compressor.py 46.8 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
W
whs 已提交
18
import copy
C
ceci3 已提交
19
import numpy as np
C
ceci3 已提交
20
import copy
C
ceci3 已提交
21
import inspect
C
ceci3 已提交
22
import shutil
W
whs 已提交
23
from time import gmtime, strftime
24
import platform
C
ceci3 已提交
25
import paddle
W
whs 已提交
26
import itertools
C
ceci3 已提交
27
import paddle.distributed.fleet as fleet
28
from ..quant.quanter import convert, quant_post
Z
zhouzj 已提交
29
from ..quant.reconstruction_quantization import quant_recon_static
C
ceci3 已提交
30 31
from ..common.recover_program import recover_inference_program
from ..common import get_logger
Z
zhouzj 已提交
32
from ..common.patterns import get_patterns, find_final_nodes
G
Guanghua Yu 已提交
33
from ..common.load_model import load_inference_model, get_model_dir, export_onnx
34 35
from ..common.dataloader import wrap_dataloader, get_feed_vars
from ..common.config_helper import load_config
C
ceci3 已提交
36
from ..analysis import TableLatencyPredictor
Z
zhouzj 已提交
37
from .create_compressed_program import build_distill_program, build_quant_program, build_prune_program, remove_unused_var_nodes
C
ceci3 已提交
38
from .strategy_config import TrainConfig, ProgramInfo, merge_config
39
from .auto_strategy import prepare_strategy, get_final_quant_config, create_strategy_config, create_train_config
40
from .config_helpers import extract_strategy_config, extract_train_config
41
from .utils.predict import with_variable_shape
C
ceci3 已提交
42 43 44

_logger = get_logger(__name__, level=logging.INFO)

C
ceci3 已提交
45 46
try:
    if platform.system().lower() == 'linux':
C
ceci3 已提交
47
        from ..quant import post_quant_hpo
C
ceci3 已提交
48 49 50
except Exception as e:
    _logger.warning(e)

C
ceci3 已提交
51 52 53 54 55

class AutoCompression:
    def __init__(self,
                 model_dir,
                 train_dataloader,
56 57 58
                 model_filename=None,
                 params_filename=None,
                 save_dir='./output',
W
whs 已提交
59
                 config=None,
60
                 input_shapes=None,
C
ceci3 已提交
61
                 target_speedup=None,
62
                 eval_callback=None,
C
ceci3 已提交
63 64 65 66 67 68 69
                 eval_dataloader=None,
                 deploy_hardware='gpu'):
        """
        Compress inference model automatically.

        Args:
            model_dir(str): The path of inference model that will be compressed, and
C
ceci3 已提交
70
                the model and params that saved by ``paddle.static.save_inference_model``
C
ceci3 已提交
71
                are under the path.
G
Guanghua Yu 已提交
72
            train_dataloader(Python Generator, Paddle.io.DataLoader): The
73 74
                Generator or Dataloader provides train data, and it could
                return a batch every time.
C
ceci3 已提交
75 76
            model_filename(str):  The name of model file. 
            params_filename(str): The name of params file.
W
whs 已提交
77 78
            save_dir(str): The path to save compressed model. The models in this directory will be overwrited
                after calling 'compress()' function.
79 80 81 82 83 84 85
            input_shapes(dict|tuple|list): It is used when the model has implicit dimensions except batch size. 
                If it is a dict, the key is the name of input and the value is the shape. 
                Given the input shape of input "X" is [-1, 3, -1, -1] which means the batch size, hight
                and width is variable. And the input_shapes can be set {"X": [-1, 3, 512, 512]}.
                If it is a list or tuple, the number of model's inputs should be 1. And the shape of input
                will be set input_shapes. None means keeping the original shapes, then
                the compression strategies searching may be skipped. Default: None.
C
ceci3 已提交
86 87 88 89 90
            train_config(dict, optional): The train config in the compression process, the key can 
                reference `<https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L103>`_ . 
                Only one strategy(quant_post with hyperparameter optimization) can set train_config 
                to None. Default: None. 
            strategy_config(dict, list(dict), optional): The strategy config. You can set single config to get multi-strategy config, such as
Z
zhouzj 已提交
91
                1. set ``QuantAware`` and ``Distillation`` to get quant_aware and distillation compress config.
Z
zhouzj 已提交
92 93 94 95 96
                    The Quantization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L55`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
                2. set ``QuantPost`` and ``HyperParameterOptimization`` to get quant_post and hyperparameter optimization compress config.
                    The QuantPost config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L187`_ .
                    The HyperParameterOptimization config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L160`_ .
C
ceci3 已提交
97
                3. set ``ChannelPrune`` and ``Distillation`` to get channel prune and distillation compress config.
Z
zhouzj 已提交
98 99
                    The ChannelPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L254`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
C
ceci3 已提交
100
                4. set ``ASPPrune`` and ``Distillation`` to get asp prune and distillation compress config.
Z
zhouzj 已提交
101 102
                    The ASPPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L268`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
C
ceci3 已提交
103
                5. set ``TransformerPrune`` and ``Distillation`` to get transformer prune and distillation compress config.
Z
zhouzj 已提交
104 105
                    The TransformerPrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L278`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
C
ceci3 已提交
106
                6. set ``UnstructurePrune`` and ``Distillation`` to get unstructureprune and distillation compress config.
Z
zhouzj 已提交
107 108
                    The UnstructurePrune config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L288`_ .
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
C
ceci3 已提交
109
                7. set ``Distillation`` to use one teacher modol to distillation student model.
Z
zhouzj 已提交
110
                    The Distillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L107`_ .
C
ceci3 已提交
111
                8. set ``MultiTeacherDistillation`` to use multi-teacher to distillation student model.
Z
zhouzj 已提交
112 113 114
                    The MultiTeacherDistillation config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L134`_ .
                9. set ``QuantPost`` to get quant_post compress config.
                    The QuantPost config can reference `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/auto_compression/strategy_config.py#L187`_ .
C
ceci3 已提交
115 116 117 118

