nn.py 221.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
C
chengduo 已提交
57
    'sequence_expand_as',
F
fengjiayi 已提交
58
    'sequence_pad',
Y
ying 已提交
59 60 61 62 63
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
64
    'reduce_prod',
Y
ying 已提交
65 66 67 68
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
69 70
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
71 72
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
73
    'topk',
Y
ying 已提交
74 75
    'warpctc',
    'sequence_reshape',
76
    'transpose',
77
    'im2sequence',
78
    'nce',
W
weixing02 已提交
79
    'hsigmoid',
Q
Qiao Longfei 已提交
80
    'beam_search',
81
    'row_conv',
82
    'multiplex',
G
guosheng 已提交
83
    'layer_norm',
84 85
    'softmax_with_cross_entropy',
    'smooth_l1',
86
    'one_hot',
Y
Yu Yang 已提交
87
    'autoincreased_step_counter',
C
caoying03 已提交
88
    'reshape',
Y
Yibing Liu 已提交
89 90
    'squeeze',
    'unsqueeze',
Y
yangyaming 已提交
91
    'lod_reset',
D
dragonwarrior 已提交
92
    'lrn',
G
guosheng 已提交
93
    'pad',
C
chengduo 已提交
94
    'pad_constant_like',
95
    'label_smooth',
96
    'roi_pool',
W
whs 已提交
97
    'dice_loss',
F
fengjiayi 已提交
98 99
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
100
    'resize_bilinear',
W
whs 已提交
101
    'gather',
102
    'scatter',
103
    'random_crop',
Y
yuyang18 已提交
104 105 106
    'mean_iou',
    'relu',
    'log',
107
    'crop',
108
    'rank_loss',
J
jerrywgz 已提交
109
    'prelu',
110
    'flatten',
Q
qingqing01 已提交
111
    'sequence_mask',
S
sneaxiy 已提交
112
    'stack',
W
whs 已提交
113
    'pad2d',
D
dzhwinter 已提交
114
    'unstack',
115
    'sequence_enumerate',
W
whs 已提交
116
    'expand',
C
add api  
chengduoZH 已提交
117
    'sequence_concat',
Y
Yu Yang 已提交
118 119 120 121 122 123 124 125
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
126
       use_mkldnn=False,
Y
Yu Yang 已提交
127
       act=None,
J
Jacek Czaja 已提交
128
       is_test=False,
129
       name=None):
Y
Yu Yang 已提交
130
    """
131
    **Fully Connected Layer**
Y
Yu Yang 已提交
132

133 134 135 136 137 138 139 140
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
141
    to the output as well.
C
caoying03 已提交
142

C
caoying03 已提交
143
    This process can be formulated as follows:
144 145 146

    .. math::

147
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
148 149 150

    In the above equation:

C
caoying03 已提交
151 152 153 154
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
155
    * :math:`Act`: The activation function.
C
caoying03 已提交
156
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
157 158

    Args:
R
ranqiu 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
174 175
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
176
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
177
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
178 179
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
180
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
181

182
    Returns:
F
fengjiayi 已提交
183
        Variable: The transformation result.
184 185

    Raises:
C
caoying03 已提交
186
        ValueError: If rank of the input tensor is less than 2.
187 188 189 190

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
191
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
192
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
193
    """
C
caoying03 已提交
194

C
caoying03 已提交
195
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
196 197 198 199

    dtype = helper.input_dtype()

    mul_results = []
200 201
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
202 203 204
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
205

Y
Yu Yang 已提交
206
        w = helper.create_parameter(
207 208
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
209
        helper.append_op(
210 211 212
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
213
            outputs={"Out": tmp},
M
mozga-intel 已提交
214 215
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
216 217 218 219
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
220
    else:
221 222
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
223 224 225 226
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
227 228 229 230
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
231 232


233 234 235
def embedding(input,
              size,
              is_sparse=False,
236
              is_distributed=False,
237 238 239
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
240
    """
241 242
    **Embedding Layer**

243
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
244 245
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
246 247 248

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
249 250

    Args:
251 252 253 254 255
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
256
        is_distributed(bool): Whether to run lookup table from remote parameter server.
257 258
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
259
            with zeros whenever lookup encounters it in :attr:`input`. If
260
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
261 262
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
263
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
264

265 266 267
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
268

269 270
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
271

C
chengduoZH 已提交
272
          dict_size = len(dataset.ids)
273
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
274
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
275 276 277 278 279 280
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
281 282
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
283 284 285 286 287
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
288 289 290 291 292
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
293 294 295
    return tmp


Y
yi.wu 已提交
296
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
297 298
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
299 300
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
301 302 303 304 305 306 307
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
308 309
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
310
    """
Y
yi.wu 已提交
311
    ${comment}
Y
Yibing Liu 已提交
312 313

    Args:
Y
yi.wu 已提交
314 315
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
316 317 318 319 320 321 322
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

323
        param_attr(ParamAttr|None): The parameter attribute for the learnable
324
                               hidden-hidden weights.
Y
Yibing Liu 已提交
325 326 327

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
328 329
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
330
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
331 332 333
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
334

335
                              1. `use_peepholes = False`
Y
yi.wu 已提交
336 337
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
338
                              2. `use_peepholes = True`
Y
yi.wu 已提交
339
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
340
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
341
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
342 343 344 345 346 347 348 349
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
350 351

    Returns:
Y
Yibing Liu 已提交
352 353
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
354

Y
Yibing Liu 已提交
355
    Examples:
Y
Yibing Liu 已提交
356 357
        .. code-block:: python

Y
Yibing Liu 已提交
358 359
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
360
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
361 362
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
363
    """
364

Y
Yu Yang 已提交
365
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
366
    size = size // 4
Y
Yu Yang 已提交
367 368 369 370 371 372 373 374 375 376 377 378
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
379 380 381 382 383 384 385 386 387 388
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
389 390 391

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
392
        inputs=inputs,
Y
Yu Yang 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
409 410 411 412 413 414 415 416 417 418 419
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
420 421
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
422 423 424
    """
    **Dynamic LSTMP Layer**

425 426 427 428 429 430
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
431 432 433 434 435

    The formula is as follows:

    .. math::

436
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
437

438
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
439

440
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
441

442
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
443

444
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
445

446
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
447

448
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
449

Y
Yibing Liu 已提交
450 451 452 453 454 455
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
456
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
457
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
458
          bias vector).
Y
Yibing Liu 已提交
459 460 461
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
462
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
463
    * :math:`h`: The hidden state.
464
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
465 466
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
467
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
468
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
469
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
470 471
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
472 473 474 475

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
476

Y
Yibing Liu 已提交
477 478 479 480 481 482 483 484 485 486 487 488
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
489
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
490 491
                               hidden-hidden weight and projection weight.

