activation.py 57.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
17
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
18 19 20 21 22 23 24 25 26 27 28 29 30 31
from paddle.framework import core

from ...fluid.data_feeder import check_dtype, check_variable_and_dtype
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
from ...fluid.framework import (
    _in_legacy_dygraph,
    convert_np_dtype_to_dtype_,
    in_dygraph_mode,
)
from ...fluid.layer_helper import LayerHelper
from ...tensor.manipulation import chunk
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
from ...tensor.ops import sigmoid  # noqa: F401
32

33 34
__all__ = []

35

36 37 38 39
def celu(x, alpha=1.0, name=None):
    r"""
    celu activation.

40 41
    Apply the following operation to each element of the input Tensor accroding to the `Continuously Differentiable Exponential Linear Units <https://arxiv.org/abs/1704.07483>`_.

42 43
    .. math::

44
        \operatorname{celu}(x) = \max(0, x) + \min(0, \alpha * (\mathrm{e}^{x/\alpha}-1))
45 46

    Parameters:
47 48
        x (Tensor): The input Tensor with data type float16, float32, or float64.
        alpha (float, optional): The 'alpha' value of the CELU formula. Default is 1.0.
49
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
50 51

    Returns:
52
        A ``Tensor`` with the same data type and shape as ``x`` .
53 54 55 56 57 58 59 60 61 62 63 64 65 66

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
            out = F.celu(x, alpha=0.2)
            # [[-0.19865242,  6.        ],
            #  [ 1.        , 15.60000038]]
    """
    if alpha == 0:
        raise ZeroDivisionError("alpha cannot be 0 for celu")

67
    if _in_legacy_dygraph():
68
        return _legacy_C_ops.celu(x, 'alpha', alpha)
69
    if in_dygraph_mode():
70
        return _C_ops.celu(x, alpha)
71 72 73 74

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'celu')
    helper = LayerHelper("celu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
75 76 77 78 79 80
    helper.append_op(
        type='celu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha},
    )
81 82 83
    return out


84
def elu(x, alpha=1.0, name=None):
85
    r"""
86 87
    elu activation.

88
    .. math::
89

Z
zhupengyang 已提交
90 91 92 93 94 95 96
        elu(x)=
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * (e^{x} - 1),& &\text{if } \ x <= 0
                \end{array}
            \right.
97 98 99 100

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
101
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
102

103 104
    Returns:
        A Tensor with the same data type and shape as ``x`` .
105

106 107 108
    Examples:
        .. code-block:: python

109 110
            import paddle
            import paddle.nn.functional as F
111

Z
zhupengyang 已提交
112
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
113
            out = F.elu(x, alpha=0.2)
114 115
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
116 117
    """

118
    if in_dygraph_mode():
119
        return _C_ops.elu(x, alpha)
120 121

    if _in_legacy_dygraph():
122
        return _legacy_C_ops.elu(x, 'alpha', alpha)
123 124 125 126

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
127 128 129 130 131 132
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha},
    )
133 134 135
    return out


136
@inplace_apis_in_dygraph_only
137 138 139 140 141
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
142
    assert alpha >= 0.0, "elu_ only support alpha >= 0, please use elu instead."
143
    if in_dygraph_mode():
144 145
        return _C_ops.elu_(x, alpha)
    return _legacy_C_ops.elu_(x, 'alpha', alpha)
146 147


148
def gelu(x, approximate=False, name=None):
149
    r"""
150 151
    gelu activation.

152 153
    The activation function of Gelu is calculated element by element. More information refers to :ref: `Gaussian Error Linear Units`.