                If set to None, will choose a strategy automatically. Default: None.
            target_speedup(float, optional): target speedup ratio by the way of auto compress. Default: None.
            eval_callback(function, optional): eval function, define by yourself to return the metric of the inference program, can be used to judge the metric of compressed model. The documents of how to write eval function is `https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/zh_cn/api_cn/static/auto-compression/custom_function.rst`_ . ``eval_callback`` and ``eval_dataloader`` cannot be None at the same time. Dafault: None.
119 120 121
            eval_dataloader(paddle.io.Dataloader, optional):  The Generator or Dataloader provides eval data, and it could
                 return a batch every time. If eval_dataloader is None, will take first 5000 sample from train_dataloader 
                 as eval_dataloader, and the metric of eval_dataloader for reference only. Dafault: None.
C
ceci3 已提交
122 123
            deploy_hardware(str, optional): The hardware you want to deploy. Default: 'gpu'.
        """
G
Guanghua Yu 已提交
124
        self.model_dir = model_dir.rstrip('/')
125 126
        self.updated_model_dir, self.model_filename, self.params_filename = get_model_dir(
            model_dir, model_filename, params_filename)
C
ceci3 已提交
127

C
ceci3 已提交
128
        self.final_dir = save_dir
W
whs 已提交
129
        if not os.path.exists(self.final_dir):
130
            os.makedirs(self.final_dir, exist_ok=True)
W
whs 已提交
131 132 133 134

        # load config
        if isinstance(config, str):
            config = load_config(config)
C
ceci3 已提交
135 136 137
            self.train_config = extract_train_config(config)
        elif isinstance(config, dict):
            if 'TrainConfig' in config:
C
ceci3 已提交
138
                self.train_config = TrainConfig(**config.pop('TrainConfig'))
C
ceci3 已提交
139 140
            else:
                self.train_config = None
C
ceci3 已提交
141 142
        else:
            self.train_config = None
C
ceci3 已提交
143
        self.strategy_config = extract_strategy_config(config)
W
whs 已提交
144 145

        # prepare dataloader
G
Guanghua Yu 已提交
146
        self.feed_vars = get_feed_vars(self.model_dir, model_filename,
W
whs 已提交
147 148 149 150
                                       params_filename)
        self.train_dataloader = wrap_dataloader(train_dataloader,
                                                self.feed_vars)
        self.eval_dataloader = wrap_dataloader(eval_dataloader, self.feed_vars)
C
ceci3 已提交
151 152 153
        if self.eval_dataloader is None:
            self.eval_dataloader = self._get_eval_dataloader(
                self.train_dataloader)
W
whs 已提交
154

C
ceci3 已提交
155 156
        self.target_speedup = target_speedup
        self.eval_function = eval_callback
157
        self.deploy_hardware = deploy_hardware
158

C
ceci3 已提交
159
        paddle.enable_static()
C
ceci3 已提交
160
        self._exe, self._places = self._prepare_envs()
Z
zhouzj 已提交
161
        self.default_distill_node_pair, self.model_type = self._get_model_info()
C
ceci3 已提交
162

163
        if self.train_config is not None and self.train_config.use_fleet:
C
ceci3 已提交
164 165
            fleet.init(is_collective=True)

166 167 168 169 170 171 172
        if with_variable_shape(
                self.model_dir,
                model_filename=model_filename,
                params_filename=params_filename) and input_shapes is not None:

            infer_shape_model = self.create_tmp_dir(
                self.final_dir, prefix="infer_shape_model_")
G
Guanghua Yu 已提交
173
            self._infer_shape(self.model_dir, self.model_filename,
174 175 176 177 178
                              self.params_filename, input_shapes,
                              infer_shape_model)
            self.model_dir = infer_shape_model
            self.model_filename = "infered_shape.pdmodel"
            self.params_filename = "infered_shape.pdiparams"
W
whs 已提交
179

C
ceci3 已提交
180 181
        if self.strategy_config is None:
            strategy_config = prepare_strategy(
C
ceci3 已提交
182 183 184
                self._exe, self._places, self.model_dir, self.model_filename,
                self.params_filename, self.target_speedup, self.deploy_hardware,
                self.model_type)
C
ceci3 已提交
185 186 187 188 189 190 191 192 193
            self.strategy_config = strategy_config
        elif isinstance(self.strategy_config, dict):
            self.strategy_config = [self.strategy_config]
        elif isinstance(self.strategy_config, str):
            strategy_config = create_strategy_config(self.strategy_config,
                                                     self.model_type)

        self._strategy, self._config = self._prepare_strategy(
            self.strategy_config)
C
ceci3 已提交
194
        self.train_config = self._get_final_train_config(
195 196
            self.train_config, self._strategy, self.model_type)
        _logger.info(f"Selected strategies: {self._strategy}")
C
ceci3 已提交
197 198 199

    def _get_final_train_config(self, train_config, strategy_config,
                                model_type):
200
        # If train_config is None, set default train_config
C
ceci3 已提交
201 202 203 204 205
        if train_config is None:
            train_config = create_train_config(strategy_config, model_type)