492 493
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
494 495
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
496 497
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
498 499
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
500 501 502 503 504 505
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
506
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
507 508 509
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
510
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
511 512 513 514 515 516 517 518 519
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
520
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
521 522
                              default "tanh".
        proj_activation(str): The activation for projection output.
523
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
524 525
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
526 527
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
528 529

    Returns:
530 531 532 533
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
534 535

    Examples:
536

Y
Yibing Liu 已提交
537 538
        .. code-block:: python

539 540 541 542
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
543
            hidden_dim, proj_dim = 512, 256
544
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
545
                                     act=None, bias_attr=None)
546 547 548
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
549 550 551 552
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
553
    """
554

Y
Yibing Liu 已提交
555
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
556
    size = size // 4
Y
Yibing Liu 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
601 602 603 604 605 606 607 608 609
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
610
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
611

612
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
613
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
614

G
guosheng 已提交
615 616 617 618 619 620 621 622 623
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
624

G
guosheng 已提交
625
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
626

G
guosheng 已提交
627
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
628 629
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
630 631 632 633
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
634
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
635 636

    Args:
637 638
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
639
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
640
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
641 642
            is the hidden size.
        size(int): The dimension of the gru cell.
643
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
644 645
            hidden-hidden weight matrix. Note:

646
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
647
              :math:`D` is the hidden size.
648
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
649
              The first part are weights of the update gate and reset gate with
650
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
651
              candidate hidden state with shape :math:`(D \\times D)`.
652
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
653
            hidden-hidden bias.
654
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
655 656 657
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
658
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
659
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
660 661 662 663
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
664 665

    Returns:
G
guosheng 已提交
666
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
667
            and sequence length is the same with the input.
668

G
guosheng 已提交
669
    Examples:
670

G
guosheng 已提交
671 672
        .. code-block:: python

673 674 675 676
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
677
            hidden_dim = 512
678
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
679 680 681 682 683 684 685 686 687 688
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
689
    batch_size = input.shape[0]
G
guosheng 已提交
690 691 692
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
693 694 695
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
719 720 721
def gru_unit(input,
             hidden,
             size,
722 723
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
724
             activation='tanh',
725
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
726
    """
727
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
728

729 730
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
731

732
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
733

734
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
735

736
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
737 738

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
739 740 741
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
742 743
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

744 745
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
746 747 748
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
749 750 751 752 753

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
754 755
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
756 757 758 759
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
760

761 762 763 764 765 766
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
767

768
             # assuming we have x_t_data and prev_hidden of size=10
769
             x_t = fluid.layers.fc(input=x_t_data, size=30)
770 771
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
772 773 774 775 776 777 778 779 780 781 782 783

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
784
    size = size // 3
Y
Yu Yang 已提交
785 786

    # create weight
787 788
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
789

790 791 792 793
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
794
    # create bias
795
    if helper.bias_attr:
Y
Yu Yang 已提交
796 797 798
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
799
        inputs['Bias'] = bias
Y
Yu Yang 已提交
800 801 802

    helper.append_op(
        type='gru_unit',
803
        inputs=inputs,
Y
Yu Yang 已提交
804 805 806 807 808 809
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
810 811
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
812 813 814 815 816
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
817
@templatedoc()
818
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
819 820 821 822 823 824 825
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
826
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
827 828 829 830
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
831 832 833
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
834 835

    """
Y
Yu Yang 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
861
@templatedoc()
862
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
863 864 865 866 867
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
868

Y
yuyang18 已提交
869
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
870

Y
yuyang18 已提交
871 872 873
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
874
        Variable: ${viterbi_path_comment}
875

Y
yi.wu 已提交
876 877 878 879 880
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
881
    """
Y
Yu Yang 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
895
@templatedoc()
F
fengjiayi 已提交
896
def cos_sim(X, Y):
Y
Yu Yang 已提交
897
    """
Y
yi.wu 已提交
898 899 900
    ${comment}

    Args:
901 902
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
903

Y
yi.wu 已提交
904
    Returns:
905
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
906
    """
F
fengjiayi 已提交
907
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


921
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
922 923 924 925 926
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
927
    training. The dropout operator randomly sets (according to the given dropout
928 929 930 931
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
932 933
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
934 935 936 937 938 939 940
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
941 942

    Returns:
943
        Variable: A tensor variable is the shape with `x`.
944 945

    Examples:
946

947 948
        .. code-block:: python

949 950
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
951 952
    """

F
fengjiayi 已提交
953
    helper = LayerHelper('dropout', **locals())
954 955
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
956 957 958 959

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

960 961 962 963 964
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
965 966 967 968 969 970
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
971 972 973
    return out


974
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
975
    """
Y
Yibing Liu 已提交
976 977
    **Cross Entropy Layer**

978 979 980
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
981 982

    1) One-hot cross-entropy:
F
fengjiayi 已提交
983
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
984

Y
Yibing Liu 已提交
985
        .. math::
Y
yangyaming 已提交
986

Y
Yibing Liu 已提交
987 988 989
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
990 991
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
992 993 994 995 996

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
997
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
998 999 1000
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1001 1002
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1003
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1004

Y
Yibing Liu 已提交
1005
    Args:
Y
yangyaming 已提交
1006
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1007 1008 1009 1010
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1011
        label (Variable|list): the ground truth which is a 2-D tensor. When
1012 1013 1014 1015
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1016
        soft_label (bool): a flag indicating whether to
1017
                                           interpretate the given labels as soft
1018 1019 1020 1021
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1022 1023 1024 1025 1026

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1027 1028 1029 1030 1031
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1032 1033 1034 1035 1036 1037

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1038
    """
F
fengjiayi 已提交
1039
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1040 1041 1042 1043 1044 1045
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1046 1047
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1048 1049 1050
    return out


F
fengjiayi 已提交
1051
def square_error_cost(input, label):
Y
Yu Yang 已提交
1052
    """
1053 1054
    **Square error cost layer**

1055 1056
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1071 1072
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1073 1074

    Returns:
G
guosheng 已提交
1075
        Variable: The tensor variable storing the element-wise squared error \
1076
                  difference of input and label.
1077 1078 1079 1080 1081 1082 1083 1084

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1085
    """
F
fengjiayi 已提交
1086
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1096 1097
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1098 1099 1100
    return square_out


Y
yi.wu 已提交
1101
@templatedoc()
Y
Yu Yang 已提交
1102 1103 1104 1105
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1106
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1107
    """
Y
yi.wu 已提交
1108
    **Chunk Evaluator**
Y
yi.wu 已提交
1109

Y
yangyaming 已提交
1110
    This function computes and outputs the precision, recall and
1111
    F1-score of chunk detection.
Y
yi.wu 已提交
1112

Y
yi.wu 已提交
1113 1114 1115 1116 1117 1118 1119 1120
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1121

Y
yi.wu 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1147

Y
yi.wu 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1172
    Args:
1173 1174 1175 1176 1177
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1178

Y
yi.wu 已提交
1179
    Returns:
Y
update  
yi.wu 已提交
1180 1181 1182
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1183

Y
yi.wu 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1196
    """
F
fengjiayi 已提交
1197
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1198 1199 1200 1201 1202

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1203 1204 1205
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1206 1207 1208 1209 1210 1211 1212 1213

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1214 1215 1216 1217
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1218 1219 1220
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1221 1222
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1223
        })
1224 1225
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1226 1227


1228
@templatedoc()
Y
Yu Yang 已提交
1229 1230 1231 1232 1233 1234 1235
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1236
                  act=None):
Y
Yu Yang 已提交
1237 1238 1239 1240
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1251

1252 1253
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1272
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1273 1274 1275 1276 1277 1278
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1279
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1280 1281 1282
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1283
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1302
        library is installed. Default: False
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1326
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1327
    """
1328
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1329
    has the same shape as the input.
Q
qiaolongfei 已提交
1330