154
    if approximate is True
155 156 157

    .. math::

158
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
159

160
    else
161 162 163

    .. math::

164
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
165

166 167
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
168 169
        approximate (bool, optional): Whether to enable approximation. Default is False.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
170

171 172
    Returns:
        A Tensor with the same data type and shape as ``x`` .
173

174 175 176
    Examples:
        .. code-block:: python

177 178
            import paddle
            import paddle.nn.functional as F
179

Z
zhupengyang 已提交
180 181 182 183 184 185 186
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
187 188
    """

189
    if in_dygraph_mode():
190
        return _C_ops.gelu(x, approximate)
191 192

    if _in_legacy_dygraph():
193
        return _legacy_C_ops.gelu(x, 'approximate', approximate)
194 195 196 197

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
198 199 200 201 202 203
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate},
    )
204 205 206
    return out


207
def hardshrink(x, threshold=0.5, name=None):
208
    r"""
209 210 211 212 213
    hard shrinkage activation

    .. math::

        hardshrink(x)=
214 215 216 217 218 219 220
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
221 222 223

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
224 225
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
226 227 228 229 230 231 232

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

233 234
            import paddle
            import paddle.nn.functional as F
235

Z
zhupengyang 已提交
236
            x = paddle.to_tensor([-1, 0.3, 2.5])
237
            out = F.hardshrink(x) # [-1., 0., 2.5]
238 239

    """
H
hong 已提交
240
    if in_dygraph_mode():
241
        return _C_ops.hardshrink(x, threshold)
H
hong 已提交
242 243

    if _in_legacy_dygraph():
244
        return _legacy_C_ops.hard_shrink(x, 'threshold', threshold)
245

246 247 248
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardshrink'
    )
249 250
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
251 252 253 254 255 256
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
257 258 259
    return out


260
def hardtanh(x, min=-1.0, max=1.0, name=None):
261
    r"""
262
    hardtanh activation. Calculate the `hardtanh` of input `x`.
263 264 265

    .. math::

266 267 268 269 270 271 272 273
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
274

275
    Parameters:
276 277 278
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
279
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
280 281 282 283 284 285 286 287 288 289

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

290
            x = paddle.to_tensor([-1.5, 0.3, 2.5])
291 292 293
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

H
hong 已提交
294
    if in_dygraph_mode():
295
        return _C_ops.hardtanh(x, min, max)
H
hong 已提交
296 297

    if _in_legacy_dygraph():
298
        return _legacy_C_ops.brelu(x, 't_min', min, 't_max', max)
299

300 301 302
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardtanh'
    )
303 304 305

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
306 307 308 309 310 311
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min, 't_max': max},
    )
312 313 314
    return out


315
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
316
    r"""
317
    hardsigmoid activation. Calculate the `hardsigmoid` of input `x`.
318 319 320 321 322 323
    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
324 325 326 327 328 329 330
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
331 332 333

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
334 335
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
336
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
337 338 339 340 341 342 343 344 345 346 347 348 349 350

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

H
hong 已提交
351
    if in_dygraph_mode():
352
        return _C_ops.hardsigmoid(x, slope, offset)
H
hong 已提交
353 354

    if _in_legacy_dygraph():
355
        return _legacy_C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
356

357 358 359
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardsigmoid'
    )
360 361 362

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
363 364 365 366 367 368
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope, 'offset': offset},
    )
369 370 371 372
    return out


def hardswish(x, name=None):
373
    r"""
374 375 376
    hardswish activation. hardswish is proposed in MobileNetV3, and performs
    better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
377 378 379 380

    .. math::

        hardswish(x)=
381 382 383 384 385 386 387
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
388 389 390

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
391
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
392 393 394 395 396 397 398 399 400 401 402 403 404 405

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

406
    if _in_legacy_dygraph():
407
        return _legacy_C_ops.hard_swish(x)
408
    if in_dygraph_mode():
409
        return _C_ops.hardswish(x)
410

411 412 413
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hardswish'
    )
414 415 416 417 418 419 420

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


421
def leaky_relu(x, negative_slope=0.01, name=None):
422
    r"""
423
    leaky_relu activation. The calculation formula is:
424

425
    .. math::
426 427 428 429 430 431 432
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
433 434 435 436 437

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
438
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
439 440 441 442 443 444 445 446 447 448

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
449
            x = paddle.to_tensor([-2., 0., 1.])
450 451 452
            out = F.leaky_relu(x)
            print(out)
            # [-0.02, 0., 1.]
453 454

    """
455
    if in_dygraph_mode():
456
        return _C_ops.leaky_relu(x, negative_slope)
457 458

    if _in_legacy_dygraph():
459
        return _legacy_C_ops.leaky_relu(x, 'alpha', negative_slope)
460

