未验证 提交 21ec93aa 编写于 作者: Q Qingsheng Li 提交者: GitHub

[WIP]Sequence Scatter Op (#12625)

Sequence Scatter Op
上级 103deb11
......@@ -154,6 +154,7 @@ paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', '
paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.random_crop ArgSpec(args=['x', 'shape', 'seed'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mean_iou ArgSpec(args=['input', 'label', 'num_classes'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sequence_scatter_op.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/scatter.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
class SequenceScatterOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) The source input of sequence scatter op");
AddInput("Ids",
"(LoDTensor) The index input of sequence scatter op where X"
" will be updated, must be a LoDTensor");
AddInput("Updates",
"(LoDTensor) The values to scatter to the input tensor "
"X, must be a LoDTensor with the same LoD information as Ids");
AddOutput("Out",
"(Tensor) The output tensor of sequence scatter op, which "
"has the same dims as X");
AddComment(R"DOC(
Sequence Scatter Operator.
This operator scatters the Updates tensor to the input X. It uses the LoD
information of Ids to select the rows to update, and use the values in Ids as
the columns to update in each row of X.
Following are cases to better explain how this works:
Example 1:
Given an all-ones Tensor input(X)
X.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
X.dims = [3, 6]
a LoDTensor input(Ids)
Ids.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
Ids.lod = [[0, 3, 8, 12]]
and a Tensor input(Updates)
Updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
Updates.lod = [[ 0, 3, 8, 12]]
then we get an output Tensor
Out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
[1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
Out.dims = X.dims = [3, 6]
)DOC");
}
};
class SequenceScatterOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
// Enforce has inputs and outputs
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SequenceScatterOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Ids"),
"Input(Ids) of SequenceScatterOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Updates"),
"Input(Updates) of SequenceScatterOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SequenceScatterOp should not be null.");
// Set output dim the same as input
auto ref_dims = ctx->GetInputDim("X");
ctx->SetOutputDim("Out", ref_dims);
// Enforce the Updates and Ids are the same shape
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Updates")[0],
ctx->GetInputDim("Ids")[0],
"Updates and Ids should have same shape.");
// Enforce LoD of ids and updates be the same
if (ctx->IsRuntime()) {
framework::Variable* ids_var =
boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Ids")[0]);
framework::Variable* updates_var =
boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Updates")[0]);
auto& ids_lod = ids_var->Get<LoDTensor>().lod();
auto& updates_lod = updates_var->Get<LoDTensor>().lod();
PADDLE_ENFORCE_EQ(ids_lod.size(), 1,
"Currently only level 1 LoD could be"
" processed by sequence scatter op.");
PADDLE_ENFORCE_EQ(updates_lod.size(), 1,
"Currently only level 1 LoD "
"could be processed by sequence scatter op.");
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
platform::CPUPlace());
}
};
class SequenceScatterGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
ctx->SetOutputDim(framework::GradVarName("Updates"),
ctx->GetInputDim("Updates"));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
platform::CPUPlace());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(sequence_scatter, ops::SequenceScatterOp,
ops::SequenceScatterOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(sequence_scatter_grad, ops::SequenceScatterGradOp);
REGISTER_OP_CPU_KERNEL(sequence_scatter, ops::SequenceScatterOpKernel<float>,
ops::SequenceScatterOpKernel<double>,
ops::SequenceScatterOpKernel<int>,
ops::SequenceScatterOpKernel<int64_t>);
REGISTER_OP_CPU_KERNEL(sequence_scatter_grad,
ops::SequenceScatterGradientOpKernel<float>,
ops::SequenceScatterGradientOpKernel<double>,
ops::SequenceScatterGradientOpKernel<int>,
ops::SequenceScatterGradientOpKernel<int64_t>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/scatter.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T>
class SequenceScatterOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* ids = ctx.Input<LoDTensor>("Ids");
auto* updates = ctx.Input<LoDTensor>("Updates");
auto* out = ctx.Output<Tensor>("Out");
auto& ids_lod = ids->lod();
// Initialize out as same as x
out->mutable_data<T>(ctx.GetPlace());
framework::TensorCopySync(*x, ctx.GetPlace(), out);
auto x_dims = x->dims();
auto out_dims = out->dims();
for (int i = 0; i < x_dims.size(); ++i)
PADDLE_ENFORCE(x_dims[i] == out_dims[i],
"Input and output shape of "
"sequence scatter op must exactly be the same.");
size_t slice_size = 1;
for (int i = 1; i < x_dims.size(); ++i) slice_size *= x_dims[i];
auto lod_vec = ids_lod[0];
unsigned int seg = 0;
for (int i = 0; i < ids->dims()[0]; ++i) {
PADDLE_ENFORCE_LT(seg, lod_vec.size() - 1,
"Segment num must not exceed batch size.\n");