1331 1332 1333 1334 1335 1336
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1337
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1338 1339 1340 1341 1342 1343 1344

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1345
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1380 1381 1382
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1383 1384
           stride=1,
           padding=0,
1385
           dilation=1,
Y
Yu Yang 已提交
1386 1387 1388
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1389
           use_cudnn=True,
1390
           use_mkldnn=False,
1391 1392
           act=None,
           name=None):
Y
Yu Yang 已提交
1393
    """
C
chengduoZH 已提交
1394
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1395 1396
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1397
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1398 1399 1400 1401 1402 1403 1404
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1405 1406 1407
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1408

1409
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1410

C
chengduoZH 已提交
1411 1412
    .. math::

C
refine  
chengduoZH 已提交
1413
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1414

T
tensor-tang 已提交
1415
    Where:
C
chengduoZH 已提交
1416

1417 1418 1419 1420 1421
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1422
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1423 1424 1425

    Example:

1426 1427
        - Input:

W
weixing02 已提交
1428
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1429

W
weixing02 已提交
1430
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1431

1432
        - Output:
T
tensor-tang 已提交
1433

W
weixing02 已提交
1434
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1435

C
chengduoZH 已提交
1436
        Where
1437 1438

        .. math::
C
chengduoZH 已提交
1439

W
weixing02 已提交
1440 1441
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1442 1443

    Args:
1444
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1445
        num_filters(int): The number of filter. It is as same as the output
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1468 1469
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1470 1471 1472
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1473 1474

    Returns:
G
guosheng 已提交
1475
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1476 1477
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1478
    Raises:
1479 1480
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1481

C
chengduoZH 已提交
1482 1483 1484
    Examples:
        .. code-block:: python

1485 1486
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1487 1488 1489
    """

    num_channels = input.shape[1]
1490 1491

    l_type = 'conv2d'
X
xzl 已提交
1492 1493
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1494
        l_type = 'depthwise_conv2d'
1495 1496 1497 1498

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1499 1500 1501 1502 1503
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1504
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1505

C
chengduoZH 已提交
1506 1507 1508
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1509
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1510

C
chengduoZH 已提交
1511 1512
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1513 1514

    input_shape = input.shape
M
minqiyang 已提交
1515
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1530
        type=l_type,
Y
Yu Yang 已提交
1531 1532 1533 1534 1535
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1536 1537 1538
        attrs={
            'strides': stride,
            'paddings': padding,
1539
            'dilations': dilation,
C
chengduoZH 已提交
1540
            'groups': groups,
1541 1542
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1543
        })
Y
Yu Yang 已提交
1544 1545 1546 1547 1548 1549

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1568 1569 1570 1571 1572 1573
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1583 1584
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1585 1586 1587
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1588
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1614
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1615 1616
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1617
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1618 1619
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1620
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1621 1622
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1623
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1650 1651
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1666
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1707
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1708 1709 1710 1711

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1712
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1713
    """
Y
yangyaming 已提交
1714 1715 1716
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1728
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1729 1730 1731 1732 1733
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1734
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1735 1736 1737 1738 1739 1740 1741

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1742 1743
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1744

L
Luo Tao 已提交
1745 1746
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1747
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1748 1749 1750 1751 1752 1753 1754 1755
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1756

Y
yangyaming 已提交
1757
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1758 1759 1760 1761 1762
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1763 1764
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1765
    """
F
fengjiayi 已提交
1766
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1778 1779 1780 1781 1782
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1783 1784 1785
    return pool_out


C
add doc  
chengduoZH 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1811
def sequence_first_step(input):
L
Luo Tao 已提交
1812
    """
L
Luo Tao 已提交
1813
    This function gets the first step of sequence.
L
Luo Tao 已提交
1814 1815 1816 1817

    .. code-block:: text

       x is a 1-level LoDTensor:
1818
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1819 1820 1821 1822 1823
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1824
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1825
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1826

L
Luo Tao 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1836

Y
yangyaming 已提交
1837
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1838 1839 1840
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1841 1842 1843
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1844
def sequence_last_step(input):
L
Luo Tao 已提交
1845
    """
L
Luo Tao 已提交
1846
    This function gets the last step of sequence.
L
Luo Tao 已提交
1847 1848 1849 1850

    .. code-block:: text

       x is a 1-level LoDTensor:
1851
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1852 1853 1854 1855 1856
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1857
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1858
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1859

L
Luo Tao 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1869

Y
yangyaming 已提交
1870
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1871 1872 1873
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1874 1875 1876
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1877
@templatedoc()
Y
Yu Yang 已提交
1878
def pool2d(input,
C
chengduoZH 已提交
1879 1880
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1881 1882
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1883
           global_pooling=False,
C
chengduoZH 已提交
1884
           use_cudnn=True,
1885
           ceil_mode=False,
1886
           use_mkldnn=False,
C
caoying03 已提交
1887
           name=None):
Y
Yu Yang 已提交
1888
    """
F
fengjiayi 已提交
1889
    ${comment}
1890 1891

    Args:
1892 1893 1894
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1895
                          feature, and W is the width of the feature.
1896
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1897
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1898
        pool_type: ${pooling_type_comment}
1899 1900
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1901 1902 1903 1904
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1905
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1906 1907
                        layer will be named automatically.

1908
    Returns:
F
fengjiayi 已提交
1909
        Variable: The pooling result.
F
fengjiayi 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1923 1924 1925 1926
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1927
                            global_pooling=False)
Y
Yu Yang 已提交
1928 1929 1930 1931 1932
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1933

C
chengduoZH 已提交
1934 1935 1936 1937 1938
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1939 1940 1941 1942
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1943 1944
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1945

C
Add doc  
chengduoZH 已提交
1946
    l_type = 'pool2d'
1947 1948

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1949 1950 1951 1952
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1982
    pooling configurations mentioned in input parameters.
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1996

1997
    Returns:
1998
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1999 2000 2001 2002 2003
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2004

C
chengduoZH 已提交
2005 2006 2007 2008 2009
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2010 2011 2012
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2013

C
chengduoZH 已提交
2014 2015
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2016

2017 2018
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2019 2020 2021 2022
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2023
        type=l_type,
Y
Yu Yang 已提交
2024 2025 2026 2027 2028 2029 2030
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2031
            "paddings": pool_padding,
2032
            "use_cudnn": use_cudnn,
2033 2034
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2047
               data_layout='NCHW',
Y
Yang Yang 已提交
2048
               in_place=False,
2049
               use_mkldnn=False,
2050 2051
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2052
               moving_variance_name=None,
2053 2054
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2055
    """
Q
qiaolongfei 已提交
2056 2057 2058 2059
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2060

Q
qiaolongfei 已提交
2061
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2062

Q
qiaolongfei 已提交
2063 2064
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2065 2066 2067
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2080 2081

    Args:
Q
qiaolongfei 已提交
2082
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2083 2084 2085 2086
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2087 2088 2089
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2090
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2091 2092 2093 2094 2095
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2096
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2097
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2098 2099

    Returns:
Q
qiaolongfei 已提交
2100
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2101 2102 2103 2104 2105 2106 2107

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2131
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2132