461 462 463
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'leaky_relu'
    )
464 465
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
466 467 468 469 470 471
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope},
    )
472 473 474
    return out


475
def prelu(x, weight, data_format="NCHW", name=None):
476 477 478 479 480 481 482 483 484 485 486
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
487
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
488 489
        data_format(str, optional): Data format that specifies the layout of input.
            It may be "NC", "NCL", "NCHW", "NCDHW", "NLC", "NHWC" or "NDHWC". Default: "NCHW".
490 491 492 493 494 495 496 497 498 499

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

500
            data = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
501 502 503 504
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
505 506 507 508 509
                               [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            w = paddle.to_tensor([0.25], dtype='float32')
            out = F.prelu(data, w)
            print(out)
510 511 512 513 514 515 516 517
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
518 519 520
    check_variable_and_dtype(
        weight, 'weight', ['float16', 'float32', 'float64'], 'prelu'
    )
521

522 523 524
    assert (
        len(weight.shape) == 1
    ), "The dim count of weight shape should be 1 in prelu()."
525 526 527

    mode = 'all'
    if weight.shape[0] > 1:
528 529

        true_data_format = [
530 531 532 533 534 535 536
            'NC',
            'NCL',
            'NCHW',
            'NCDHW',
            'NLC',
            'NHWC',
            'NDHWC',
537 538 539 540
        ]
        if data_format not in true_data_format:
            raise ValueError(
                "data_format must be one of 'NC', 'NCL', 'NCHW', 'NCDHW', "
541 542
                "'NLC', 'NHWC', 'NDHWC' but receive {}".format(data_format)
            )
543 544 545

        data_format = 'NCHW' if data_format[1] == 'C' else 'NHWC'

546 547 548
        assert (
            len(x.shape) > 1
        ), "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
549

550
        # NOTE(GuoxiaWang): support NHWC data format
551
        if data_format == 'NHWC':
552 553 554
            assert (
                weight.shape[0] == x.shape[-1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
555
        else:
556 557 558
            assert (
                weight.shape[0] == x.shape[1]
            ), "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
559 560
        mode = 'channel'

561
    if in_dygraph_mode():
562
        return _C_ops.prelu(x, weight, data_format, mode)
563
    if _in_legacy_dygraph():
564 565 566
        return _legacy_C_ops.prelu(
            x, weight, 'mode', mode, 'data_format', data_format
        )
567

568
    helper = LayerHelper('prelu', **locals())
569
    out = helper.create_variable_for_type_inference(x.dtype)
570 571 572 573 574 575
    helper.append_op(
        type="prelu",
        inputs={"X": x, "Alpha": weight},
        outputs={"Out": out},
        attrs={"mode": mode, "data_format": data_format},
    )
576 577 578
    return out


579
def rrelu(x, lower=1.0 / 8.0, upper=1.0 / 3.0, training=True, name=None):
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    r"""
    rrelu activation.

    Applies the randomized leaky rectified liner unit function to improve generalization performance,
    as described in the paper:
    `Empirical Evaluation of Rectified Activations in Convolutional Network <https://arxiv.org/abs/1505.00853>`_

    During training, randomly samples the negative slope for activation values as described below:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    a * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`a` is randomly sampled from uniform distribution in range (:math:`lower`, :math:`upper`),

    In the test phase, the negative slope will take the average value of :math:`lower` and :math:`upper`:

    .. math::

        rrelu(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    (lower + upper) * 0.5 * x, & & otherwise \\
                \end{array}
            \right.

    where :math:`x` is the input tensor,
    :math:`lower` and :math:`upper` are the bounds of uniform distribution.

