trainer.py 34.8 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
K
Kaipeng Deng 已提交
13 14 15 16 17 18 19
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
G
George Ni 已提交
20
import sys
21
import copy
K
Kaipeng Deng 已提交
22
import time
F
Feng Ni 已提交
23
from tqdm import tqdm
M
Manuel Garcia 已提交
24

K
Kaipeng Deng 已提交
25
import numpy as np
M
Mark Ma 已提交
26
import typing
F
Feng Ni 已提交
27
from PIL import Image, ImageOps, ImageFile
W
Wenyu 已提交
28

F
Feng Ni 已提交
29
ImageFile.LOAD_TRUNCATED_IMAGES = True
K
Kaipeng Deng 已提交
30 31

import paddle
F
Feng Ni 已提交
32
import paddle.nn as nn
W
wangguanzhong 已提交
33 34
import paddle.distributed as dist
from paddle.distributed import fleet
35
from paddle import amp
K
Kaipeng Deng 已提交
36
from paddle.static import InputSpec
37
from ppdet.optimizer import ModelEMA
K
Kaipeng Deng 已提交
38 39 40

from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
C
cnn 已提交
41
from ppdet.utils.visualizer import visualize_results, save_result
Z
zhiboniu 已提交
42
from ppdet.metrics import Metric, COCOMetric, VOCMetric, WiderFaceMetric, get_infer_results, KeyPointTopDownCOCOEval, KeyPointTopDownMPIIEval
43 44
from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet
K
Kaipeng Deng 已提交
45
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
46
import ppdet.utils.stats as stats
47
from ppdet.utils import profiler
K
Kaipeng Deng 已提交
48

49
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator
G
Guanghua Yu 已提交
50
from .export_utils import _dump_infer_config, _prune_input_spec
K
Kaipeng Deng 已提交
51 52

from ppdet.utils.logger import setup_logger
53
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
54 55 56

__all__ = ['Trainer']

57
MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack']
58

K
Kaipeng Deng 已提交
59 60 61 62 63 64 65

class Trainer(object):
    def __init__(self, cfg, mode='train'):
        self.cfg = cfg
        assert mode.lower() in ['train', 'eval', 'test'], \
                "mode should be 'train', 'eval' or 'test'"
        self.mode = mode.lower()
66
        self.optimizer = None
67
        self.is_loaded_weights = False
K
Kaipeng Deng 已提交
68

G
George Ni 已提交
69
        # build data loader
W
wangguanzhong 已提交
70
        capital_mode = self.mode.capitalize()
71
        if cfg.architecture in MOT_ARCH and self.mode in ['eval', 'test']:
W
wangguanzhong 已提交
72 73
            self.dataset = self.cfg['{}MOTDataset'.format(
                capital_mode)] = create('{}MOTDataset'.format(capital_mode))()
74
        else:
W
wangguanzhong 已提交
75 76
            self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
                '{}Dataset'.format(capital_mode))()
77 78 79 80 81

        if cfg.architecture == 'DeepSORT' and self.mode == 'train':
            logger.error('DeepSORT has no need of training on mot dataset.')
            sys.exit(1)

82 83 84 85
        if cfg.architecture == 'FairMOT' and self.mode == 'eval':
            images = self.parse_mot_images(cfg)
            self.dataset.set_images(images)

G
George Ni 已提交
86
        if self.mode == 'train':
W
wangguanzhong 已提交
87
            self.loader = create('{}Reader'.format(capital_mode))(
G
George Ni 已提交
88 89 90 91
                self.dataset, cfg.worker_num)

        if cfg.architecture == 'JDE' and self.mode == 'train':
            cfg['JDEEmbeddingHead'][
92 93
                'num_identities'] = self.dataset.num_identities_dict[0]
            # JDE only support single class MOT now.
G
George Ni 已提交
94

F
FlyingQianMM 已提交
95
        if cfg.architecture == 'FairMOT' and self.mode == 'train':
M
minghaoBD 已提交
96 97
            cfg['FairMOTEmbeddingHead'][
                'num_identities_dict'] = self.dataset.num_identities_dict
98
            # FairMOT support single class and multi-class MOT now.
F
FlyingQianMM 已提交
99

K
Kaipeng Deng 已提交
100
        # build model
101 102 103 104 105
        if 'model' not in self.cfg:
            self.model = create(cfg.architecture)
        else:
            self.model = self.cfg.model
            self.is_loaded_weights = True
106