2133 2134
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2135 2136 2137
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2138
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2139
        shape=param_shape,
2140 2141 2142 2143 2144 2145 2146
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2147
            trainable=False,
W
wanghaoshuang 已提交
2148
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2149
        shape=param_shape,
2150 2151
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2152 2153 2154 2155 2156 2157

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2158 2159
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2160

2161
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2179 2180 2181 2182
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2183 2184
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2185
        })
Y
Yu Yang 已提交
2186 2187 2188 2189

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2190
@templatedoc()
G
guosheng 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2201
    ${comment}
G
guosheng 已提交
2202 2203 2204

    The formula is as follows:

Y
yuyang18 已提交
2205
    ..  math::
G
guosheng 已提交
2206 2207 2208 2209 2210 2211 2212

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2213 2214 2215 2216 2217 2218 2219 2220
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2221

G
guosheng 已提交
2222 2223
    Args:
        input(Variable): The input tensor variable.
2224
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2225
            normalization.
2226
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2227
            normalization.
2228
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2229
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2230
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2231 2232 2233 2234 2235 2236
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2237
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2238 2239

    Returns:
Y
yuyang18 已提交
2240
        ${y_comment}
G
guosheng 已提交
2241 2242 2243

    Examples:

Y
yuyang18 已提交
2244 2245 2246
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2262
    if shift:
G
guosheng 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2287 2288 2289 2290
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2291 2292 2293
                     padding=0,
                     stride=1,
                     dilation=1,
2294
                     groups=None,
C
caoying03 已提交
2295
                     param_attr=None,
2296
                     bias_attr=None,
C
chengduoZH 已提交
2297
                     use_cudnn=True,
2298
                     act=None,
C
caoying03 已提交
2299
                     name=None):
Y
Yu Yang 已提交
2300
    """
2301 2302 2303 2304 2305 2306 2307 2308
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2309 2310
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2311 2312 2313
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2314 2315 2316 2317 2318

    For each input :math:`X`, the equation is:

    .. math::

2319
        Out = \sigma (W \\ast X + b)
2320

2321
    Where:
2322 2323 2324

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2325 2326 2327 2328
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2329

2330 2331 2332 2333
    Example:

        - Input:

2334
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2335

2336
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2337 2338 2339

        - Output:

2340
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2341 2342

        Where
Y
Yu Yang 已提交
2343

2344 2345
        .. math::

2346 2347 2348 2349
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2350 2351

    Args:
2352 2353 2354 2355
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2356 2357 2358 2359
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2387 2388

    Returns:
2389
        Variable: The tensor variable storing the convolution transpose result.
2390 2391

    Raises:
2392 2393
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2394 2395 2396 2397

    Examples:
       .. code-block:: python

2398 2399
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2400
    """
2401 2402 2403 2404 2405 2406 2407 2408 2409

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2410 2411 2412
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2413 2414 2415
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2416

C
chengduoZH 已提交
2417 2418
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2419

Y
Yu Yang 已提交
2420 2421 2422 2423 2424
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2425

Y
Yu Yang 已提交
2426 2427
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2428

C
chengduoZH 已提交
2429
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2430
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2431
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2432
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2433
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2434 2435 2436
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2437 2438 2439 2440 2441 2442 2443
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2444
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2445
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2446 2447 2448
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2449
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2450
    helper.append_op(
2451
        type=op_type,
Y
Yu Yang 已提交
2452 2453
        inputs={'Input': [input],
                'Filter': [img_filter]},
2454
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2455
        attrs={
2456
            'output_size': output_size,
2457 2458 2459 2460 2461
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2462 2463
        })

2464 2465 2466
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2467 2468


2469
def conv3d_transpose(input,
Y
Yu Yang 已提交
2470 2471 2472
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2473 2474 2475
                     padding=0,
                     stride=1,
                     dilation=1,
2476
                     groups=None,
C
caoying03 已提交
2477
                     param_attr=None,
2478
                     bias_attr=None,
C
chengduoZH 已提交
2479
                     use_cudnn=True,
2480
                     act=None,
C
caoying03 已提交
2481
                     name=None):
Y
Yu Yang 已提交
2482
    """
2483
    **Convlution3D transpose layer**
2484

2485
    The convolution3D transpose layer calculates the output based on the input,
2486
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2487 2488 2489 2490 2491 2492
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2493 2494 2495
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2496 2497 2498 2499 2500

    For each input :math:`X`, the equation is:

    .. math::

2501
        Out = \sigma (W \\ast X + b)
2502 2503 2504

    In the above equation:

2505 2506
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2507 2508 2509 2510
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2511

2512 2513 2514 2515
    Example:

        - Input:

2516
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2517

2518
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2519 2520 2521

        - Output:

2522
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2523 2524

        Where
Y
Yu Yang 已提交
2525

2526 2527
        .. math::

2528 2529 2530
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2531 2532

    Args:
2533
        input(Variable): The input image with [N, C, D, H, W] format.
2534 2535 2536
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2537
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2538 2539
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2540
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2541 2542 2543
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2544 2545
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2546
        stride(int|tuple): The stride size. If stride is a tuple, it must
2547 2548
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2549
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2550 2551 2552
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2553 2554 2555 2556 2557
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2558 2559 2560
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2561 2562 2563 2564 2565
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2566 2567

    Returns:
2568
        Variable: The tensor variable storing the convolution transpose result.
2569 2570

    Raises:
2571 2572
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2573 2574 2575 2576

    Examples:
       .. code-block:: python

2577 2578
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2579
    """
2580 2581
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2582
    if not isinstance(input, Variable):
2583
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2584 2585
    input_channel = input.shape[1]

2586 2587 2588
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2589

C
chengduoZH 已提交
2590 2591 2592
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2593 2594 2595 2596 2597 2598
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2599 2600 2601
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2602

2603
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2604
                         padding[0] - 1) // dilation[0] + 1
2605
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2606
                         padding[1] - 1) // dilation[1] + 1
2607
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2608
                         padding[2] - 1) // dilation[2] + 1
2609
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2610
    else:
2611 2612
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2613

2614
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2615
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2616 2617 2618
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2619
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2620
    helper.append_op(
2621
        type=l_type,
Y
Yu Yang 已提交
2622 2623
        inputs={'Input': [input],
                'Filter': [img_filter]},
2624
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2625 2626 2627 2628
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2629
            'groups': groups,
C
chengduoZH 已提交
2630 2631
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2632

2633 2634
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2635
    return out
Y
yangyaming 已提交
2636 2637


Y
yangyaming 已提交
2638
def sequence_expand(x, y, ref_level=-1, name=None):
2639
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2640 2641 2642 2643
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2644 2645 2646 2647 2648

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2649
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2650
                x.data = [[a], [b], [c], [d]]
2651 2652 2653
                x.dims = [4, 1]

            y is a LoDTensor:
2654 2655
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2656

