Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
d1a17cad
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d1a17cad
编写于
11月 29, 2018
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix cudnn rnn; test=develop
上级
487ee36a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
78 addition
and
49 deletion
+78
-49
paddle/fluid/operators/cudnn_lstm_op.cc
paddle/fluid/operators/cudnn_lstm_op.cc
+26
-12
paddle/fluid/operators/cudnn_lstm_op.cu.cc
paddle/fluid/operators/cudnn_lstm_op.cu.cc
+6
-3
paddle/fluid/operators/cudnn_lstm_op.h
paddle/fluid/operators/cudnn_lstm_op.h
+5
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+41
-32
未找到文件。
paddle/fluid/operators/cudnn_lstm_op.cc
浏览文件 @
d1a17cad
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -122,13 +122,11 @@ class CudnnLSTMOpMaker : public framework::OpProtoAndCheckerMaker {
"The will affect the shape of the Out, last_h, and last_c"
)
.
SetDefault
(
false
);
AddAttr
<
int
>
(
"input_size"
,
"input size ot the Input Tensor"
).
SetDefault
(
10
);
AddAttr
<
int
>
(
"batch_size"
,
"the instance number the batch"
).
SetDefault
(
10
);
AddAttr
<
int
>
(
"hidden_size"
,
"hidden size of the LSTM"
).
SetDefault
(
100
);
AddAttr
<
int
>
(
"num_layers"
,
"the total layer number of the LSTM"
)
.
SetDefault
(
1
);
AddAttr
<
bool
>
(
"is_test"
,
"True if in test phase."
).
SetDefault
(
false
);
AddAttr
<
bool
>
(
"fix_seed"
,
"True if it fix dropout seed"
).
SetDefault
(
false
);
AddAttr
<
int
>
(
"seed"
,
"seed to used if fix_seed is True"
).
SetDefault
(
0
);
AddAttr
<
int
>
(
"seed"
,
"seed to used if fix_seed is True"
).
SetDefault
(
-
1
);
AddComment
(
R"DOC(
CUDNN LSTM implementation
...
...
@@ -136,16 +134,32 @@ A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
it = σ(Wi X xt + Ri X ht-1 + bWi + bRi)
ft = σ(Wf X xt + Rf X ht-1 + bWf + bRf)
ot = σ(Wo X xt + Ro X ht-1 + bWo + bRo)
c't = tanh(Wc X xt + Rc X ht-1 + bWc + bRc)
ct = ft * ct-1 + it * c't
ht = ot * tanh(ct)
$$ i_t = sigmoid(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
Where σ is the sigmoid operator: σ(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
$$ f_t = sigmoid(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$
$$ o_t = sigmoid(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$
$$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$
$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$
$$ h_t = o_t \\odot tanh(c_t) $$
- W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- `tanh` is the activation functions.
- $\tilde{c_t}$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
X represensts a matrix multiplication
and tanh is the hyperbolic tangent function. it, ft, ot, c't represent the input, forget, output and new gates respectively.
)DOC"
);
...
...
paddle/fluid/operators/cudnn_lstm_op.cu.cc
浏览文件 @
d1a17cad
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -273,7 +273,6 @@ class CudnnLSTMGPUKernel : public framework::OpKernel<T> {
size_t
max_len
=
ctx
.
Attr
<
int
>
(
"max_len"
);
float
dropout_prob
=
ctx
.
Attr
<
float
>
(
"dropout_prob"
);
bool
is_bidirec
=
ctx
.
Attr
<
bool
>
(
"is_bidirec"
);
int
batch_size
=
ctx
.
Attr
<
int
>
(
"batch_size"
);
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
int
hidden_size
=
ctx
.
Attr
<
int
>
(
"hidden_size"
);
int
num_layers
=
ctx
.
Attr
<
int
>
(
"num_layers"
);
...
...
@@ -304,9 +303,13 @@ class CudnnLSTMGPUKernel : public framework::OpKernel<T> {
cudnn_rnn_cache
=
const_cast
<
framework
::
Variable
*>
(
cache_var
)
->
GetMutable
<
CudnnRNNCache
>
();
std
::
random_device
rnd
;
int
seed
=
ctx
.
Attr
<
bool
>
(
"fix_seed"
)
?
ctx
.
Attr
<
int
>
(
"seed"
)
:
rnd
();
int
seed
=
ctx
.