    Parameters:
        x (Tensor): The input Tensor with data type float16, float32, float64.
        lower (float, optional): The lower bound of uniform distribution. Default: 0.125.
        upper (float, optional): The upper bound of uniform distribution. Default: 0.333.
        training (bool, optional): Current mode is in training or others.  Default is True.
622
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input_tensor = paddle.to_tensor([[[[-2.0,  3.0, -4.0,  5.0],
                                            [ 3.0, -4.0,  5.0, -6.0],
                                            [-7.0, -8.0,  8.0,  9.0]],
                                            [[ 1.0, -2.0, -3.0,  4.0],
                                            [-5.0,  6.0,  7.0, -8.0],
                                            [ 6.0,  7.0,  8.0,  9.0]]]], dtype='float32')

            out = F.rrelu(input_tensor, 0.1, 0.3)
641
            print(out)
642 643 644 645 646 647 648 649 650
            #[[[[-0.20000899  3.         -0.8810822   5.        ]
            #   [ 3.         -0.55175185  5.         -1.0776101 ]
            #   [-1.0680687  -1.9896201   8.          9.        ]]
            #  [[ 1.         -0.5238267  -0.65515125  4.        ]
            #   [-1.3766339   6.          7.         -2.3465784 ]
            #   [ 6.          7.          8.          9.        ]]]]
    """

    if not in_dynamic_mode():
651 652 653
        check_variable_and_dtype(
            x, 'X', ['float16', 'float32', 'float64'], 'rrelu'
        )
654 655 656

    if not isinstance(lower, float) or not isinstance(upper, float):
        raise TypeError(
657 658 659 660
            "The lower and upper values must be float type. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
661 662 663

    if lower < 0 or lower > 1:
        raise ValueError(
664 665 666 667
            "The lower value must be no less than zero or greater than one. Received: {}.".format(
                lower
            )
        )
668 669 670

    if upper < lower:
        raise ValueError(
671 672 673 674
            "The upper value must be greater than lower value. Received: lower {}, upper {}.".format(
                lower, upper
            )
        )
675 676 677 678

    if upper > 1:
        raise ValueError(
            "The upper value must be no greater than one. Received: {}.".format(
679 680 681
                upper
            )
        )
682 683 684 685

    is_test = not training

    if _in_legacy_dygraph():
686 687 688
        out, noise = _legacy_C_ops.rrelu(
            x, 'lower', lower, 'upper', upper, 'is_test', is_test
        )
689 690 691 692 693 694
        return out

    helper = LayerHelper('rrelu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    noise = helper.create_variable_for_type_inference(dtype=x.dtype)
    attrs = {'lower': lower, 'upper': upper, 'is_test': is_test}
695 696 697 698 699 700
    helper.append_op(
        type='rrelu',
        inputs={"X": x},
        outputs={"Out": out, "Noise": noise},
        attrs=attrs,
    )
701 702 703
    return out


704
def relu(x, name=None):
705
    """
706
    relu activation.
707

708
    .. math::
709 710 711 712

        out = max(x, 0)

    Parameters:
713
        x (Tensor): The input Tensor with data type float32, float64.
714
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
715 716

    Returns:
717
        A Tensor with the same data type and shape as ``x`` .
718 719 720 721

    Examples:
        .. code-block:: python

722 723
            import paddle
            import paddle.nn.functional as F
724

725 726 727 728
            x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            out = F.relu(x)
            print(out)
            # [0., 0., 1.]
729 730
    """

731
    if in_dygraph_mode():
W
wanghuancoder 已提交
732
        return _C_ops.relu(x)
733 734
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
735
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
736
    helper = LayerHelper('relu', **locals())
737 738 739 740 741
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


742
@inplace_apis_in_dygraph_only
743 744 745 746 747
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
748 749
    if in_dygraph_mode():
        return _C_ops.relu_(x)
750 751
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu_(x)
752 753


754
def log_sigmoid(x, name=None):
755
    r"""
756
    log_sigmoid activation.
757

758
    .. math::
759

760
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
761

762 763
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
764
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
765

766 767
    Returns:
        A Tensor with the same data type and shape as ``x`` .
768

769 770 771
    Examples:
        .. code-block:: python

772 773
            import paddle
            import paddle.nn.functional as F
774

775 776
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
777 778
    """

H
hong 已提交
779
    if in_dygraph_mode():
780
        return _C_ops.logsigmoid(x)
H
hong 已提交
781 782

    if _in_legacy_dygraph():
783
        return _legacy_C_ops.logsigmoid(x)
784

785 786 787
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'log_sigmoid'
    )
788
    helper = LayerHelper("log_sigmoid", **locals())
789 790 791
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
792 793


