{j}`: The j-th row of input variable with shape [1, D].
    * :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].

    More details about row_conv please refer to the paper \
    (http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
    the design document \
    (https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).

    Args:
        input (Variable): Input variable, a 2D LoDTensor with shape [T, D].
Y
yangyaming 已提交
3169 3170
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
        Variable: The output tensor with same shape as input tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[16],
                            dtype='float32', lod_level=1)
            out = fluid.layers.row_conv(input=x, future_context_size=2)
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
3196
    return helper.append_activation(out)
3197 3198


3199 3200 3201 3202
def multiplex(inputs, index):
    """
    **Multiplex Layer**

Y
yangyaming 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
    Referring to the given index variable, this layer selects rows from the
    input variables to construct a multiplex variable. Assuming that there are
    :math:`m` input variables and :math:`I_i` represents the i-th input
    variable and :math:`i` is in [0, :math:`m`). All input variables are
    tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
    Please note that rank of the input tensor should be at least 2. Each input
    variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
    where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
    * ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
    variable. The given index variable should be a 2-D tensor with shape
    [:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
    Then the output variable will be a tensor with shape [:math:`d_0`,
    :math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
    matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
    row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
3218 3219

    Args:
Y
yangyaming 已提交
3220 3221
       inputs (list): A list of variables to gather from. All variables have the
                same shape and the rank is at least 2.
3222
       index (Variable): Tensor<int32>, index variable which is a 2-D tensor
Y
yangyaming 已提交
3223
                with shape [M, 1] where M is the batch size.
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236

    Returns:
        Variable: Multiplex variable gathered from input variables.

    Examples:
        .. code-block:: python

            x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
            x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
            index = fluid.layers.data(name='index', shape=[1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
3237 3238 3239 3240 3241 3242

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
3243 3244 3245 3246 3247 3248
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
3249 3250 3251 3252 3253


def softmax_with_cross_entropy(logits, label, soft_label=False):
    """
    **Softmax With Cross Entropy Operator.**
3254

3255 3256 3257 3258
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
3259

3260 3261 3262
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
3263

3264 3265 3266
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
3267

3268
    The equation is as follows:
3269

3270
    1) Hard label (one-hot label, so every sample has exactly one class)
3271

3272 3273 3274 3275
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
3276

3277 3278 3279
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
3280

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.softmax_with_cross_entropy(logits=fc, label=label)
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={'soft_label': soft_label})
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
    **Smooth L1 Loss Operator. **

Q
qingqing01 已提交
3321
    This operator computes the smooth L1 loss for X and Y.
3322
    The operator takes the first dimension of X and Y as batch size.
Q
qingqing01 已提交
3323
    For each instance, it computes the smooth L1 loss element by element first
3324
    and then sums all the losses. So the shape of Out is [batch_size, 1].
3325

3326 3327
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
3328
            L1 loss op with shape [batch_size, dim1, ..., dimN].
3329
        y (Variable): A tensor with rank at least 2. The target value of smooth
Q
qingqing01 已提交
3330
            L1 loss op with same shape as x.
3331 3332 3333 3334 3335 3336
        inside_weight (Variable|None):  A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
            the result of (x - y) will be multiplied by this tensor element by
            element.
        outside_weight (Variable|None): A tensor with rank at least 2. This
            input is optional and should have same shape with x. If provided,
Q
qingqing01 已提交
3337
            the out smooth L1 loss will be multiplied by this tensor element
3338
            by element.
Q
qingqing01 已提交
3339
        sigma (float|None): Hyper parameter of smooth L1 loss op. A float scalar
3340 3341
            with default value 1.0.
    Returns:
Q
qingqing01 已提交
3342
        Variable: A tensor with rank be 2. The output smooth L1 loss with
3343 3344 3345 3346 3347 3348
            shape [batch_size, 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
Q
qingqing01 已提交
3349
            label = fluid.layers.data(name='label', shape=[100], dtype='float32')
3350
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
3351
            out = fluid.layers.smooth_l1(x=fc, y=label)
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
    """
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
3368 3369 3370 3371 3372 3373 3374 3375 3376


def one_hot(input, depth):
    """
    One Hot Operator. This operator creates the one-hot representations for input
    index values. The following example will help to explain the function of this
    operator.

    Args:
F
fengjiayi 已提交
3377
        input(variable):  A Tensor/LodTensor of indices, last dimension must be 1.
3378 3379 3380 3381 3382 3383
        depth(scalar): an interger defining the depth of the one hot dimension.

    Returns:
         The one-hot tensor or LodTensor, same as input.

    Examples:
C
caoying03 已提交
3384 3385
        .. code-block:: python

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
        X is a LoDTensor:
          X.lod = [[0, 1, 4]]
          X.shape = [4, 1]
          X.data = [[1], [1], [3], [0]]
        set depth = 4
        Out is a LoDTensor:
          Out.lod = [[0, 1, 4]]
          Out.shape = [4, 4]
          Out.data = [[0., 1., 0., 0.],
                      [0., 1., 0., 0.],
                      [0., 0., 0., 1.],
                      [1., 0., 0., 0.]]
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
3407 3408


Y
Yu Yang 已提交
3409
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
3410
    """
Y
Yu Yang 已提交
3411
    NOTE: The counter will be automatically increased by 1 every mini-batch
Y
Yu Yang 已提交
3412
    Return the run counter of the main program, which is started with 1.
Y
Yu Yang 已提交
3413 3414 3415 3416 3417 3418

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

Y
Yu Yang 已提交
3419 3420 3421
    Returns(Variable): The global run counter.
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
3422 3423
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
3424 3425 3426 3427 3428
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
3429
                value=begin - 1, force_cpu=True))
Y
Yu Yang 已提交
3430 3431 3432
        helper.main_program.global_block().prepend_op(
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
3433 3434
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
3435 3436 3437
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
3438 3439


3440
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
3441
    """
C
caoying03 已提交
3442 3443
    Gives a new shape to the input Tensor without changing its data.