Y
yangyaming 已提交
2657
            ref_level: 0
2658

Y
yangyaming 已提交
2659
            then output is a 1-level LoDTensor:
2660
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2661
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2662 2663 2664 2665
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2666
                x.data = [[a], [b], [c]]
2667 2668 2669
                x.dims = [3, 1]

            y is a LoDTensor:
2670
                y.lod = [[2, 0, 3]]
2671

Y
yangyaming 已提交
2672
            ref_level: -1
2673

Y
yangyaming 已提交
2674 2675 2676
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2677 2678 2679
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2680 2681
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2682
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2683
                        will be named automatically.
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2694
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2695
    """
Y
yangyaming 已提交
2696
    helper = LayerHelper('sequence_expand', input=x, **locals())
2697 2698 2699
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2700 2701 2702 2703 2704
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2705
    return tmp
2706 2707


C
chengduo 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
2791 2792
        Variable: The padded sequence batch and the original lengths before 
                  padding. All sequences has the same length.
F
fengjiayi 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2808 2809 2810 2811 2812
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2813 2814 2815 2816 2817 2818
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2819 2820
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2821
        attrs={'padded_length': maxlen})
2822
    return out, length
F
fengjiayi 已提交
2823 2824


2825 2826 2827 2828 2829 2830 2831 2832 2833
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2834 2835
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2836 2837 2838

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2839 2840

    This layer does the search in beams for one time step. Specifically, it
2841 2842 2843 2844 2845 2846
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2847

2848 2849 2850 2851 2852 2853 2854 2855
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2856

2857
    Args:
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2883

2884
    Returns:
2885 2886
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2887 2888 2889 2890

    Examples:
        .. code-block:: python

2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2919
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2937 2938 2939 2940 2941 2942 2943
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2944

2945 2946 2947 2948 2949 2950 2951 2952 2953
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2954

2955 2956 2957 2958 2959 2960
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2961

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2987 2988 2989 2990
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2991
              param_attr=None,
C
caoying03 已提交
2992 2993
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2994 2995 2996 2997
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2998
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2999

3000
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3001

3002
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3003

3004
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3005 3006 3007

            h_t & = o_t tanh(c_t)

3008 3009 3010 3011 3012 3013
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3014 3015 3016

        .. math::

3017
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3018 3019 3020 3021 3022 3023 3024 3025

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3026
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3027 3028

    Args:
Y
yangyaming 已提交
3029 3030 3031 3032 3033 3034
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3035
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3036 3037
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3038 3039
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3040 3041
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3042 3043

    Returns:
Y
yangyaming 已提交
3044
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3045 3046

    Raises:
3047 3048 3049 3050
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3051 3052 3053 3054 3055 3056

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3057
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3058
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3059
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3076
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3077 3078 3079 3080
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3081 3082
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3083 3084 3085
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3086
    size = cell_t_prev.shape[1]
3087
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3088 3089
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3090
                param_attr=param_attr,
3091
                bias_attr=bias_attr)
Y
yangyaming 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3104
    return h, c
G
guosheng 已提交
3105 3106


C
caoying03 已提交
3107
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3108
    """
Y
yangyaming 已提交
3109
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3110 3111 3112

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3113
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3114 3115
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3116 3117
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3118
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3119
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3120
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3121 3122
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3123 3124 3125

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3126

G
guosheng 已提交
3127 3128 3129 3130 3131 3132
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3133
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3134 3135 3136 3137
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3138 3139 3140 3141

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3142
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3143 3144 3145
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3146 3147 3148
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3149 3150
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3151 3152 3153 3154 3155
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3156
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3157 3158 3159 3160
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3161 3162


C
caoying03 已提交
3163
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3164
    """
Y
Yibing Liu 已提交
3165
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3166 3167 3168

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3169 3170 3171
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3172
            must be in the range :math:`[-rank(input), rank(input))`. If
3173
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3174
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3175 3176
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3177
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3178
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3179
                       will be named automatically.
G
guosheng 已提交
3180 3181

    Returns:
Y
Yibing Liu 已提交
3182
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3183

G
guosheng 已提交
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3194 3195
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3196 3197 3198 3199 3200 3201 3202

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3203 3204 3205
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3206 3207
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3208 3209 3210 3211 3212
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3213
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3214 3215 3216 3217
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3218 3219


C
caoying03 已提交
3220
def reduce_max(input, dim=None, keep_dim=False, name=None):
3221
    """
Y
yangyaming 已提交
3222
    Computes the maximum of tensor elements over the given dimension.
3223 3224 3225

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3226
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3227 3228 3229
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3230
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3231 3232
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3233
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3234 3235
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3236 3237 3238

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3239

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3251 3252 3253 3254 3255 3256 3257

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3258 3259 3260
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3261 3262
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3263 3264 3265 3266 3267
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3268
            'dim': dim if dim != None else [0],
3269 3270 3271 3272 3273 3274
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3275
def reduce_min(input, dim=None, keep_dim=False, name=None):
3276
    """
Y
yangyaming 已提交
3277
    Computes the minimum of tensor elements over the given dimension.
3278 3279 3280

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3281
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3282 3283 3284
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3285
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3286 3287
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3288
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3289 3290
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3291 3292 3293

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3294

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3306 3307 3308 3309 3310 3311 3312

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3313 3314 3315
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3316 3317
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3318 3319 3320 3321 3322
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3323
            'dim': dim if dim != None else [0],
3324 3325 3326 3327
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3328 3329


3330 3331 3332 3333 3334 3335
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3336
        dim (list|int|None): The dimensions along which the product is performed. If
3337 3338
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3339 3340
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3341 3342 3343
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3344
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3345
            layer will be named automatically.
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3360
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3361
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3362 3363 3364 3365 3366 3367 3368

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3369 3370 3371
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3372 3373
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3374 3375 3376 3377 3378
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3379
            'dim': dim if dim != None else [0],
3380 3381 3382 3383 3384 3385
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3386
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3387
    """
C
caoying03 已提交
3388
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3389 3390 3391

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3392 3393 3394 3395 3396
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3397
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3398
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3399
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3400 3401
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3402 3403

    Returns:
D
dzhwinter 已提交
3404
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3414 3415
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3454
    .. math::
3455 3456

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3457 3458 3459 3460 3461

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3462
        x(Variable|list): The input tensor to l2_normalize layer.
3463
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3464 3465
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3466
        epsilon(float): The epsilon value is used to avoid division by zero, \
3467
            the defalut value is 1e-10.
3468
        name(str|None): A name for this layer(optional). If set None, the layer \
3469
            will be named automatically.
C
caoying03 已提交
3470 3471

    Returns:
3472
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3473 3474

    Examples:
3475

C
caoying03 已提交
3476 3477
        .. code-block:: python

3478 3479 3480 3481
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3482 3483
    """

F
fengjiayi 已提交
3484 3485
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3486 3487
    helper = LayerHelper("l2_normalize", **locals())

3488 3489
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3490
    helper.append_op(
3491 3492 3493 3494
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3495
        attrs={
3496 3497
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3498 3499
        })
    return out
3500 3501


S
sneaxiy 已提交
3502
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3503
    """
Y
ying 已提交
3504 3505 3506 3507
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3508

C
chengduoZH 已提交
3509
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3510
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3511

3512 3513 3514 3515 3516
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3517
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3518

C
chengduoZH 已提交
3519
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3520
      performs in the following way.
G
guosheng 已提交
3521

3522
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3523
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3524
        last two dimensions and a batched matrix multiply supporting broadcast
3525
        applies on the two tensors.
G
guosheng 已提交
3526