F
Feng Ni 已提交
107 108 109
        if cfg.architecture == 'YOLOX':
            for k, m in self.model.named_sublayers():
                if isinstance(m, nn.BatchNorm2D):
F
Feng Ni 已提交
110 111
                    m._epsilon = 1e-3  # for amp(fp16)
                    m._momentum = 0.97  # 0.03 in pytorch
F
Feng Ni 已提交
112

113
        #normalize params for deploy
C
Chang Xu 已提交
114 115 116
        if 'slim' in cfg and cfg['slim_type'] == 'OFA':
            self.model.model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
117 118 119 120 121 122 123
        elif 'slim' in cfg and cfg['slim_type'] == 'Distill':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
        elif 'slim' in cfg and cfg[
                'slim_type'] == 'DistillPrune' and self.mode == 'train':
            self.model.student_model.load_meanstd(cfg['TestReader'][
                'sample_transforms'])
C
Chang Xu 已提交
124 125
        else:
            self.model.load_meanstd(cfg['TestReader']['sample_transforms'])
126

127 128
        self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
        if self.use_ema:
G
Guanghua Yu 已提交
129 130
            ema_decay = self.cfg.get('ema_decay', 0.9998)
            cycle_epoch = self.cfg.get('cycle_epoch', -1)
F
Feng Ni 已提交
131
            ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
132
            self.ema = ModelEMA(
G
Guanghua Yu 已提交
133 134
                self.model,
                decay=ema_decay,
F
Feng Ni 已提交
135
                ema_decay_type=ema_decay_type,
G
Guanghua Yu 已提交
136
                cycle_epoch=cycle_epoch)
137

K
Kaipeng Deng 已提交
138 139 140
        # EvalDataset build with BatchSampler to evaluate in single device
        # TODO: multi-device evaluate
        if self.mode == 'eval':
141 142 143 144 145 146 147 148 149 150 151
            if cfg.architecture == 'FairMOT':
                self.loader = create('EvalMOTReader')(self.dataset, 0)
            else:
                self._eval_batch_sampler = paddle.io.BatchSampler(
                    self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
                reader_name = '{}Reader'.format(self.mode.capitalize())
                # If metric is VOC, need to be set collate_batch=False.
                if cfg.metric == 'VOC':
                    cfg[reader_name]['collate_batch'] = False
                self.loader = create(reader_name)(self.dataset, cfg.worker_num,
                                                  self._eval_batch_sampler)
K
Kaipeng Deng 已提交
152
        # TestDataset build after user set images, skip loader creation here
K
Kaipeng Deng 已提交
153 154 155 156 157

        # build optimizer in train mode
        if self.mode == 'train':
            steps_per_epoch = len(self.loader)
            self.lr = create('LearningRate')(steps_per_epoch)
W
Wenyu 已提交
158
            self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
K
Kaipeng Deng 已提交
159

M
minghaoBD 已提交
160 161 162 163
            # Unstructured pruner is only enabled in the train mode.
            if self.cfg.get('unstructured_prune'):
                self.pruner = create('UnstructuredPruner')(self.model,
                                                           steps_per_epoch)
M
minghaoBD 已提交
164

W
wangguanzhong 已提交
165 166
        self._nranks = dist.get_world_size()
        self._local_rank = dist.get_rank()
K
Kaipeng Deng 已提交
167

K
Kaipeng Deng 已提交
168 169 170
        self.status = {}

        self.start_epoch = 0
G
George Ni 已提交
171
        self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
K
Kaipeng Deng 已提交
172 173 174 175 176 177 178 179 180 181 182

        # initial default callbacks
        self._init_callbacks()

        # initial default metrics
        self._init_metrics()
        self._reset_metrics()

    def _init_callbacks(self):
        if self.mode == 'train':
            self._callbacks = [LogPrinter(self), Checkpointer(self)]
183
            if self.cfg.get('use_vdl', False):
184
                self._callbacks.append(VisualDLWriter(self))
185 186
            if self.cfg.get('save_proposals', False):
                self._callbacks.append(SniperProposalsGenerator(self))
K
Kaipeng Deng 已提交
187 188 189
            self._compose_callback = ComposeCallback(self._callbacks)
        elif self.mode == 'eval':
            self._callbacks = [LogPrinter(self)]
190 191
            if self.cfg.metric == 'WiderFace':
                self._callbacks.append(WiferFaceEval(self))
K
Kaipeng Deng 已提交
192
            self._compose_callback = ComposeCallback(self._callbacks)
193
        elif self.mode == 'test' and self.cfg.get('use_vdl', False):
194 195
            self._callbacks = [VisualDLWriter(self)]
            self._compose_callback = ComposeCallback(self._callbacks)
K
Kaipeng Deng 已提交
196 197 198 199
        else:
            self._callbacks = []
            self._compose_callback = None