        train_configs = [train_config]
        for idx in range(1, len(self._strategy)):
C
ceci3 已提交
206 207 208
            if 'qat' in self._strategy[idx] or 'ptq' in self._strategy[idx]:
                ### If compress strategy more than one, the TrainConfig in the yaml only used in prune.
                ### The TrainConfig for quantization is extrapolate from above.
C
ceci3 已提交
209 210
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                ### the epoch, train_iter, learning rate of quant is 10% of the prune compress
Z
zhouzj 已提交
211
                if self.model_type != 'transformer' and train_config.epochs is not None:
C
ceci3 已提交
212 213
                    tmp_train_config['epochs'] = max(
                        int(train_config.epochs * 0.1), 1)
C
ceci3 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                if train_config.train_iter is not None:
                    tmp_train_config['train_iter'] = int(
                        train_config.train_iter * 0.1)
                if isinstance(train_config.learning_rate, float):
                    tmp_train_config[
                        'learning_rate'] = train_config.learning_rate * 0.1
                else:
                    if 'learning_rate' in train_config.learning_rate:
                        tmp_train_config['learning_rate'][
                            'learning_rate'] = train_config.learning_rate[
                                'learning_rate'] * 0.1
                    else:  ### learning rate decay is PiecewiseDecay
                        tmp_train_config['learning_rate']['values'] = list(
                            map(lambda x: x * 0.1, train_config.learning_rate[
                                'values']))
                train_cfg = TrainConfig(**tmp_train_config)
            else:
                tmp_train_config = copy.deepcopy(train_config.__dict__)
                train_cfg = TrainConfig(**tmp_train_config)

            train_configs.append(train_cfg)
        return train_configs
236

237 238 239 240 241 242 243
    def _infer_shape(self, model_dir, model_filename, params_filename,
                     input_shapes, save_path):
        assert type(input_shapes) in [
            dict, list, tuple
        ], f'Type of input_shapes should be in [dict, tuple or list] but got {type(input_shapes)}.'
        paddle.enable_static()
        exe = paddle.static.Executor(paddle.CPUPlace())
C
ceci3 已提交
244
        [inference_program, feed_target_names,
245 246
         fetch_targets] = load_inference_model(model_dir, exe, model_filename,
                                               params_filename)
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

        if type(input_shapes) in [list, tuple]:
            assert len(
                feed_target_names
            ) == 1, f"The number of model's inputs should be 1 but got {feed_target_names}."
            input_shapes = {feed_target_names[0]: input_shapes}

        feed_vars = []
        for var_ in inference_program.list_vars():
            if var_.name in feed_target_names:
                feed_vars.append(var_)
                var_.desc.set_shape(input_shapes[var_.name])

        for block in inference_program.blocks:
            for op in block.ops:
                if op.type not in ["feed", "fetch"]:
                    op.desc.infer_shape(block.desc)

        save_path = os.path.join(save_path, "infered_shape")
266
        os.makedirs(save_path, exist_ok=True)
267
        paddle.static.save_inference_model(
C
ceci3 已提交
268 269 270 271 272 273
            save_path,
            feed_vars,
            fetch_targets,
            exe,
            program=inference_program,
            clip_extra=False)
274 275 276 277 278 279 280 281
        _logger.info(f"Saved model infered shape to {save_path}")

    @property
    def deploy_hardware(self):
        return self._deploy_hardware

    @deploy_hardware.setter
    def deploy_hardware(self, value):
282 283 284 285
        supported_hardware = TableLatencyPredictor.hardware_list + [
            'gpu',  # nvidia gpu
            "cpu",  # intel cpu
        ]
286 287 288
        if value is not None:
            # Fail-fast when deploy hardware is set explicitly
            assert (
289 290
                value in supported_hardware
            ), f"Hardware should be in supported list {supported_hardware} but got {value}. Or you can set deploy_hardware None."
291 292
        self._deploy_hardware = value

293 294 295 296 297 298 299 300 301 302 303
    def _get_eval_dataloader(self, train_dataloader):
        def _gen():
            len_loader = len(list(train_dataloader()))
            ### max eval_dataloader is 5000 if use train_dataloader as eval_dataloader
            slice_len = min(5000, len_loader)
            ret = list(itertools.islice(train_dataloader(), slice_len))
            for i in ret:
                yield i

        return _gen

C
ceci3 已提交
304 305
    def _prepare_envs(self):
        devices = paddle.device.get_device().split(':')[0]
C
ceci3 已提交
306
        places = paddle.device._convert_to_place(devices)
W
whs 已提交
307
        _logger.info(f"devices: {devices}")
C
ceci3 已提交
308 309 310
        exe = paddle.static.Executor(places)
        return exe, places

Z
zhouzj 已提交
311
    def _get_model_info(self):
312 313 314 315 316
        [inference_program, _, _] = (load_inference_model(
            self.model_dir,
            model_filename=self.model_filename,
            params_filename=self.params_filename,
            executor=self._exe))
Z
zhouzj 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329

        ### set the output of final weight node as the default distillation node
        distill_node = []
        final_weight_node = find_final_nodes(inference_program)
        for out_var in final_weight_node:
            distill_node.append('teacher_' + out_var.name())
            distill_node.append(out_var.name())

        model_type = None
        if not isinstance(self.strategy_config, dict):
            _, model_type = get_patterns(inference_program)
            _logger.info(f"Detect model type: {model_type}")

C
ceci3 已提交
330
        if self.model_filename is None:
331
            opt_model_filename = '__opt_model__'
C
ceci3 已提交
332
        else:
C
ceci3 已提交
333
            opt_model_filename = self.model_filename
C
ceci3 已提交
334 335
        program_bytes = inference_program._remove_training_info(
            clip_extra=False).desc.serialize_to_string()
336 337 338
        with open(
                os.path.join(self.updated_model_dir, opt_model_filename),
                "wb") as f:
C
ceci3 已提交
339 340
            f.write(program_bytes)
        shutil.move(
341 342
            os.path.join(self.updated_model_dir, opt_model_filename),
            os.path.join(self.updated_model_dir, self.model_filename))
Z
zhouzj 已提交
343 344

        return distill_node, model_type
C
ceci3 已提交
345 346 347 348 349 350 351 352

    def _prepare_strategy(self, strategy_config):
        if not isinstance(strategy_config, list):
            strategy_config = list(list(strategy_config))