int lower_bound = lod_vec[seg];
int upper_bound = lod_vec[seg + 1];
if (i >= lower_bound && i < upper_bound) {
T* p_out = out->data<T>();
const T* p_updates = updates->data<T>();
const int64_t* p_index = ids->data<int64_t>();
p_out[seg * slice_size + p_index[i]] += p_updates[i];
} else {
++seg;
--i;
}
}
}
};
template <typename T>
class SequenceScatterGradientOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"This kernel only runs on CPU.");
auto* dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dUpdates = ctx.Output<LoDTensor>(framework::GradVarName("Updates"));
auto* ids = ctx.Input<LoDTensor>("Ids");
auto* dOut = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto& ids_lod = ids->lod();
dX->mutable_data<T>(ctx.GetPlace());
framework::TensorCopySync(*dOut, ctx.GetPlace(), dX);
dUpdates->mutable_data<T>(ctx.GetPlace());
auto dx_dims = dX->dims();
auto dout_dims = dOut->dims();
for (int i = 0; i < dx_dims.size(); ++i)
PADDLE_ENFORCE(dx_dims[i] == dout_dims[i],
"Input and output shape of "
"sequence scatter grad op must exactly be the same.");
size_t slice_size = 1;
for (int i = 1; i < dx_dims.size(); ++i) slice_size *= dx_dims[i];
auto lod_vec = ids_lod[0];
unsigned int seg = 0;
for (int i = 0; i < ids->dims()[0]; ++i) {
PADDLE_ENFORCE_LT(seg, lod_vec.size() - 1,
"Segment num must not exceed batch size.\n");
int lower_bound = lod_vec[seg];
int upper_bound = lod_vec[seg + 1];
if (i >= lower_bound && i < upper_bound) {
const T* p_dOut = dOut->data<T>();
const int64_t* p_index = ids->data<int64_t>();
T* p_dUpdates = dUpdates->data<T>();
p_dUpdates[i] = p_dOut[seg * slice_size + p_index[i]];
} else {
++seg;
--i;
}
}
}
};
} // namespace operators
} // namespace paddle
......@@ -100,6 +100,7 @@ __all__ = [
'resize_bilinear',
'gather',
'scatter',
'sequence_scatter',
'random_crop',
'mean_iou',
'relu',
......@@ -5425,6 +5426,66 @@ def scatter(input, index, updates, name=None):
return out
def sequence_scatter(input, index, updates, name=None):
"""
**Sequence Scatter Layer**
This operator scatters the Updates tensor to the input X. It uses the LoD
information of Ids to select the rows to update, and use the values in Ids as
the columns to update in each row of X.
Here is an example:
Given the following input:
.. code-block:: text
input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
input.dims = [3, 6]
index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
index.lod = [[0, 3, 8, 12]]
updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
updates.lod = [[ 0, 3, 8, 12]]
Then we have the output:
.. code-block:: text
out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
[1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
out.dims = X.dims = [3, 6]
Args:
input (Variable): The source input with rank>=1.
index (Variable): A LoD Tensor. The index input of sequence scatter op
where input will be updated. The index input with rank=1. Its dtype
should be int32 or int64 as it is used as indexes.
updates (Variable): A LoD Tensor. The values to scatter to the input
tensor X, must be a LoDTensor with the same LoD information as index.
name (str|None): The output variable name. Default None.
Returns:
output (Variable): The output is a tensor with the same shape as input.
Examples:
.. code-block:: python
output = fluid.layers.sequence_scatter(input, index, updates)
"""
helper = LayerHelper('sequence_scatter', **locals())
dtype = helper.input_dtype()
out = helper.create_tmp_variable(dtype)
helper.append_op(
type="sequence_scatter",
inputs={"X": input,
"Ids": index,
"Updates": updates},
outputs={"Out": out})
return out
@templatedoc()
def random_crop(x, shape, seed=None):
"""
......
......@@ -382,6 +382,30 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(out)
print(str(program))
def test_sequence_scatter(self):
program = Program()
with program_guard(program):
x = layers.data(
name='x',
shape=[3, 6],
append_batch_size=False,
dtype='float32')
idx = layers.data(
name='idx',
shape=[12, 1],
append_batch_size=False,
dtype='int32',
lod_level=1)
updates = layers.data(
name='updates',
shape=[12, 1],
append_batch_size=False,
dtype='float32',
lod_level=1)
out = layers.sequence_scatter(input=x, index=idx, updates=updates)
self.assertIsNotNone(out)
print(str(program))
def test_lod_reset(self):
program = Program()
with program_guard(program):
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestSequenceScatterOp(OpTest):
def setUp(self):
self.op_type = "sequence_scatter"
X_data = np.random.uniform(0.1, 1.0, [3, 6]).astype('float32')
Ids_data = np.array([[0], [1], [2], [5], [4], [3], [2], [1], [3], [2],
[5], [4]]).astype('int64')
Ids_lod = [[3, 5, 4]]
Updates_data = np.random.uniform(0.1, 1.0, [12, 1]).astype('float32')
Updates_lod = Ids_lod
Out_data = np.copy(X_data)
Out_data[0][Ids_data[0:3]] += Updates_data[0:3]
Out_data[1][Ids_data[3:8]] += Updates_data[3:8]
Out_data[2][Ids_data[8:]] += Updates_data[8:]
self.inputs = {
'X': X_data,
'Ids': (Ids_data, Ids_lod),
'Updates': (Updates_data, Updates_lod)
}
self.outputs = {'Out': Out_data}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['Updates'], 'Out', in_place=True)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册