K
Kaipeng Deng 已提交
200 201
    def _init_metrics(self, validate=False):
        if self.mode == 'test' or (self.mode == 'train' and not validate):
G
Guanghua Yu 已提交
202 203
            self._metrics = []
            return
204
        classwise = self.cfg['classwise'] if 'classwise' in self.cfg else False
205
        if self.cfg.metric == 'COCO' or self.cfg.metric == "SNIPERCOCO":
W
wangxinxin08 已提交
206
            # TODO: bias should be unified
207
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
S
shangliang Xu 已提交
208 209
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
210
            save_prediction_only = self.cfg.get('save_prediction_only', False)
211 212 213

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
K
Kaipeng Deng 已提交
214 215
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None
216 217 218 219

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
220
            dataset = self.dataset
221 222 223 224
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()
225
                dataset = eval_dataset
226

227
            IouType = self.cfg['IouType'] if 'IouType' in self.cfg else 'bbox'
228 229 230 231 232 233 234 235 236 237 238
            if self.cfg.metric == "COCO":
                self._metrics = [
                    COCOMetric(
                        anno_file=anno_file,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
                        save_prediction_only=save_prediction_only)
                ]
239
            elif self.cfg.metric == "SNIPERCOCO":  # sniper
240 241 242 243 244 245 246 247 248
                self._metrics = [
                    SNIPERCOCOMetric(
                        anno_file=anno_file,
                        dataset=dataset,
                        clsid2catid=clsid2catid,
                        classwise=classwise,
                        output_eval=output_eval,
                        bias=bias,
                        IouType=IouType,
249
                        save_prediction_only=save_prediction_only)
250
                ]
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        elif self.cfg.metric == 'RBOX':
            # TODO: bias should be unified
            bias = self.cfg['bias'] if 'bias' in self.cfg else 0
            output_eval = self.cfg['output_eval'] \
                if 'output_eval' in self.cfg else None
            save_prediction_only = self.cfg.get('save_prediction_only', False)

            # pass clsid2catid info to metric instance to avoid multiple loading
            # annotation file
            clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()} \
                                if self.mode == 'eval' else None

            # when do validation in train, annotation file should be get from
            # EvalReader instead of self.dataset(which is TrainReader)
            anno_file = self.dataset.get_anno()
            if self.mode == 'train' and validate:
                eval_dataset = self.cfg['EvalDataset']
                eval_dataset.check_or_download_dataset()
                anno_file = eval_dataset.get_anno()

            self._metrics = [
                RBoxMetric(
                    anno_file=anno_file,
                    clsid2catid=clsid2catid,
                    classwise=classwise,
                    output_eval=output_eval,
                    bias=bias,
                    save_prediction_only=save_prediction_only)
            ]
K
Kaipeng Deng 已提交
280 281 282
        elif self.cfg.metric == 'VOC':
            self._metrics = [
                VOCMetric(
283
                    label_list=self.dataset.get_label_list(),
K
Kaipeng Deng 已提交
284
                    class_num=self.cfg.num_classes,
285 286
                    map_type=self.cfg.map_type,
                    classwise=classwise)
K
Kaipeng Deng 已提交
287
            ]
288 289 290 291 292 293 294 295 296
        elif self.cfg.metric == 'WiderFace':
            multi_scale = self.cfg.multi_scale_eval if 'multi_scale_eval' in self.cfg else True
            self._metrics = [
                WiderFaceMetric(
                    image_dir=os.path.join(self.dataset.dataset_dir,
                                           self.dataset.image_dir),
                    anno_file=self.dataset.get_anno(),
                    multi_scale=multi_scale)
            ]
297 298 299 300
        elif self.cfg.metric == 'KeyPointTopDownCOCOEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
301
            save_prediction_only = self.cfg.get('save_prediction_only', False)
302
            self._metrics = [
303 304 305 306 307 308
                KeyPointTopDownCOCOEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
309
            ]
Z
zhiboniu 已提交
310 311 312 313
        elif self.cfg.metric == 'KeyPointTopDownMPIIEval':
            eval_dataset = self.cfg['EvalDataset']
            eval_dataset.check_or_download_dataset()
            anno_file = eval_dataset.get_anno()
314
            save_prediction_only = self.cfg.get('save_prediction_only', False)
Z
zhiboniu 已提交
315
            self._metrics = [
316 317 318 319 320 321
                KeyPointTopDownMPIIEval(
                    anno_file,
                    len(eval_dataset),
                    self.cfg.num_joints,
                    self.cfg.save_dir,
                    save_prediction_only=save_prediction_only)
Z
zhiboniu 已提交
322
            ]
G
George Ni 已提交
323 324
        elif self.cfg.metric == 'MOTDet':
            self._metrics = [JDEDetMetric(), ]
K
Kaipeng Deng 已提交
325
        else:
326
            logger.warning("Metric not support for metric type {}".format(
K
Kaipeng Deng 已提交
327
                self.cfg.metric))
K
Kaipeng Deng 已提交
328 329 330 331 332 333 334
            self._metrics = []