        strategy = []
        config = []
        for strategy_c in strategy_config:
Z
zhouzj 已提交
353
            quant_config = strategy_c.get("QuantAware", None)
C
ceci3 已提交
354
            hpo_config = strategy_c.get("HyperParameterOptimization", None)
Z
zhouzj 已提交
355
            ptq_config = strategy_c.get("QuantPost", None)
C
ceci3 已提交
356 357 358
            prune_config = strategy_c.get("ChannelPrune", None)
            asp_config = strategy_c.get("ASPPrune", None)
            transformer_prune_config = strategy_c.get("TransformerPrune", None)
C
ceci3 已提交
359 360 361
            unstructure_prune_config = strategy_c.get("UnstructurePrune", None)
            single_teacher_distill_config = strategy_c.get("Distillation", None)
            if single_teacher_distill_config is not None and single_teacher_distill_config.teacher_model_dir is None:
C
ceci3 已提交
362 363 364
                single_teacher_distill_config.teacher_model_dir = self.model_dir
                single_teacher_distill_config.teacher_model_filename = self.model_filename
                single_teacher_distill_config.teacher_params_filename = self.params_filename
C
ceci3 已提交
365 366 367 368 369 370 371 372 373 374

            multi_teacher_distill_config = strategy_c.get(
                "MultiTeacherDistillation", None)

            assert (single_teacher_distill_config is None) or (multi_teacher_distill_config is None), \
                "Distillation and MultiTeacherDistillation cannot be set at the same time."
            self._distill_config = single_teacher_distill_config if \
                   single_teacher_distill_config is not None else \
                   multi_teacher_distill_config

C
ceci3 已提交
375
            only_distillation = True
C
ceci3 已提交
376

C
ceci3 已提交
377 378 379
            ### case1: prune_config & distill config
            if prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
380
                strategy.append('channel_prune_dis')
C
ceci3 已提交
381 382
                config.append(merge_config(prune_config, self._distill_config))

C
ceci3 已提交
383 384 385
            ### case2: asp_config & distill config
            if asp_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
386 387 388
                strategy.append('asp_prune_dis')
                config.append(merge_config(asp_config, self._distill_config))

C
ceci3 已提交
389 390 391
            ### case3: transformer_prune_config & distill config
            if transformer_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
392 393 394 395 396
                strategy.append('transformer_prune_dis')
                config.append(
                    merge_config(transformer_prune_config,
                                 self._distill_config))

C
ceci3 已提交
397 398 399
            ### case4: unstructure_config & distill config
            if unstructure_prune_config is not None and self._distill_config is not None:
                only_distillation = False
C
ceci3 已提交
400 401 402 403 404
                strategy.append('unstructure_prune_dis')
                config.append(
                    merge_config(unstructure_prune_config,
                                 self._distill_config))

C
ceci3 已提交
405
            ### case5: quant_config & hpo_config ==> PTQ & HPO
Z
zhouzj 已提交
406
            if ptq_config is not None and hpo_config is not None:
C
ceci3 已提交
407 408
                only_distillation = False
                strategy.append('ptq_hpo')
Z
zhouzj 已提交
409
                config.append(merge_config(ptq_config, hpo_config))
C
ceci3 已提交
410 411

            ### case6: quant_config & distill config ==> QAT & Distill
C
ceci3 已提交
412
            if quant_config is not None and self._distill_config is not None and 'ptq_hpo' not in strategy:
C
ceci3 已提交
413 414 415 416
                only_distillation = False
                strategy.append('qat_dis')
                config.append(merge_config(quant_config, self._distill_config))

C
ceci3 已提交
417
            ### case7: distill_config
C
ceci3 已提交
418
            if only_distillation == True and self._distill_config is not None:
C
ceci3 已提交
419 420 421 422 423 424
                if single_teacher_distill_config is not None:
                    strategy.append('single_teacher_dis')
                    config.append(single_teacher_distill_config)
                else:
                    strategy.append('multi_teacher_dis')
                    config.append(multi_teacher_distill_config)
C
ceci3 已提交
425

Z
zhouzj 已提交
426 427 428 429 430
            ### case8: only qtp_config ==> PTQ
            if ptq_config is not None and hpo_config is None:
                strategy.append('quant_post')
                config.append(ptq_config)

C
ceci3 已提交
431 432 433 434 435 436 437 438 439 440 441 442
        ### NOTE: keep quantation in the last step
        idx = -1
        if 'qat_dis' in strategy and strategy.index('qat_dis') != (
                len(strategy) - 1):
            idx = strategy.index('qat_dis')
        elif 'ptq_hpo' in strategy and strategy.index('ptq_hpo') != (
                len(strategy) - 1):
            idx = strategy.index('ptq_hpo')

        if idx != -1:
            strategy = strategy[:idx] + strategy[idx + 1:] + [strategy[idx]]
            config = config[:idx] + config[idx + 1:] + [config[idx]]
C
ceci3 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

        return strategy, config

    def _prepare_fleet_strategy(train_config):
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()

        strategy = fleet.DistributedStrategy()
        strategy.build_strategy = build_strategy
        if train_config.recompute_config is not None:
            strategy.recompute = True
            strategy.recompute_configs = { ** train_config.recompute_config}
        if train_config.sharding_config is not None:
            strategy.sharding = True
            strategy.sharding_configs = { ** train_config.sharding_config}
        if train_config.amp_config is not None:
            strategy.amp = True
            strategy.amp_configs = { ** train_config.amp_config}
461 462
        if train_config.asp_config is not None:
            strategy.asp = True
C
ceci3 已提交
463 464
        return strategy

C
ceci3 已提交
465
    def _prepare_program(self, program, feed_target_names, fetch_targets,
Z
zhouzj 已提交
466
                         patterns, strategy, config, train_config):
C
ceci3 已提交
467 468 469 470 471
        train_program = recover_inference_program(program)
        startup_program = paddle.static.Program()
        train_program_info = ProgramInfo(startup_program, train_program,
                                         feed_target_names, fetch_targets)