Y
ying 已提交
3527 3528
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3529
    removed after matrix multiplication.
G
guosheng 已提交
3530 3531 3532

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3533 3534 3535
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3536
        alpha (float): The scale of output. Default 1.0.
3537
        name(str|None): A name for this layer(optional). If set None, the layer
3538
            will be named automatically.
G
guosheng 已提交
3539 3540

    Returns:
3541
        Variable: The product Tensor variable.
G
guosheng 已提交
3542

G
guosheng 已提交
3543 3544 3545
    Examples:
        .. code-block:: python

3546
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3547 3548
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3549

3550 3551
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3552

3553 3554
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3555

3556 3557
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3558 3559 3560 3561

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3562 3563
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3564

Y
ying 已提交
3565
            # x: [M], y: [N]
3566
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3567
    """
Y
ying 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3580
            y_shape = y_shape + [1]
Y
ying 已提交
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3597
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3598
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3599
    helper.append_op(
3600 3601 3602 3603
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3604 3605 3606
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3607
            'alpha': alpha,
S
sneaxiy 已提交
3608
        })
3609
    return out
3610 3611


3612
def topk(input, k, name=None):
Q
qingqing01 已提交
3613 3614 3615 3616
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3617
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3618 3619 3620 3621 3622 3623
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3645 3646 3647
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3648
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3649
                 of input.
3650
        name(str|None): A name for this layer(optional). If set None, the layer
3651
                       will be named automatically.
F
fengjiayi 已提交
3652
                       Default: None
Q
qingqing01 已提交
3653 3654

    Returns:
3655 3656 3657
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3658
        within the last dimension of input.
Q
qingqing01 已提交
3659

F
fengjiayi 已提交
3660 3661
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3682
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3683
    """
Y
ying 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3693

Y
ying 已提交
3694
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3695

3696
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3697 3698
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3699
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3700

3701
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3702 3703
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3704

3705 3706 3707
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3708
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3709
                          the length of reference string.
3710
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3711
                                     calculating edit distance.
3712
        name (str): The name of this layer. It is optional.
3713

W
wanghaoshuang 已提交
3714
    Returns:
W
wanghaoshuang 已提交
3715
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3716 3717 3718 3719 3720

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3721
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3722
            cost = fluid.layers.edit_distance(input=x,label=y)
3723
    """
3724
    helper = LayerHelper("edit_distance", **locals())
3725

3726
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3727
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3728 3729 3730 3731 3732 3733 3734
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3735
            attrs={"tokens": ignored_tokens})
3736 3737 3738 3739 3740
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3741
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3742
            attrs={"tokens": ignored_tokens})
3743 3744
        label = erased_label

3745 3746
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3747
    sequence_num = helper.create_tmp_variable(dtype="int64")
3748 3749 3750 3751
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3752 3753
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3754 3755
        attrs={"normalized": normalized})

3756
    return edit_distance_out, sequence_num
3757 3758 3759 3760 3761


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3762

Y
ying 已提交
3763 3764 3765 3766
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3784
        input.lod = [[4, 4]]
3785 3786 3787 3788 3789 3790 3791

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3792
        output.lod = [[2, 1]]
3793 3794 3795

    Args:

Y
ying 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3805
        name (str): The name of this layer. It is optional.
3806 3807

    Returns:
3808
        Variable: CTC greedy decode result. If all the sequences in result were
3809
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3810 3811 3812 3813 3814

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3815

3816
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3817
    """
3818
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3819
    _, topk_indices = topk(input, k=1)
3820 3821 3822 3823 3824 3825

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3826
        outputs={"Output": [ctc_out]},
3827 3828
        attrs={"merge_repeated": True,
               "blank": blank})
3829
    return ctc_out
3830 3831


F
fengjiayi 已提交
3832
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3833
    """
3834 3835
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3836
    to compute Connectionist Temporal Classification (CTC) loss.
3837 3838
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3839 3840 3841
    input tensor.

    Args:
3842
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3843 3844 3845 3846
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3847
       label (Variable): The ground truth of variable-length sequence,
3848 3849 3850
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3851 3852
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3853 3854 3855
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3856
         follewed by a mean_op.
W
wanghaoshuang 已提交
3857 3858

    Returns:
3859 3860
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3861 3862

    Examples:
3863

W
wanghaoshuang 已提交
3864
        .. code-block:: python
3865

3866 3867 3868
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3869 3870

    """
F
fengjiayi 已提交
3871
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3898 3899 3900
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3901 3902 3903 3904 3905
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3906

3907
            out.lod  = [[0, 1, 3]]
3908 3909 3910 3911

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3912 3913 3914 3915 3916 3917 3918
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3919 3920 3921

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3922 3923

    Returns:
3924

3925 3926 3927 3928 3929
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3930
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3931
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3932 3933 3934 3935 3936 3937 3938 3939 3940
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3941 3942


3943 3944 3945 3946
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3947 3948 3949 3950 3951 3952 3953
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3954 3955 3956 3957 3958 3959 3960
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3961 3962
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3963
            sample is 1.0.
3964 3965 3966
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3967

3968
    Returns:
Y
Yibing Liu 已提交
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3996
    """
Y
Yang Yu 已提交
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4041
    return cost / (num_neg_samples + 1)
4042 4043


G
guosheng 已提交
4044
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4045 4046
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4047
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4048 4049 4050 4051 4052 4053 4054 4055 4056
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4057

W
weixing02 已提交
4058
    Args:
M
minqiyang 已提交
4059
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4060 4061 4062 4063 4064
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4065 4066
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4067
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4068 4069
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4070 4071 4072 4073 4074 4075 4076 4077

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4078 4079 4080
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4081 4082 4083 4084 4085 4086 4087 4088
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4089
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4090 4091 4092 4093 4094
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4095 4096 4097 4098 4099 4100 4101 4102
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4103 4104
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4105
        inputs=inputs,
W
weixing02 已提交
4106 4107 4108 4109 4110 4111
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4112
def transpose(x, perm, name=None):
Y
ying 已提交
4113 4114 4115 4116 4117 4118 4119
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4120 4121 4122
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4123 4124 4125 4126 4127 4128 4129 4130

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4131
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4132 4133
    """

Y
fix ci.  
ying 已提交
4134
    if len(perm) != len(x.shape):
Y
ying 已提交
4135 4136 4137
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4138 4139 4140 4141 4142 4143
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4144 4145

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4146
    out = helper.create_tmp_variable(x.dtype)
4147
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4148
    helper.append_op(
4149
        type='transpose2',
Y
fix ci.  
ying 已提交
4150
        inputs={'X': [x]},
4151 4152
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4153 4154
        attrs={'axis': perm})
    return out
4155 4156


4157 4158 4159 4160 4161 4162 4163
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4164
    """
4165 4166 4167 4168 4169 4170 4171
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4200 4201 4202 4203 4204 4205 4206 4207 4208
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4209 4210 4211
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4212 4213 4214 4215 4216
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4244 4245 4246
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4259
            output.dims = {8, 8}
4260

4261
            output.lod = [[4, 4]]
4262

D
dzhwinter 已提交
4263
     Examples:
4264 4265 4266

        .. code-block:: python

4267 4268
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4269 4270

    """
W
wanghaoshuang 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4281 4282 4283 4284 4285 4286 4287
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4288
    helper = LayerHelper('im2sequence', **locals())
4289 4290
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4291
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4292
    return out
4293 4294