794
def maxout(x, groups, axis=1, name=None):
795
    r"""
796 797 798 799 800 801 802 803
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

804 805 806 807 808 809 810 811 812
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

813 814 815 816 817 818 819 820 821 822 823 824

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
825
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """
848
    if _in_legacy_dygraph():
849
        return _legacy_C_ops.maxout(x, 'groups', groups, 'axis', axis)
850
    if in_dygraph_mode():
851
        return _C_ops.maxout(x, groups, axis)
852 853 854 855
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
856 857
            "Attr(axis): %s." % str(axis)
        )
858 859 860 861 862
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
863 864 865 866 867 868
    helper.append_op(
        type='maxout',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'groups': groups, 'axis': axis},
    )
869 870 871
    return out


872 873 874 875 876 877
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

878
        relu6(x) = min(max(0,x), 6)
879

880
    Parameters:
881
        x (Tensor): The input Tensor with data type float32, float64.
882
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
883 884 885 886 887 888 889

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

890 891
            import paddle
            import paddle.nn.functional as F
892

893 894 895 896
            x = paddle.to_tensor([-1, 0.3, 6.5])
            out = F.relu6(x)
            print(out)
            # [0, 0.3, 6]
897 898
    """
    threshold = 6.0
899
    if in_dygraph_mode():
900
        return _C_ops.relu6(x)
Z
zhiboniu 已提交
901
    if in_dynamic_mode():
902
        return _legacy_C_ops.relu6(x, 'threshold', threshold)
903 904 905 906

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
907 908 909 910 911 912
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
913 914 915
    return out


916 917 918 919 920 921
def selu(
    x,
    scale=1.0507009873554804934193349852946,
    alpha=1.6732632423543772848170429916717,
    name=None,
):
922
    r"""
923 924 925 926
    selu activation

    .. math::

927
        selu(x)= scale *
928 929 930 931 932 933
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
934

935
    Parameters:
936
        x (Tensor): The input Tensor with data type float32, float64.
937 938
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
939
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
940 941 942 943 944 945 946

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

947 948
            import paddle
            import paddle.nn.functional as F
949

950 951 952 953
            x = paddle.to_tensor([[0.0, 1.0],[2.0, 3.0]])
            out = F.selu(x)
            print(out)
            # [[0, 1.050701],[2.101402, 3.152103]]
954
    """
955 956
    if scale <= 1.0:
        raise ValueError(
957 958
            "The scale must be greater than 1.0. Received: {}.".format(scale)
        )
959 960 961

    if alpha < 0:
        raise ValueError(
962 963
            "The alpha must be no less than zero. Received: {}.".format(alpha)
        )
964

H
hong 已提交
965
    if in_dygraph_mode():
966
        return _C_ops.selu(x, scale, alpha)
H
hong 已提交
967
    if _in_legacy_dygraph():
968
        return _legacy_C_ops.selu(x, 'scale', scale, 'alpha', alpha)
969 970 971 972

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
973 974 975 976 977 978
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale, 'alpha': alpha},
    )
979 980 981
    return out


M
minghaoBD 已提交
982
def silu(x, name=None):
983 984 985 986 987
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
988
        silu(x) = \frac{x}{1 + e^{-x}}
989

990 991
    Where :math:`x` is the input Tensor.

M
minghaoBD 已提交
992 993
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
994
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
995

M
minghaoBD 已提交
996
    Returns:
997
        A Tensor with the same data type and shape as :attr:`x`.
998

M
minghaoBD 已提交
999 1000
    Examples:
        .. code-block:: python
1001 1002 1003

            import paddle
            import paddle.nn.functional as F
1004

1005 1006
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
1007 1008
    """

1009
    if in_dygraph_mode():
W
wanghuancoder 已提交
1010
        return _C_ops.silu(x)
1011 1012
    if _in_legacy_dygraph():
        return _legacy_C_ops.silu(x)
M
minghaoBD 已提交
1013 1014 1015 1016 1017 1018 1019 1020

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


1021
def softmax(x, axis=-1, dtype=None, name=None):
1022
    r"""
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