C
ceci3 已提交
472
        config_dict = config.__dict__
473 474 475
        if "prune_strategy" in config_dict and config_dict[
                "prune_strategy"] == "gmp" and config_dict[
                    'gmp_config'] is None:
Z
zhouzj 已提交
476 477 478
            _logger.info(
                "Calculating the iterations per epoch……(It will take some time)")
            # NOTE:XXX: This way of calculating the iters needs to be improved.
C
ceci3 已提交
479
            if train_config.epochs:
G
Guanghua Yu 已提交
480
                iters_per_epoch = len(list(self.train_dataloader()))
C
ceci3 已提交
481 482 483
                total_iters = train_config.epochs * iters_per_epoch
            elif train_config.train_iter:
                total_iters = train_config.train_iter
G
Guanghua Yu 已提交
484 485 486
            else:
                raise RuntimeError(
                    'train_config must has `epochs` or `train_iter` field.')
Z
zhouzj 已提交
487 488
            config_dict['gmp_config'] = {
                'stable_iterations': 0,
C
ceci3 已提交
489 490
                'pruning_iterations': max(0.45 * total_iters, 30),
                'tunning_iterations': max(0.45 * total_iters, 30),
Z
zhouzj 已提交
491
                'resume_iteration': -1,
C
ceci3 已提交
492
                'pruning_steps': 100 if (0.45 * total_iters) > 1000 else 1,
Z
zhouzj 已提交
493 494
                'initial_ratio': 0.15,
            }
C
ceci3 已提交
495 496
        ### add prune program
        self._pruner = None
C
ceci3 已提交
497
        if 'prune' in strategy:
C
ceci3 已提交
498 499
            self._pruner, train_program_info = build_prune_program(
                self._exe, self._places, config_dict, train_program_info,
C
ceci3 已提交
500
                strategy, patterns, self.eval_dataloader)
C
ceci3 已提交
501

C
ceci3 已提交
502
        if train_config.use_fleet:
Z
zhouzj 已提交
503
            dist_strategy = self._prepare_fleet_strategy(train_config)
C
ceci3 已提交
504 505 506 507
        else:
            dist_strategy = None

        ### add distill program
C
ceci3 已提交
508
        if 'dis' in strategy:
C
ceci3 已提交
509 510 511 512
            train_program_info, test_program_info = build_distill_program(
                self._exe,
                self._places,
                config_dict,
C
ceci3 已提交
513
                train_config.__dict__,
C
ceci3 已提交
514 515
                train_program_info,
                pruner=self._pruner,
C
ceci3 已提交
516
                dist_strategy=dist_strategy,
Z
zhouzj 已提交
517
                default_distill_node_pair=self.default_distill_node_pair)
C
ceci3 已提交
518 519 520

        self._quant_config = None
        ### add quant_aware program, quant always is last step
C
ceci3 已提交
521
        if 'qat' in strategy:
C
ceci3 已提交
522 523 524
            train_program_info, test_program_info, self._quant_config = build_quant_program(
                self._exe, self._places, config_dict, train_program_info,
                test_program_info)
C
ceci3 已提交
525
        if train_config.sparse_model:
Z
zhouzj 已提交
526
            from ..prune.unstructured_pruner import UnstructuredPruner
Z
zhouzj 已提交
527
            # NOTE: The initialization parameter of this pruner doesn't work, it is only used to call the 'set_static_masks' function
Z
zhouzj 已提交
528 529 530 531 532 533
            self._pruner = UnstructuredPruner(
                train_program_info.program,
                mode='ratio',
                ratio=0.75,
                prune_params_type='conv1x1_only',
                place=self._places)
Z
zhouzj 已提交
534
            self._pruner.set_static_masks()  # Fixed model sparsity
C
ceci3 已提交
535 536 537

        self._exe.run(train_program_info.startup_program)

C
ceci3 已提交
538 539 540 541
        if (not train_config.use_fleet) and train_config.amp_config is not None:
            if hasattr(
                    train_config.amp_config,
                    'use_pure_fp16') and train_config.amp_config.use_pure_fp16:
C
ceci3 已提交
542 543 544
                train_program_info.optimizer.amp_init(
                    self._places, scope=paddle.static.global_scope())

C
ceci3 已提交
545
        if 'asp' in strategy:
C
ceci3 已提交
546 547 548
            ### prune weight in scope
            self._pruner.prune_model(train_program_info.program)

C
ceci3 已提交
549
        if not train_config.use_fleet:
C
ceci3 已提交
550
            train_program_info = self._compiled_program(train_program_info,
C
ceci3 已提交
551
                                                        strategy)
C
ceci3 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
            test_program_info = self._compiled_program(test_program_info,
                                                       self._strategy)
        return train_program_info, test_program_info

    def _compiled_program(self, program_info, strategy):
        compiled_prog = paddle.static.CompiledProgram(program_info.program)
        build_strategy = paddle.static.BuildStrategy()
        exec_strategy = paddle.static.ExecutionStrategy()
        if 'qat' in strategy:
            build_strategy.memory_optimize = False
            build_strategy.enable_inplace = False
            build_strategy.fuse_all_reduce_ops = False
            build_strategy.sync_batch_norm = False

        compiled_prog = compiled_prog.with_data_parallel(
            loss_name=program_info.fetch_targets[0].name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
        program_info.program = compiled_prog
        return program_info

573
    def create_tmp_dir(self, base_dir, prefix="tmp"):
W
whs 已提交
574
        # create a new temp directory in final dir
C
ceci3 已提交
575 576
        s_datetime = strftime("%Y_%m_%d_%H_%M", gmtime())
        tmp_base_name = "_".join([prefix, str(os.getppid()), s_datetime])
577 578 579 580
        tmp_dir = os.path.join(base_dir, tmp_base_name)
        if not os.path.exists(tmp_dir):
            os.makedirs(tmp_dir)
        return tmp_dir
W
whs 已提交
581