Attr
<
int
>
(
"seed"
);
if
(
seed
==
-
1
)
{
seed
=
rnd
();
}
auto
input_w_numel
=
w
->
numel
();
auto
batch_size
=
x
->
dims
()[
1
];
cudnn_rnn_cache
->
init
(
handle
,
ctx
,
max_len
,
batch_size
,
input_size
,
hidden_size
,
num_layers
,
dropout_prob
,
is_bidirec
,
seed
,
input_w_numel
);
...
...
paddle/fluid/operators/cudnn_lstm_op.h
浏览文件 @
d1a17cad
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -29,7 +29,10 @@ using Tensor = framework::Tensor;
template
<
typename
DeviceContext
,
typename
T
>
class
CudnnLSTMKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_THROW
(
"CPU is not support for this kernel now. Will be add in the future"
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
d1a17cad
...
...
@@ -169,7 +169,7 @@ __all__ = [
'log_loss'
,
'add_position_encoding'
,
'bilinear_tensor_product'
,
'
cudnn_
lstm'
,
'lstm'
,
]
...
...
@@ -467,39 +467,53 @@ def dynamic_lstm(input,
return
hidden
,
cell
def
cudnn_lstm
(
input
,
init_h
,
init_c
,
batch_size
,
max_len
,
dropout_prob
,
input_size
,
hidden_size
,
num_layers
,
is_bidirec
=
False
,
dtype
=
'float32'
,
is_test
=
False
,
name
=
None
,
default_initializer
=
None
,
fix_seed
=
False
,
seed
=
0
):
def
lstm
(
input
,
init_h
,
init_c
,
max_len
,
dropout_prob
,
input_size
,
hidden_size
,
num_layers
,
is_bidirec
=
False
,
dtype
=
'float32'
,
is_test
=
False
,
name
=
None
,
default_initializer
=
None
,
seed
=-
1
):
"""
CUDNN
LSTM implementation
If Device is GPU, This op will use cudnn
LSTM implementation
A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
it = sigmoid(Wi X xt + Ri X ht-1 + bWi + bRi)
ft = sigmoid(Wf X xt + Rf X ht-1 + bWf + bRf)
ot = sigmoid(Wo X xt + Ro X ht-1 + bWo + bRo)
c't = tanh(Wc X xt + Rc X ht-1 + bWc + bRc)
ct = ft * ct-1 + it * c't
ht = ot * tanh(ct)
$$ i_t =
\\
sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
$$ f_t =
\\
sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$
$$ o_t =
\\
sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$
$$
\\
tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$
$$ c_t = f_t
\\
odot c_{t-1} + i_t
\\
odot
\\
tilde{c_t} $$
$$ h_t = o_t
\\
odot tanh(c_t) $$
- W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- `tanh` is the activation functions.
- $
\t
ilde{c_t}$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
X represensts a matrix multiplication
and tanh is the hyperbolic tangent function. it, ft, ot, c't represent the input, forget, output and new gates respectively.
Args:
...
...
@@ -510,7 +524,6 @@ def cudnn_lstm(input,
init_c(Variable): The initial cell state of the LSTM.
This is a tensor with shape ( num_layers x batch_size x hidden_size )
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
batch_size (int): total distance numer of the batch
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
dropout_prob(float): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
There is NO dropout work on rnn output of the last RNN layers
...
...
@@ -524,9 +537,7 @@ def cudnn_lstm(input,
will be named automatically.
default_initializer(Initialize|None): Where use initializer to initialize the Weight
If set None, defaule initializer will be used
fix_seed(bool): If it's True, fix seed will used for dropout in LSTM
seed(int): If fix_seed is True, dropout seed in LSTM will use this seed
seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
Returns:
...
...
@@ -553,7 +564,7 @@ def cudnn_lstm(input,
init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
rnn_out, last_h, last_c = layers.
cudnn_lstm( input, init_h, init_c, batch_size
,
\
rnn_out, last_h, last_c = layers.
lstm( input, init_h, init_c
,
\
max_len, dropout_prob, input_size, hidden_size,
\
num_layers)
"""
...
...
@@ -610,12 +621,10 @@ def cudnn_lstm(input,
'max_len'
:
max_len
,
'is_bidirec'
:
is_bidirec
,
'input_size'
:
input_size
,
'batch_size'
:
batch_size
,
'hidden_size'
:
hidden_size
,
'num_layers'
:
num_layers
,
'is_test'
:
is_test
,
'dropout_prob'
:
dropout_prob
,
'fix_seed'
:
fix_seed
,
'seed'
:
seed
,
})
return
out
,
last_h
,
last_c
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录