Y
yuyang18 已提交
4295
@templatedoc()
4296
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4297 4298
    """
    ${comment}
4299 4300

    Args:
Y
yuyang18 已提交
4301
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4302 4303
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4304 4305 4306 4307 4308
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4309
        ${out_comment}.
4310 4311

    Examples:
Y
yuyang18 已提交
4312 4313 4314 4315
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4328
    return helper.append_activation(out)
4329 4330


Y
yuyang18 已提交
4331
@templatedoc()
4332 4333
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4334 4335 4336 4337 4338 4339 4340
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4341 4342

    Args:
Y
yuyang18 已提交
4343 4344
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4345 4346

    Returns:
Y
yuyang18 已提交
4347
        ${out_comment}.
4348 4349
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4350 4351 4352 4353 4354 4355

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4356 4357 4358 4359 4360 4361
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4362 4363


4364 4365 4366 4367
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4368 4369
    """
    **Softmax With Cross Entropy Operator.**
4370

4371 4372 4373 4374
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4375

4376 4377 4378
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4379

4380 4381 4382
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4383

4384
    The equation is as follows:
4385

4386
    1) Hard label (one-hot label, so every sample has exactly one class)
4387

4388 4389 4390 4391
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4392

4393 4394 4395
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4396

4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4409 4410 4411 4412
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4413 4414 4415 4416 4417 4418 4419 4420 4421
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4422 4423
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4434 4435
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4436 4437 4438 4439 4440
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4441 4442
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4443
    For each instance, it computes the smooth L1 loss element by element first
4444
    and then sums all the losses. So the shape of ouput Variable is
4445
    [batch_size, 1].
4446

4447 4448
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4449
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4450
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4451
            L1 loss op with same shape as :attr:`x`.
4452
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4453 4454
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4455
            by this tensor element by element.
4456
        outside_weight (Variable|None): A tensor with rank at least 2. This
4457 4458
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4459
            element by element.
4460
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4461 4462
           scalar with default value 1.0.

4463
    Returns:
4464
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4465 4466 4467 4468 4469

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4470 4471
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4472
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4473
            out = fluid.layers.smooth_l1(x=fc, y=label)
4474
    """
4475

4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4491 4492 4493 4494


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4495
    This layer creates the one-hot representations for input indices.
4496 4497

    Args:
Y
Yibing Liu 已提交
4498 4499
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4500 4501

    Returns:
Y
Yibing Liu 已提交
4502
        Variable: The one-hot representations of input.
4503 4504

    Examples:
C
caoying03 已提交
4505
        .. code-block:: python
4506

Y
Yibing Liu 已提交
4507 4508
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4509 4510 4511 4512 4513 4514 4515 4516 4517
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4518 4519


Y
Yu Yang 已提交
4520
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4521
    """
Y
yi.wu 已提交
4522 4523 4524
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4525 4526 4527 4528 4529 4530

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4531 4532
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4533 4534 4535 4536 4537 4538

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4539 4540
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4541 4542
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4543 4544 4545 4546 4547
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4548
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4549
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4550 4551
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4552 4553
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4554 4555 4556
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4557 4558


4559
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4560
    """
C
caoying03 已提交
4561 4562
    Gives a new shape to the input Tensor without changing its data.

4563 4564 4565 4566 4567
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4568

4569
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4570

4571 4572 4573 4574
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4575
    2. 0 means the actual dimension value is going to be copied from the
4576 4577 4578 4579
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4580 4581

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4582
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4583
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4584

4585
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4586 4587
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4588 4589
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4590
    dimensions.
C
caoying03 已提交
4591

4592
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4593 4594 4595 4596
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4597 4598

    Args:
4599
        x(variable): The input tensor.
C
caoying03 已提交
4600 4601
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4602 4603 4604 4605 4606
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4607
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4608 4609 4610 4611
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4612
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4613

4614 4615
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4616

X
Xin Pan 已提交
4617 4618 4619
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4620 4621
    Examples:
        .. code-block:: python
G
guosheng 已提交
4622

4623
            data = fluid.layers.data(
4624
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4625
            reshaped = fluid.layers.reshape(
4626
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4627 4628 4629
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4630
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4631 4632 4633 4634 4635
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4636

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4652
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4653
    out = helper.create_tmp_variable(dtype=x.dtype)
4654
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4655
    helper.append_op(
4656
        type="reshape2",
X
Xin Pan 已提交
4657
        inputs=inputs,
D
dzhwinter 已提交
4658
        attrs={"shape": shape},
4659 4660
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4661

D
dzhwinter 已提交
4662
    return helper.append_activation(out)
4663

4664

4665
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4689
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4690
        axes (list): List of integers, indicating the dimensions to be squeezed.
4691
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4692 4693 4694 4695 4696 4697 4698 4699

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4700
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4701 4702
    """
    helper = LayerHelper("squeeze", **locals())
4703
    out = helper.create_tmp_variable(dtype=input.dtype)
4704
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4705
    helper.append_op(
4706
        type="squeeze2",
4707
        inputs={"X": input},
Y
Yibing Liu 已提交
4708
        attrs={"axes": axes},
4709 4710
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4711

4712 4713 4714
    return out


4715
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4726
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4727
        axes (list): List of integers, indicating the dimensions to be inserted.
4728
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4729 4730 4731 4732 4733 4734 4735 4736

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4737
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4738 4739
    """
    helper = LayerHelper("unsqueeze", **locals())
4740
    out = helper.create_tmp_variable(dtype=input.dtype)
4741
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4742
    helper.append_op(
4743
        type="unsqueeze2",
4744
        inputs={"X": input},
Y
Yibing Liu 已提交
4745
        attrs={"axes": axes},
4746 4747
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4748

4749 4750
    return out

4751

Y
yangyaming 已提交
4752
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4753
    """
Y
Yibing Liu 已提交
4754
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4755 4756 4757 4758
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4759
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4760 4761 4762 4763 4764 4765

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4766
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4767 4768 4769
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4770
            target_lod: [4, 2]
Y
yangyaming 已提交
4771 4772

            then we get a 1-level LoDTensor:
4773
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4774 4775 4776 4777 4778 4779
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4780
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4781 4782 4783 4784
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4785
                y.data = [[2, 4]]
Y
yangyaming 已提交
4786 4787 4788
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4789
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4790 4791 4792 4793 4794 4795
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4796
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4797 4798 4799 4800
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4801
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4802 4803 4804 4805
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4806
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4807 4808 4809 4810 4811
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4812
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4813
                           from :attr:`y`.
Y
yangyaming 已提交
4814
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4815
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4816 4817

    Returns:
Y
Yibing Liu 已提交
4818
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4819 4820

    Raises:
Y
Yibing Liu 已提交
4821
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4857
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4886 4887
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4915 4916 4917 4918


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4919
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4920
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4921

G
guosheng 已提交
4922 4923 4924 4925
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4948
                         The length of :attr:paddings must be
G
guosheng 已提交
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4959

G
guosheng 已提交
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4974 4975


C
chengduo 已提交
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5056 5057 5058 5059 5060 5061 5062
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5063 5064
    called label-smoothing regularization (LSR).