    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def register_callbacks(self, callbacks):
335
        callbacks = [c for c in list(callbacks) if c is not None]
K
Kaipeng Deng 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348
        for c in callbacks:
            assert isinstance(c, Callback), \
                    "metrics shoule be instances of subclass of Metric"
        self._callbacks.extend(callbacks)
        self._compose_callback = ComposeCallback(self._callbacks)

    def register_metrics(self, metrics):
        metrics = [m for m in list(metrics) if m is not None]
        for m in metrics:
            assert isinstance(m, Metric), \
                    "metrics shoule be instances of subclass of Metric"
        self._metrics.extend(metrics)

K
Kaipeng Deng 已提交
349
    def load_weights(self, weights):
350 351
        if self.is_loaded_weights:
            return
K
Kaipeng Deng 已提交
352
        self.start_epoch = 0
353
        load_pretrain_weight(self.model, weights)
K
Kaipeng Deng 已提交
354 355
        logger.debug("Load weights {} to start training".format(weights))

356 357 358 359 360 361 362
    def load_weights_sde(self, det_weights, reid_weights):
        if self.model.detector:
            load_weight(self.model.detector, det_weights)
            load_weight(self.model.reid, reid_weights)
        else:
            load_weight(self.model.reid, reid_weights)

K
Kaipeng Deng 已提交
363
    def resume_weights(self, weights):
364 365 366 367 368
        # support Distill resume weights
        if hasattr(self.model, 'student_model'):
            self.start_epoch = load_weight(self.model.student_model, weights,
                                           self.optimizer)
        else:
S
shangliang Xu 已提交
369 370
            self.start_epoch = load_weight(self.model, weights, self.optimizer,
                                           self.ema if self.use_ema else None)
K
Kaipeng Deng 已提交
371
        logger.debug("Resume weights of epoch {}".format(self.start_epoch))
K
Kaipeng Deng 已提交
372

K
Kaipeng Deng 已提交
373
    def train(self, validate=False):
K
Kaipeng Deng 已提交
374
        assert self.mode == 'train', "Model not in 'train' mode"
Z
zhiboniu 已提交
375
        Init_mark = False
W
wangguanzhong 已提交
376 377
        if validate:
            self.cfg.EvalDataset = create("EvalDataset")()
K
Kaipeng Deng 已提交
378

379
        sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
W
wangxinxin08 已提交
380 381
                   self.cfg.use_gpu and self._nranks > 1)
        if sync_bn:
382 383
            self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
                self.model)
W
wangxinxin08 已提交
384

385
        model = self.model
386
        if self.cfg.get('fleet', False):
387
            model = fleet.distributed_model(model)
W
wangguanzhong 已提交
388
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
389
        elif self._nranks > 1:
G
George Ni 已提交
390 391 392 393
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)
394

W
Wenyu 已提交
395 396
        # enabel auto mixed precision mode
        if self.cfg.get('amp', False):
397
            scaler = amp.GradScaler(
398 399
                enable=self.cfg.use_gpu or self.cfg.use_npu,
                init_loss_scaling=1024)
K
Kaipeng Deng 已提交
400

K
Kaipeng Deng 已提交
401 402 403 404 405 406 407 408 409 410 411 412
        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(
            self.cfg.log_iter, fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

G
Guanghua Yu 已提交
413
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
414 415 416
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num)
            self._flops(flops_loader)
417
        profiler_options = self.cfg.get('profiler_options', None)
G
Guanghua Yu 已提交
418