1048
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

1097 1098
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1099
        axis (int, optional): The axis along which to perform softmax
1100
            calculations. It should be in range [-D, D), where D is the
1101
            rank of ``x`` . If ``axis`` < 0, it works the same way as
1102
            :math:`axis + D` . Default is -1.
1103
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
1104
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1105 1106

    Returns:
1107 1108
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1109 1110 1111 1112

    Examples:
        .. code-block:: python

1113 1114
            import paddle
            import paddle.nn.functional as F
1115

1116
            x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0],
1117 1118 1119 1120
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
1121
                        [6.0, 7.0, 8.0, 9.0]]],dtype='float32')
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
1132
    """
1133 1134 1135

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1136
    use_cudnn = True
1137

H
hong 已提交
1138
    if in_dygraph_mode():
1139
        outs_cast = x if dtype is None else _C_ops.cast(x, dtype)
1140
        return _C_ops.softmax(outs_cast, axis)
H
hong 已提交
1141 1142

    if _in_legacy_dygraph():
1143 1144 1145
        outs_cast = (
            x
            if dtype is None
1146
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1147 1148 1149 1150
        )
        return _legacy_C_ops.softmax(
            outs_cast, 'axis', axis, 'use_cudnn', use_cudnn
        )
1151 1152

    if dtype is None:
1153 1154 1155
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'softmax'
        )
1156
    else:
1157
        check_dtype(
1158 1159 1160 1161 1162 1163
            dtype,
            'dtype',
            ['float32', 'float64'],
            'softmax',
            'If dtype is not None, it only support float32 or float64.',
        )
1164 1165 1166 1167 1168

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
1169 1170 1171 1172 1173 1174
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
        )
1175 1176

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
1177 1178 1179 1180 1181 1182
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis, 'use_cudnn': use_cudnn},
    )
1183 1184

    return outs_softmax
1185 1186


1187
@inplace_apis_in_dygraph_only
1188 1189 1190 1191 1192 1193 1194 1195
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
1196 1197

    if in_dygraph_mode():
1198 1199 1200
        outs_cast = (
            x
            if dtype is None
1201
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1202
        )
1203
        return _C_ops.softmax_(outs_cast, axis)
1204 1205

    if _in_legacy_dygraph():
1206 1207 1208
        outs_cast = (
            x
            if dtype is None
1209
            else _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
1210 1211 1212 1213
        )
        return _legacy_C_ops.softmax_(
            outs_cast, 'axis', axis, 'use_cudnn', use_cudnn
        )
1214 1215


1216
def softplus(x, beta=1, threshold=20, name=None):
1217
    r"""
1218 1219 1220
    softplus activation

    .. math::
1221 1222 1223 1224
        softplus(x)=\begin{cases}
                \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\
                x,&x>\frac{\varepsilon}{\beta}.
            \end{cases}
1225

1226
    Parameters:
1227
        x (Tensor): The input Tensor with data type float32, float64.
1228 1229
        beta (float, optional): The value of :math:`\beta` for softplus. Default is 1
        threshold (float, optional): The value of :math:`\varepsilon` for softplus. Default is 20
1230
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1231 1232 1233 1234 1235 1236 1237

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1238 1239
            import paddle
            import paddle.nn.functional as F
1240

1241
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32')
1242
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
1243
    """
W
Wang Bojun 已提交
1244 1245

    if in_dygraph_mode():
1246
        return _C_ops.softplus(x, beta, threshold)
W
Wang Bojun 已提交
1247 1248

    if _in_legacy_dygraph():
1249
        return _legacy_C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
1250

1251 1252 1253
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softplus'
    )
1254 1255
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1256 1257 1258 1259 1260 1261
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta, 'threshold': threshold},
    )
1262 1263 1264 1265
    return out


def softshrink(x, threshold=0.5, name=None):
1266
    r"""
1267 1268 1269 1270
    softshrink activation

    .. math::

1271
        softshrink(x)=
1272 1273 1274 1275 1276 1277 1278
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
1279

1280
    Parameters:
1281 1282
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
1283
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1284 1285 1286 1287 1288 1289 1290

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1291 1292
            import paddle
            import paddle.nn.functional as F
1293