582
    def compress(self):
583
        assert len(self._strategy) > 0
584
        self.tmp_dir = self.create_tmp_dir(self.final_dir)
585 586 587 588
        strategy = None
        config = None
        train_config = None
        strategy_idx = None
Z
zhouzj 已提交
589
        self.final_metric = -1.0
C
ceci3 已提交
590
        for strategy_idx, (
C
ceci3 已提交
591 592 593 594
                strategy, config, train_config
        ) in enumerate(zip(self._strategy, self._config, self.train_config)):
            self.single_strategy_compress(strategy, config, strategy_idx,
                                          train_config)
C
ceci3 已提交
595 596 597

        if strategy == 'ptq_hpo' and config.max_quant_count == 1 and platform.system(
        ).lower() == 'linux':
C
ceci3 已提交
598
            ptq_loss = post_quant_hpo.g_min_emd_loss
C
ceci3 已提交
599

C
ceci3 已提交
600 601
            final_quant_config = get_final_quant_config(ptq_loss,
                                                        self.model_type)
C
ceci3 已提交
602 603 604 605
            if final_quant_config is not None:
                quant_strategy, quant_config = self._prepare_strategy(
                    final_quant_config)
                self.single_strategy_compress(quant_strategy[0],
C
ceci3 已提交
606 607
                                              quant_config[0], strategy_idx,
                                              train_config)
C
ceci3 已提交
608
        if paddle.distributed.get_rank() == 0:
C
ceci3 已提交
609 610 611
            tmp_model_path = os.path.join(
                self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1)))
            final_model_path = os.path.join(self.final_dir)
W
whs 已提交
612 613 614 615
            for _file in os.listdir(tmp_model_path):
                _file_path = os.path.join(tmp_model_path, _file)
                if os.path.isfile(_file_path):
                    shutil.copy(_file_path, final_model_path)
W
whs 已提交
616
            shutil.rmtree(self.tmp_dir)
Z
zhouzj 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629

            if self.eval_function is not None and self.final_metric < 0.0:
                [inference_program, feed_target_names, fetch_targets]= load_inference_model( \
                    final_model_path, \
                    model_filename=self.model_filename, params_filename=self.params_filename,
                    executor=self._exe)
                self.final_metric = self.eval_function(
                    self._exe, inference_program, feed_target_names,
                    fetch_targets)
            if self.eval_function is not None:
                _logger.info("==> The metric of final model is {:.4f}".format(
                    self.final_metric))

C
ceci3 已提交
630
            _logger.info(
G
Guanghua Yu 已提交
631
                "==> The ACT compression has been completed and the final model is saved in `{}`".
C
ceci3 已提交
632
                format(final_model_path))
C
ceci3 已提交
633

C
ceci3 已提交
634 635
    def single_strategy_compress(self, strategy, config, strategy_idx,
                                 train_config):
636 637
        # start compress, including train/eval model
        # TODO: add the emd loss of evaluation model.
C
ceci3 已提交
638 639 640 641 642 643 644
        if strategy_idx == 0:
            model_dir = self.model_dir
        else:
            model_dir = os.path.join(self.tmp_dir,
                                     'strategy_{}'.format(str(strategy_idx)))

        if self.updated_model_dir != model_dir:
G
Guanghua Yu 已提交
645 646
            # If model is ONNX, convert it to inference model firstly.
            load_inference_model(
C
ceci3 已提交
647
                model_dir,
G
Guanghua Yu 已提交
648 649 650
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                executor=self._exe)
651
        if strategy == 'quant_post':
Z
zhouzj 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
            if config.recon_level is None:
                quant_post(
                    self._exe,
                    model_dir=self.updated_model_dir,
                    quantize_model_path=os.path.join(
                        self.tmp_dir,
                        'strategy_{}'.format(str(strategy_idx + 1))),
                    data_loader=self.train_dataloader,
                    model_filename=self.model_filename,
                    params_filename=self.params_filename,
                    save_model_filename=self.model_filename,
                    save_params_filename=self.params_filename,
                    batch_size=config.batch_size,
                    batch_nums=config.batch_nums,
                    algo=config.algo,
                    bias_correction=config.bias_correction,
                    hist_percent=config.hist_percent,
                    quantizable_op_type=config.quantize_op_types,
                    is_full_quantize=config.is_full_quantize,
                    weight_bits=config.weight_bits,
                    activation_bits=config.activation_bits,
                    activation_quantize_type=config.activation_quantize_type,
                    weight_quantize_type=config.weight_quantize_type,
                    onnx_format=config.onnx_format)
            else:
                quant_recon_static(
                    executor=self._exe,
                    model_dir=self.updated_model_dir,
                    quantize_model_path=os.path.join(
                        self.tmp_dir,
                        'strategy_{}'.format(str(strategy_idx + 1))),
                    data_loader=self.train_dataloader,
                    model_filename=self.model_filename,
                    params_filename=self.params_filename,
                    batch_size=config.batch_size,
                    batch_nums=config.batch_nums,
                    algo=config.algo,
                    hist_percent=config.hist_percent,
                    quantizable_op_type=config.quantize_op_types,
                    is_full_quantize=config.is_full_quantize,
                    bias_correction=config.bias_correction,
                    onnx_format=config.onnx_format,
                    weight_bits=config.weight_bits,
                    activation_bits=config.activation_bits,
                    weight_quantize_type=config.weight_quantize_type,
                    activation_quantize_type=config.activation_quantize_type,
                    recon_level=config.recon_level,
                    simulate_activation_quant=config.simulate_activation_quant,
                    regions=config.regions,
                    region_weights_names=config.region_weights_names,
                    skip_tensor_list=config.skip_tensor_list,
                    epochs=config.epochs,
                    lr=config.lr)
705 706