419 420
        self._compose_callback.on_train_begin(self.status)

K
Kaipeng Deng 已提交
421
        for epoch_id in range(self.start_epoch, self.cfg.epoch):
K
Kaipeng Deng 已提交
422
            self.status['mode'] = 'train'
K
Kaipeng Deng 已提交
423 424 425
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
K
Kaipeng Deng 已提交
426
            model.train()
K
Kaipeng Deng 已提交
427 428 429 430
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
431
                profiler.add_profiler_step(profiler_options)
K
Kaipeng Deng 已提交
432
                self._compose_callback.on_step_begin(self.status)
S
shangliang Xu 已提交
433
                data['epoch_id'] = epoch_id
K
Kaipeng Deng 已提交
434

W
Wenyu 已提交
435
                if self.cfg.get('amp', False):
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
K
Kaipeng Deng 已提交
453 454
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
M
minghaoBD 已提交
455 456
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
K
Kaipeng Deng 已提交
457 458 459
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

K
Kaipeng Deng 已提交
460
                if self._nranks < 2 or self._local_rank == 0:
K
Kaipeng Deng 已提交
461 462 463 464
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
465
                if self.use_ema:
S
shangliang Xu 已提交
466
                    self.ema.update()
F
Feng Ni 已提交
467
                iter_tic = time.time()
K
Kaipeng Deng 已提交
468

M
minghaoBD 已提交
469 470
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()
471

S
shangliang Xu 已提交
472 473 474 475 476 477 478 479
            is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
                       and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
            if is_snapshot and self.use_ema:
                # apply ema weight on model
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
                self.status['weight'] = weight

K
Kaipeng Deng 已提交
480 481
            self._compose_callback.on_epoch_end(self.status)

S
shangliang Xu 已提交
482
            if validate and is_snapshot:
K
Kaipeng Deng 已提交
483 484 485 486 487 488 489
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
490 491 492
                    # If metric is VOC, need to be set collate_batch=False.
                    if self.cfg.metric == 'VOC':
                        self.cfg['EvalReader']['collate_batch'] = False
K
Kaipeng Deng 已提交
493 494 495 496
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
Z
zhiboniu 已提交
497 498 499 500 501 502
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
S
shangliang Xu 已提交
503

K
Kaipeng Deng 已提交
504
                with paddle.no_grad():
505
                    self.status['save_best_model'] = True
K
Kaipeng Deng 已提交
506 507
                    self._eval_with_loader(self._eval_loader)

S
shangliang Xu 已提交
508 509
            if is_snapshot and self.use_ema:
                # reset original weight
510
                self.model.set_dict(weight)
S
shangliang Xu 已提交
511
                self.status.pop('weight')
512

513 514
        self._compose_callback.on_train_end(self.status)

K
Kaipeng Deng 已提交
515
    def _eval_with_loader(self, loader):
K
Kaipeng Deng 已提交
516 517 518
        sample_num = 0
        tic = time.time()
        self._compose_callback.on_epoch_begin(self.status)
K
Kaipeng Deng 已提交
519 520
        self.status['mode'] = 'eval'
        self.model.eval()
G
Guanghua Yu 已提交
521
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
522 523 524
            flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
                self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
            self._flops(flops_loader)
F
Feng Ni 已提交
525
        for step_id, data in enumerate(loader):
K
Kaipeng Deng 已提交
526 527 528 529 530 531 532 533 534
            self.status['step_id'] = step_id
            self._compose_callback.on_step_begin(self.status)
            # forward
            outs = self.model(data)

            # update metrics
            for metric in self._metrics:
                metric.update(data, outs)

M
Mark Ma 已提交
535 536 537 538 539
            # multi-scale inputs: all inputs have same im_id
            if isinstance(data, typing.Sequence):
                sample_num += data[0]['im_id'].numpy().shape[0]
            else:
                sample_num += data['im_id'].numpy().shape[0]
K
Kaipeng Deng 已提交
540 541 542 543 544 545 546 547 548
            self._compose_callback.on_step_end(self.status)

        self.status['sample_num'] = sample_num
        self.status['cost_time'] = time.time() - tic

        # accumulate metric to log out
        for metric in self._metrics:
            metric.accumulate()
            metric.log()
549
        self._compose_callback.on_epoch_end(self.status)
K
Kaipeng Deng 已提交
550 551 552
        # reset metric states for metric may performed multiple times
        self._reset_metrics()