3444 3445 3446 3447 3448
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
3449

3450
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
3451

3452 3453 3454 3455
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

3456
    2. 0 means the actual dimension value is going to be copied from the
3457 3458 3459 3460
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
3461 3462

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
3463
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
3464
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
3465

3466
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3467 3468
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
3469 3470
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
3471
    dimensions.
C
caoying03 已提交
3472

3473
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
3474 3475 3476 3477
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
3478 3479 3480 3481 3482

    Args:
        input(variable): The input tensor.
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
3483 3484 3485 3486 3487
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
3488 3489 3490 3491 3492 3493 3494 3495 3496
        act (str): The non-linear activation to be applied to output variable.
        inplace(bool): If this flag is set true, a new output tensor is created
                       whose data is copied from input x, otherwise the output
                       shares data with input without copying.

    Returns(variable): The output tensor.

    Examples:
        .. code-block:: python
G
guosheng 已提交
3497

3498
            data = fluid.layers.data(
3499
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
3500
            reshaped = fluid.layers.reshape(
3501
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
3502 3503 3504 3505 3506
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
        raise ValueError("Input shape must be a python lsit or tuple.")

3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

C
caoying03 已提交
3522 3523 3524 3525
    helper = LayerHelper("reshape", **locals())
    reshaped = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reshape",
3526 3527 3528
        inputs={"X": x,
                "Shape": actual_shape}
        if isinstance(actual_shape, Variable) else {"X": x},
C
caoying03 已提交
3529 3530 3531 3532 3533
        attrs={"shape": shape,
               "inplace": inplace},
        outputs={"Out": reshaped})

    return helper.append_activation(reshaped)
3534 3535


Y
yangyaming 已提交
3536
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
    """
    LoD Reset Operator. Set LoD of **x** to a new one specified by **y** or
    **target_lod**. When **y** provided, **y.lod** would be considered as target
    LoD first, otherwise **y.data** would be considered as target LoD. If **y**
    is not provided, target LoD should be specified by **target_lod**.
    If target LoD is specified by **Y.data** or **target_lod**, only one level
    LoD is supported.

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            target_lod: [0, 4, 6]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,                   4,            6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,     2,                   5      6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
                y.data = [[0, 2, 6]]
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
                out.lod =  [[ 0,     2,                          6 ]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
                x.lod =  [[ 0,      2,                   5     6 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
                y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
                out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
        y (Variable|None): If provided, output's LoD would be derived from y.
        target_lod (list|tuple|None): One level LoD which should be considered
                                      as target LoD when y not provided.

    Returns:
        Variable: Output variable with LoD specified by this operator.

    Raises:
        ValueError: If y and target_lod are both None.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

        Output(i, x, y) = Input(i, x, y) / \left(
        k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
        (Input(j, x, y))^2 \right)^{\beta}

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data", shape=[3, 112, 112], dtype="float32")
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
3699 3700 3701 3702


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
3703
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
3704
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
3705

G
guosheng 已提交
3706 3707 3708 3709
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
3732
                         The length of :attr:paddings must be
G
guosheng 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
3743

G
guosheng 已提交
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
3758 3759 3760 3761 3762 3763 3764 3765 3766


def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
3767 3768
    called label-smoothing regularization (LSR).

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
3792
                              be :math:`(1, class\_num)`.
3793 3794
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
3795
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
3823 3824 3825 3826


def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
3827
    Region of interest pooling (also known as RoI pooling) is to perform
3828 3829
        is to perform max pooling on inputs of nonuniform sizes to obtain
        fixed-size feature maps (e.g. 7*7).
3830 3831 3832 3833
    The operator has three steps:
        1. Dividing each region proposal into equal-sized sections with
           the pooled_width and pooled_height
        2. Finding the largest value in each section
3834 3835 3836 3837 3838 3839 3840
        3. Copying these max values to the output buffer

    Args:
        input (Variable): The input for ROI pooling.
        rois (Variable): ROIs (Regions of Interest) to pool over. It should
                         be a 2-D one level LoTensor of shape [num_rois, 4].
                         The layout is [x1, y1, x2, y2], where (x1, y1)
3841 3842
                         is the top left coordinates, and (x2, y2) is the
                         bottom right coordinates. The num_rois is the
3843 3844 3845 3846 3847 3848 3849 3850
                         total number of ROIs in this batch data.
        pooled_height (integer): The pooled output height. Default: 1
        pooled_width (integer): The pooled output width. Default: 1
        spatial_scale (float): Multiplicative spatial scale factor. To
                               translate ROI coords from their input scale
                               to the scale used when pooling. Default: 1.0

    Returns:
3851
        pool_out (Variable): The output is a 4-D tensor of the shape
3852 3853 3854
                             (num_rois, channels, pooled_h, pooled_w).

    Examples:
3855
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912


def dice_loss(input, label, epsilon=0.00001):
    """
    **Dice loss Layer**
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
    reduce_dim = range(1, len(input.shape))
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)