        elif strategy == 'ptq_hpo':
707 708 709
            if platform.system().lower() != 'linux':
                raise NotImplementedError(
                    "post-quant-hpo is not support in system other than linux")
C
ceci3 已提交
710 711 712 713 714
            if self.eval_function is None:
                # If eval function is None, ptq_hpo will use emd distance to eval the quantized model, so need the dataloader without label
                eval_dataloader = self.train_dataloader
            else:
                eval_dataloader = self.eval_dataloader
C
ceci3 已提交
715
            post_quant_hpo.quant_post_hpo(
C
ceci3 已提交
716 717
                self._exe,
                self._places,
Z
zhouzj 已提交
718
                model_dir=self.updated_model_dir,
C
ceci3 已提交
719
                quantize_model_path=os.path.join(
W
whs 已提交
720
                    self.tmp_dir, 'strategy_{}'.format(str(strategy_idx + 1))),
C
ceci3 已提交
721
                train_dataloader=self.train_dataloader,
C
ceci3 已提交
722
                eval_dataloader=eval_dataloader,
C
ceci3 已提交
723 724 725 726 727
                eval_function=self.eval_function,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_model_filename=self.model_filename,
                save_params_filename=self.params_filename,
C
ceci3 已提交
728 729 730 731 732 733 734 735
                quantizable_op_type=config.quantize_op_types,
                weight_bits=config.weight_bits,
                activation_bits=config.activation_bits,
                weight_quantize_type=config.weight_quantize_type,
                is_full_quantize=config.is_full_quantize,
                algo=config.ptq_algo,
                bias_correct=config.bias_correct,
                hist_percent=config.hist_percent,
C
ceci3 已提交
736
                batch_size=[1],
C
ceci3 已提交
737
                batch_num=config.batch_num,
C
ceci3 已提交
738
                onnx_format=config.onnx_format,
C
ceci3 已提交
739
                runcount_limit=config.max_quant_count)
C
ceci3 已提交
740 741

        else:
C
ceci3 已提交
742 743
            assert 'dis' in strategy, "Only support optimizer compressed model by distillation loss."

C
ceci3 已提交
744 745
            [inference_program, feed_target_names, fetch_targets]= load_inference_model( \
                model_dir, \
C
ceci3 已提交
746 747 748 749
                model_filename=self.model_filename, params_filename=self.params_filename,
                executor=self._exe)

            ### used to check whether the dataloader is right
C
ceci3 已提交
750
            self.metric_before_compressed = None
C
ceci3 已提交
751
            if self.eval_function is not None and train_config.origin_metric is not None:
C
ceci3 已提交
752
                _logger.info("start to test metric before compress")
C
ceci3 已提交
753 754 755 756
                metric = self.eval_function(self._exe, inference_program,
                                            feed_target_names, fetch_targets)
                _logger.info("metric of compressed model is: {}".format(metric))
                buf = 0.05
C
ceci3 已提交
757 758
                if metric < (float(train_config.origin_metric) - buf) or \
                        metric > (float(train_config.origin_metric) + buf):
C
ceci3 已提交
759 760 761 762
                    raise RuntimeError("target metric of pretrained model is {}, \
                          but now is {}, Please check the format of evaluation dataset \
                          or check the origin_metric in train_config"
                                                                     .format(\
C
ceci3 已提交
763
                          train_config.origin_metric, metric))
C
ceci3 已提交
764 765
                self.metric_before_compressed = metric

Z
zhouzj 已提交
766 767 768
            patterns = None
            if 'transformer' in strategy:
                patterns, _ = get_patterns(inference_program)
C
ceci3 已提交
769
            train_program_info, test_program_info = self._prepare_program(
C
ceci3 已提交
770
                inference_program, feed_target_names, fetch_targets, patterns,
Z
zhouzj 已提交
771
                strategy, config, train_config)
C
ceci3 已提交
772
            if 'unstructure' in strategy:
Z
zhouzj 已提交
773 774
                test_program_info.program._program = remove_unused_var_nodes(
                    test_program_info.program._program)
C
ceci3 已提交
775 776
            test_program_info = self._start_train(
                train_program_info, test_program_info, strategy, train_config)
C
ceci3 已提交
777 778
            if paddle.distributed.get_rank() == 0:
                self._save_model(test_program_info, strategy, strategy_idx)
C
ceci3 已提交
779

C
ceci3 已提交
780 781
    def _start_train(self, train_program_info, test_program_info, strategy,
                     train_config):
C
ceci3 已提交
782
        best_metric = -1.0
C
ceci3 已提交
783
        total_epochs = train_config.epochs if train_config.epochs else 100
G
Guanghua Yu 已提交
784
        total_train_iter = 0
785
        stop_training = False
786 787 788 789

        loss_vars = [var for var in train_program_info.loss_dict.values()]
        loss_names = [name for name in train_program_info.loss_dict.keys()]

G
Guanghua Yu 已提交
790
        for epoch_id in range(total_epochs):
791 792
            if stop_training:
                break
C
ceci3 已提交
793
            for batch_id, data in enumerate(self.train_dataloader()):
794
                loss = self._exe.run(train_program_info.program, \
C
ceci3 已提交
795
                    feed=data, \
796
                    fetch_list=train_program_info.fetch_targets+loss_vars)
797 798
                if not isinstance(train_program_info.learning_rate, float):
                    train_program_info.learning_rate.step()
C
ceci3 已提交
799
                if 'unstructure' in strategy:
C
ceci3 已提交
800 801
                    self._pruner.step()