K
Kaipeng Deng 已提交
553
    def evaluate(self):
554 555
        with paddle.no_grad():
            self._eval_with_loader(self.loader)
K
Kaipeng Deng 已提交
556

C
cnn 已提交
557 558 559 560
    def predict(self,
                images,
                draw_threshold=0.5,
                output_dir='output',
W
Wenyu 已提交
561
                save_results=False):
K
Kaipeng Deng 已提交
562 563 564
        self.dataset.set_images(images)
        loader = create('TestReader')(self.dataset, 0)

W
Wenyu 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        def setup_metrics_for_loader():
            # mem
            metrics = copy.deepcopy(self._metrics)
            mode = self.mode
            save_prediction_only = self.cfg[
                'save_prediction_only'] if 'save_prediction_only' in self.cfg else None
            output_eval = self.cfg[
                'output_eval'] if 'output_eval' in self.cfg else None

            # modify
            self.mode = '_test'
            self.cfg['save_prediction_only'] = True
            self.cfg['output_eval'] = output_dir
            self._init_metrics()

            # restore
            self.mode = mode
            self.cfg.pop('save_prediction_only')
            if save_prediction_only is not None:
                self.cfg['save_prediction_only'] = save_prediction_only

            self.cfg.pop('output_eval')
            if output_eval is not None:
                self.cfg['output_eval'] = output_eval

            _metrics = copy.deepcopy(self._metrics)
            self._metrics = metrics

            return _metrics

        if save_results:
            metrics = setup_metrics_for_loader()
        else:
            metrics = []

K
Kaipeng Deng 已提交
600 601 602
        imid2path = self.dataset.get_imid2path()

        anno_file = self.dataset.get_anno()
C
cnn 已提交
603 604
        clsid2catid, catid2name = get_categories(
            self.cfg.metric, anno_file=anno_file)
K
Kaipeng Deng 已提交
605

K
Kaipeng Deng 已提交
606 607 608
        # Run Infer 
        self.status['mode'] = 'test'
        self.model.eval()
G
Guanghua Yu 已提交
609
        if self.cfg.get('print_flops', False):
G
Guanghua Yu 已提交
610 611
            flops_loader = create('TestReader')(self.dataset, 0)
            self._flops(flops_loader)
612
        results = []
F
Feng Ni 已提交
613
        for step_id, data in enumerate(tqdm(loader)):
K
Kaipeng Deng 已提交
614 615 616
            self.status['step_id'] = step_id
            # forward
            outs = self.model(data)
617

W
Wenyu 已提交
618 619 620
            for _m in metrics:
                _m.update(data, outs)

K
Kaipeng Deng 已提交
621
            for key in ['im_shape', 'scale_factor', 'im_id']:
M
Mark Ma 已提交
622 623 624 625
                if isinstance(data, typing.Sequence):
                    outs[key] = data[0][key]
                else:
                    outs[key] = data[key]
G
Guanghua Yu 已提交
626
            for key, value in outs.items():
627 628
                if hasattr(value, 'numpy'):
                    outs[key] = value.numpy()
629
            results.append(outs)
W
Wenyu 已提交
630

631 632
        # sniper
        if type(self.dataset) == SniperCOCODataSet:
633 634
            results = self.dataset.anno_cropper.aggregate_chips_detections(
                results)
K
Kaipeng Deng 已提交
635

W
Wenyu 已提交
636 637 638 639
        for _m in metrics:
            _m.accumulate()
            _m.reset()

640
        for outs in results:
K
Kaipeng Deng 已提交
641 642
            batch_res = get_infer_results(outs, clsid2catid)
            bbox_num = outs['bbox_num']
Z
zhiboniu 已提交
643

K
Kaipeng Deng 已提交
644 645 646 647
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                image_path = imid2path[int(im_id)]
                image = Image.open(image_path).convert('RGB')
648
                image = ImageOps.exif_transpose(image)
649
                self.status['original_image'] = np.array(image.copy())
K
Kaipeng Deng 已提交
650