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5088
                              be :math:`(1, class\_num)`.
5089 5090
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5091
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5119 5120


Y
yi.wu 已提交
5121
@templatedoc()
5122 5123
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5124
    ${comment}
5125 5126

    Args:
Y
yi.wu 已提交
5127 5128
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5129 5130 5131
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5132 5133

    Returns:
Y
update  
yi.wu 已提交
5134
        Variable: ${out_comment}.
5135 5136

    Examples:
5137 5138
        .. code-block:: python

5139
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5185 5186
        .. code-block:: python

W
whs 已提交
5187 5188 5189 5190
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5191
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5192 5193 5194 5195 5196 5197
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5198 5199


5200 5201 5202 5203 5204
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5205
    """
Q
qiaolongfei 已提交
5206
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5207

5208
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5209 5210 5211
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5212

5213
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5214

5215
    Args:
5216
        input (Variable): The input tensor of image resize layer,
5217 5218
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5219
        out_shape(list|tuple|Variable|None): Output shape of image resize
5220 5221
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5222
        scale(float|None): The multiplier for the input height or width.
5223 5224 5225
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5226 5227
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5228 5229
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5230 5231

    Returns:
Q
update  
qiaolongfei 已提交
5232 5233
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5234

5235 5236 5237
    Examples:
        .. code-block:: python

5238
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5239
    """
5240 5241 5242 5243
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5244 5245
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5246 5247
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5248 5249 5250 5251

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5252 5253 5254
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5255
    if out_shape is not None:
B
baiyf 已提交
5256 5257 5258
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5259 5260 5261 5262 5263 5264
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5265 5266 5267 5268
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5269 5270
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5271
        type=resample_methods[resample],
5272
        inputs=inputs,
5273 5274 5275 5276
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5277 5278


Y
yuyang18 已提交
5279
@templatedoc(op_type="bilinear_interp")
5280 5281
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5282 5283 5284 5285 5286 5287
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5288

Y
yuyang18 已提交
5289 5290 5291 5292 5293 5294 5295 5296
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5297 5298 5299 5300 5301 5302 5303
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5304 5305 5306
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5307 5308 5309 5310 5311 5312 5313
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5314
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5315

5316
    Returns:
Q
update  
qiaolongfei 已提交
5317
        Variable: The output is a 4-D tensor of the shape
5318
        (num_batches, channls, out_h, out_w).
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5329 5330 5331
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5332 5333 5334
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5335 5336
def gather(input, index):
    """
Q
qiaolongfei 已提交
5337 5338
    **Gather Layer**

5339
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5340 5341 5342 5343
    of X indexed by `index` and concatenate them together.

    .. math::

5344
        Out = X[Index]
W
whs 已提交
5345 5346 5347 5348 5349 5350 5351


    .. code-block:: text


                Given:

5352 5353
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5364
        input (Variable): The source input with rank>=1.
W
whs 已提交
5365 5366 5367 5368 5369 5370
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5371

W
whs 已提交
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5441

5442 5443 5444
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5445
    """
F
stash  
fengjiayi 已提交
5446
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5447
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5448
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5449
    if seed is None:
5450
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5451
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5452
    if isinstance(seed, int):
F
fengjiayi 已提交
5453 5454 5455 5456 5457
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5458 5459 5460 5461
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5462
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5463 5464
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5465 5466
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5467
    return out
W
whs 已提交
5468 5469


5470
def log(x, name=None):
W
wanghaoshuang 已提交
5471 5472 5473 5474 5475
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5476
        Out = \\ln(x)
W
wanghaoshuang 已提交
5477 5478

    Args:
5479
        x (Variable): Input tensor.
5480 5481
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5482 5483 5484 5485 5486 5487 5488 5489

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5490
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5491 5492
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5493
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5494
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5495
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5496 5497 5498
    return out


5499
def relu(x, name=None):
W
wanghaoshuang 已提交
5500 5501
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5502
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5503 5504 5505 5506
    the tensor elementwise.

    .. math::

5507
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5508 5509

    Args:
5510
        x (Variable): The input tensor.
5511 5512
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5513 5514 5515 5516 5517 5518 5519 5520

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5521
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5522 5523
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5524
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5525
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5526
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5527
    return out
5528 5529


W
whs 已提交
5530 5531 5532
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5533 5534 5535 5536
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5537
    .. math::
5538 5539

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5540

5541
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5542 5543 5544 5545 5546
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5547
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5548
                           Its shape should be the same as input.
5549
        num_classes (int): The possible number of labels.
W
whs 已提交
5550 5551 5552 5553

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5554
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5555 5556 5557 5558

    Examples:

        .. code-block:: python
5559

W
whs 已提交
5560 5561 5562 5563 5564 5565 5566 5567 5568
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5569 5570
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5571
        outputs={
W
whs 已提交
5572 5573 5574
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5575 5576 5577
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5652
                    isinstance(shape, Variable)):
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5686

5687 5688
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5689

5690 5691 5692 5693
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5694

5695 5696 5697 5698 5699
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5700 5701 5702

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5747 5748


W
whs 已提交
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


J
jerrywgz 已提交
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5851 5852
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5903

5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5914 5915
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5931
        ValueError: If axis is not in range [0, rank(x)].
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
5949
    x_shape = helper.create_tmp_variable(x.dtype)
5950
    helper.append_op(
5951
        type='flatten2',
5952
        inputs={"X": x},
5953 5954
        outputs={'Out': out,
                 'XShape': x_shape},
5955 5956
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
5957 5958


C
chenweihang 已提交
5959
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
5960
    """
C
chenweihang 已提交
5961
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
5962 5963 5964
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
5965 5966 5967 5968 5969
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
5970
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
5971 5972 5973 5974 5975 5976
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
5977
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
5978 5979 5980
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
5981 5982 5983
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
5995
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
5996 5997 5998 5999 6000 6001
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6002

6003

S
sneaxiy 已提交
6004 6005 6006 6007 6008 6009 6010 6011 6012
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6013

S
sneaxiy 已提交
6014
    .. math::
6015

S
sneaxiy 已提交
6016 6017 6018
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6019
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6020 6021 6022 6023
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6024 6025 6026
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6027 6028
    Returns:
        Variable: The output sequence mask.
6029

S
sneaxiy 已提交
6030 6031
    """

Q
qingqing01 已提交
6032
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6033 6034 6035 6036 6037
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6038 6039 6040
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6041 6042
        outputs={'Y': out},
        attrs={
6043
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6044 6045 6046
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6047 6048


X
Xin Pan 已提交
6049
def stack(x, axis=0):
S
sneaxiy 已提交
6050 6051 6052 6053
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6054 6055 6056 6057 6058 6059 6060

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6061
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6062
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6063 6064

    Args:
6065
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6066
        axis (int|None): The axis along which all inputs are stacked.
6067

S
sneaxiy 已提交
6068 6069
    Returns:
        Variable: The stacked variable.
6070

S
sneaxiy 已提交
6071 6072
    """

X
Xin Pan 已提交
6073 6074 6075 6076 6077 6078 6079 6080
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6081 6082
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6083

X
Xin Pan 已提交
6084
    return out
D
dzhwinter 已提交
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
        
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
        
        Attr(expand_times):  [1, 2, 2]
        
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
        
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
        
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out