C
ceci3 已提交
802
                if train_config.logging_iter is None:
C
ceci3 已提交
803 804
                    logging_iter = 10
                else:
C
ceci3 已提交
805
                    logging_iter = train_config.logging_iter
C
ceci3 已提交
806
                if batch_id % int(logging_iter) == 0:
807 808 809 810 811 812
                    print_info = "Total iter: {}, epoch: {}, batch: {}, loss: {}".format(
                        total_train_iter, epoch_id, batch_id, loss[0])
                    for idx, loss_value in enumerate(loss[1:]):
                        print_info += '{}: {} '.format(loss_names[idx],
                                                       loss_value)
                    _logger.info(print_info)
G
Guanghua Yu 已提交
813
                total_train_iter += 1
C
ceci3 已提交
814 815
                if total_train_iter % int(
                        train_config.eval_iter) == 0 and total_train_iter != 0:
C
ceci3 已提交
816 817 818
                    if self.eval_function is not None:

                        # GMP pruner step 3: update params before summrizing sparsity, saving model or evaluation. 
C
ceci3 已提交
819
                        if 'unstructure' in strategy:
C
ceci3 已提交
820 821 822 823 824 825 826 827 828 829
                            self._pruner.update_params()

                        metric = self.eval_function(
                            self._exe, test_program_info.program,
                            test_program_info.feed_target_names,
                            test_program_info.fetch_targets)

                        if metric > best_metric:
                            paddle.static.save(
                                program=test_program_info.program._program,
W
whs 已提交
830
                                model_path=os.path.join(self.tmp_dir,
C
ceci3 已提交
831
                                                        'best_model'))
C
ceci3 已提交
832
                            best_metric = metric
833 834 835
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
836 837 838 839
                            if self.metric_before_compressed is not None and float(
                                    abs(best_metric -
                                        self.metric_before_compressed)
                            ) / self.metric_before_compressed <= 0.005:
840
                                _logger.info(
Z
zhouzj 已提交
841
                                    "The error rate between the compressed model and original model is less than 0.5%. The training process ends."
842 843
                                )
                                stop_training = True
C
ceci3 已提交
844
                                break
845 846 847 848
                        else:
                            _logger.info(
                                "epoch: {} metric of compressed model is: {:.6f}, best metric of compressed model is {:.6f}".
                                format(epoch_id, metric, best_metric))
C
ceci3 已提交
849 850
                        if train_config.target_metric is not None:
                            if metric > float(train_config.target_metric):
851 852 853 854
                                stop_training = True
                                _logger.info(
                                    "The metric of compressed model has reached the target metric. The training process ends."
                                )
C
ceci3 已提交
855
                                break
C
ceci3 已提交
856 857

                    else:
858 859 860
                        _logger.warning(
                            "Not set eval function, so unable to test accuracy performance."
                        )
861 862
                if (train_config.train_iter and total_train_iter >=
                        train_config.train_iter) or stop_training:
Z
zhouzj 已提交
863
                    stop_training = True
G
Guanghua Yu 已提交
864
                    break
Z
zhouzj 已提交
865
        self.final_metric = best_metric
C
ceci3 已提交
866
        if 'unstructure' in self._strategy or train_config.sparse_model:
Z
zhouzj 已提交
867 868
            self._pruner.update_params()

C
ceci3 已提交
869 870
        return test_program_info

C
ceci3 已提交
871
    def _save_model(self, test_program_info, strategy, strategy_idx):
C
ceci3 已提交
872 873 874
        test_program = test_program_info.program._program if isinstance(
            test_program_info.program,
            paddle.static.CompiledProgram) else test_program_info.program
C
ceci3 已提交
875

W
whs 已提交
876
        if os.path.exists(os.path.join(self.tmp_dir, 'best_model.pdparams')):
877
            paddle.static.load(test_program,
W
whs 已提交
878 879 880 881
                               os.path.join(self.tmp_dir, 'best_model'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdmodel'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdopt'))
            os.remove(os.path.join(self.tmp_dir, 'best_model.pdparams'))
C
ceci3 已提交
882

W
whs 已提交
883
        model_dir = os.path.join(self.tmp_dir,
C
ceci3 已提交
884 885 886
                                 'strategy_{}'.format(str(strategy_idx + 1)))
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
887 888 889 890 891 892

        if 'qat' in strategy:
            test_program = convert(
                test_program,
                self._places,
                self._quant_config,
893 894
                scope=paddle.static.global_scope(),
                save_clip_ranges_path=self.final_dir)
895

C
ceci3 已提交
896 897 898 899 900
        feed_vars = [
            test_program.global_block().var(name)
            for name in test_program_info.feed_target_names
        ]

901 902 903 904 905 906 907 908
        model_name = None
        if self.model_filename is None:
            model_name = "model"
        elif self.model_filename.endswith(".pdmodel"):
            model_name = self.model_filename.rsplit(".", 1)[0]
        else:
            model_name = self.model_filename

C
ceci3 已提交
909
        path_prefix = os.path.join(model_dir, model_name)
C
ceci3 已提交
910
        paddle.static.save_inference_model(
C
ceci3 已提交
911
            path_prefix=path_prefix,
C
ceci3 已提交
912 913
            feed_vars=feed_vars,
            fetch_vars=test_program_info.fetch_targets,
C
ceci3 已提交
914
            executor=self._exe,
C
ceci3 已提交
915 916
            program=test_program,
            clip_extra=False)
G
Guanghua Yu 已提交
917 918 919 920

    def export_onnx(self,
                    model_name='quant_model.onnx',
                    deploy_backend='tensorrt'):
C
ceci3 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934
        if paddle.distributed.get_rank() == 0:
            infer_model_path = os.path.join(self.final_dir, self.model_filename)
            assert os.path.exists(
                infer_model_path), 'Not found {}, please check it.'.format(
                    infer_model_path)
            onnx_save_path = os.path.join(self.final_dir, 'ONNX')
            if not os.path.exists(onnx_save_path):
                os.makedirs(onnx_save_path)
            export_onnx(
                self.final_dir,
                model_filename=self.model_filename,
                params_filename=self.params_filename,
                save_file_path=os.path.join(onnx_save_path, model_name),
                deploy_backend=deploy_backend)