651
                end = start + bbox_num[i]
K
Kaipeng Deng 已提交
652 653 654 655
                bbox_res = batch_res['bbox'][start:end] \
                        if 'bbox' in batch_res else None
                mask_res = batch_res['mask'][start:end] \
                        if 'mask' in batch_res else None
G
Guanghua Yu 已提交
656 657
                segm_res = batch_res['segm'][start:end] \
                        if 'segm' in batch_res else None
658 659 660 661
                keypoint_res = batch_res['keypoint'][start:end] \
                        if 'keypoint' in batch_res else None
                image = visualize_results(
                    image, bbox_res, mask_res, segm_res, keypoint_res,
C
cnn 已提交
662
                    int(im_id), catid2name, draw_threshold)
663
                self.status['result_image'] = np.array(image.copy())
664 665
                if self._compose_callback:
                    self._compose_callback.on_step_end(self.status)
K
Kaipeng Deng 已提交
666 667 668 669 670
                # save image with detection
                save_name = self._get_save_image_name(output_dir, image_path)
                logger.info("Detection bbox results save in {}".format(
                    save_name))
                image.save(save_name, quality=95)
W
Wenyu 已提交
671

K
Kaipeng Deng 已提交
672 673 674 675 676 677 678 679 680 681 682 683
                start = end

    def _get_save_image_name(self, output_dir, image_path):
        """
        Get save image name from source image path.
        """
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        image_name = os.path.split(image_path)[-1]
        name, ext = os.path.splitext(image_name)
        return os.path.join(output_dir, "{}".format(name)) + ext

G
Guanghua Yu 已提交
684
    def _get_infer_cfg_and_input_spec(self, save_dir, prune_input=True):
K
Kaipeng Deng 已提交
685
        image_shape = None
686 687
        im_shape = [None, 2]
        scale_factor = [None, 2]
688 689 690 691 692 693
        if self.cfg.architecture in MOT_ARCH:
            test_reader_name = 'TestMOTReader'
        else:
            test_reader_name = 'TestReader'
        if 'inputs_def' in self.cfg[test_reader_name]:
            inputs_def = self.cfg[test_reader_name]['inputs_def']
K
Kaipeng Deng 已提交
694
            image_shape = inputs_def.get('image_shape', None)
G
Guanghua Yu 已提交
695
        # set image_shape=[None, 3, -1, -1] as default
K
Kaipeng Deng 已提交
696
        if image_shape is None:
G
Guanghua Yu 已提交
697
            image_shape = [None, 3, -1, -1]
698

G
Guanghua Yu 已提交
699 700
        if len(image_shape) == 3:
            image_shape = [None] + image_shape
701 702 703
        else:
            im_shape = [image_shape[0], 2]
            scale_factor = [image_shape[0], 2]
K
Kaipeng Deng 已提交
704

705
        if hasattr(self.model, 'deploy'):
706
            self.model.deploy = True
S
shangliang Xu 已提交
707

708 709 710 711
        if 'slim' not in self.cfg:
            for layer in self.model.sublayers():
                if hasattr(layer, 'convert_to_deploy'):
                    layer.convert_to_deploy()
S
shangliang Xu 已提交
712

713 714 715 716 717 718
        export_post_process = self.cfg['export'].get(
            'post_process', False) if hasattr(self.cfg, 'export') else True
        export_nms = self.cfg['export'].get('nms', False) if hasattr(
            self.cfg, 'export') else True
        export_benchmark = self.cfg['export'].get(
            'benchmark', False) if hasattr(self.cfg, 'export') else False
719 720 721
        if hasattr(self.model, 'fuse_norm'):
            self.model.fuse_norm = self.cfg['TestReader'].get('fuse_normalize',
                                                              False)
722 723 724 725 726 727
        if hasattr(self.model, 'export_post_process'):
            self.model.export_post_process = export_post_process if not export_benchmark else False
        if hasattr(self.model, 'export_nms'):
            self.model.export_nms = export_nms if not export_benchmark else False
        if export_post_process and not export_benchmark:
            image_shape = [None] + image_shape[1:]
K
Kaipeng Deng 已提交
728

K
Kaipeng Deng 已提交
729 730 731 732 733 734 735
        # Save infer cfg
        _dump_infer_config(self.cfg,
                           os.path.join(save_dir, 'infer_cfg.yml'), image_shape,
                           self.model)

        input_spec = [{
            "image": InputSpec(
G
Guanghua Yu 已提交
736
                shape=image_shape, name='image'),
K
Kaipeng Deng 已提交
737
            "im_shape": InputSpec(
738
                shape=im_shape, name='im_shape'),
K
Kaipeng Deng 已提交
739
            "scale_factor": InputSpec(
740
                shape=scale_factor, name='scale_factor')
K
Kaipeng Deng 已提交
741
        }]
G
George Ni 已提交
742 743 744 745 746
        if self.cfg.architecture == 'DeepSORT':
            input_spec[0].update({
                "crops": InputSpec(
                    shape=[None, 3, 192, 64], name='crops')
            })
G
Guanghua Yu 已提交
747 748 749 750 751 752 753 754 755 756 757 758
        if prune_input:
            static_model = paddle.jit.to_static(
                self.model, input_spec=input_spec)
            # NOTE: dy2st do not pruned program, but jit.save will prune program
            # input spec, prune input spec here and save with pruned input spec
            pruned_input_spec = _prune_input_spec(
                input_spec, static_model.forward.main_program,
                static_model.forward.outputs)
        else:
            static_model = None
            pruned_input_spec = input_spec

G
Guanghua Yu 已提交
759
        # TODO: Hard code, delete it when support prune input_spec.
760
        if self.cfg.architecture == 'PicoDet' and not export_post_process:
G
Guanghua Yu 已提交
761 762 763 764 765
            pruned_input_spec = [{
                "image": InputSpec(
                    shape=image_shape, name='image')
            }]

G
Guanghua Yu 已提交
766 767 768 769 770 771 772 773
        return static_model, pruned_input_spec

    def export(self, output_dir='output_inference'):
        self.model.eval()
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
K
Kaipeng Deng 已提交
774

G
Guanghua Yu 已提交
775 776
        static_model, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir)
G
Guanghua Yu 已提交
777 778 779

        # dy2st and save model
        if 'slim' not in self.cfg or self.cfg['slim_type'] != 'QAT':
780 781 782 783 784
            paddle.jit.save(
                static_model,
                os.path.join(save_dir, 'model'),
                input_spec=pruned_input_spec)
        else:
785
            self.cfg.slim.save_quantized_model(
786 787
                self.model,
                os.path.join(save_dir, 'model'),
G
Guanghua Yu 已提交
788 789
                input_spec=pruned_input_spec)
        logger.info("Export model and saved in {}".format(save_dir))
790

G
Guanghua Yu 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    def post_quant(self, output_dir='output_inference'):
        model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
        save_dir = os.path.join(output_dir, model_name)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for idx, data in enumerate(self.loader):
            self.model(data)
            if idx == int(self.cfg.get('quant_batch_num', 10)):
                break

        # TODO: support prune input_spec
        _, pruned_input_spec = self._get_infer_cfg_and_input_spec(
            save_dir, prune_input=False)

        self.cfg.slim.save_quantized_model(
            self.model,
            os.path.join(save_dir, 'model'),
            input_spec=pruned_input_spec)
        logger.info("Export Post-Quant model and saved in {}".format(save_dir))
G
Guanghua Yu 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

    def _flops(self, loader):
        self.model.eval()
        try:
            import paddleslim
        except Exception as e:
            logger.warning(
                'Unable to calculate flops, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        from paddleslim.analysis import dygraph_flops as flops
        input_data = None
        for data in loader:
            input_data = data
            break

        input_spec = [{
            "image": input_data['image'][0].unsqueeze(0),
            "im_shape": input_data['im_shape'][0].unsqueeze(0),
            "scale_factor": input_data['scale_factor'][0].unsqueeze(0)
        }]
        flops = flops(self.model, input_spec) / (1000**3)
        logger.info(" Model FLOPs : {:.6f}G. (image shape is {})".format(
            flops, input_data['image'][0].unsqueeze(0).shape))
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

    def parse_mot_images(self, cfg):
        import glob
        # for quant
        dataset_dir = cfg['EvalMOTDataset'].dataset_dir
        data_root = cfg['EvalMOTDataset'].data_root
        data_root = '{}/{}'.format(dataset_dir, data_root)
        seqs = os.listdir(data_root)
        seqs.sort()
        all_images = []
        for seq in seqs:
            infer_dir = os.path.join(data_root, seq)
            assert infer_dir is None or os.path.isdir(infer_dir), \
                "{} is not a directory".format(infer_dir)
            images = set()
            exts = ['jpg', 'jpeg', 'png', 'bmp']
            exts += [ext.upper() for ext in exts]
            for ext in exts:
                images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
            images = list(images)
            images.sort()
            assert len(images) > 0, "no image found in {}".format(infer_dir)
            all_images.extend(images)
859 860 861
            logger.info("Found {} inference images in total.".format(
                len(images)))
        return all_images