1294 1295 1296 1297 1298
            x = paddle.to_tensor([-0.9, -0.2, 0.1, 0.8])
            out = F.softshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.39999998,  0.        ,  0.        ,  0.30000001])
1299
    """
1300 1301 1302
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
1303 1304 1305
                threshold
            )
        )
1306

1307
    if in_dygraph_mode():
1308
        return _C_ops.softshrink(x, threshold)
1309
    if _in_legacy_dygraph():
1310
        return _legacy_C_ops.softshrink(x, 'lambda', threshold)
1311

1312 1313 1314
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softshrink'
    )
1315 1316
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1317 1318 1319 1320 1321 1322
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold},
    )
1323 1324 1325 1326
    return out


def softsign(x, name=None):
1327
    r"""
1328 1329 1330 1331
    softsign activation

    .. math::

1332
        softsign(x) = \frac{x}{1 + |x|}
1333

1334
    Parameters:
1335
        x (Tensor): The input Tensor with data type float32, float64.
1336
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1337 1338 1339 1340 1341 1342 1343

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1344 1345
            import paddle
            import paddle.nn.functional as F
1346

1347 1348 1349 1350 1351
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.softsign(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.28571430, -0.16666666,  0.09090909,  0.23076925])
1352
    """
1353
    if in_dygraph_mode():
W
wanghuancoder 已提交
1354
        return _C_ops.softsign(x)
1355 1356
    if in_dynamic_mode():
        return _legacy_C_ops.softsign(x)
1357

1358 1359 1360
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'softsign'
    )
1361 1362 1363 1364 1365 1366
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1367
def swish(x, name=None):
1368
    r"""
1369 1370 1371 1372
    swish activation.

    .. math::

1373
        swish(x) = \frac{x}{1 + e^{-x}}
1374 1375 1376

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1377
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1388 1389 1390 1391 1392
            x = paddle.to_tensor([-2., 0., 1.])
            out = F.swish(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.23840584,  0.        ,  0.73105854])
1393
    """
1394
    if in_dygraph_mode():
1395
        return _C_ops.swish(x)
1396
    if _in_legacy_dygraph():
1397
        return _legacy_C_ops.swish(x, 'beta', 1.0)
1398 1399 1400 1401

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1402 1403 1404
    helper.append_op(
        type='swish', inputs={'X': x}, outputs={'Out': out}, attrs={'beta': 1.0}
    )
1405 1406 1407
    return out


1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
def mish(x, name=None):
    r"""
    mish activation.

    ..  math::

        softplus(x) = \begin{cases}
                x, \text{if } x > \text{threshold} \\
                \ln(1 + e^{x}),  \text{otherwise}
            \end{cases}

        mish(x) = x * \tanh(softplus(x))
1420

1421 1422
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1423
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

W
wangxinxin08 已提交
1434
            x = paddle.to_tensor([-5., 0., 5.])
1435 1436
            out = F.mish(x) # [-0.03357624, 0., 4.99955208]
    """
1437
    if in_dygraph_mode():
1438
        return _C_ops.mish(x, 20)
1439
    if _in_legacy_dygraph():
1440
        return _legacy_C_ops.mish(x)
1441 1442 1443 1444 1445 1446 1447 1448

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mish')
    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='mish', inputs={'X': x}, outputs={'Out': out})
    return out


1449 1450 1451 1452 1453 1454
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1455
        tanhshrink(x) = x - tanh(x)
1456 1457 1458

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
1459
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1460 1461 1462 1463 1464 1465 1466

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1467 1468
            import paddle
            import paddle.nn.functional as F
1469

1470 1471 1472 1473 1474
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.tanhshrink(x)
            print(out)
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-0.02005106, -0.00262468,  0.00033200,  0.00868741])
1475
    """
H
hong 已提交
1476
    if in_dygraph_mode():
1477
        return _C_ops.tanh_shrink(x)
H
hong 已提交
1478 1479

    if _in_legacy_dygraph():
1480
        return _legacy_C_ops.tanh_shrink(x)
1481

1482 1483 1484
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'tanhshrink'
    )
1485 1486 1487 1488 1489 1490
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1491
def thresholded_relu(x, threshold=1.0, name=None):
1492
    r"""
1493 1494 1495 1496
    thresholded relu activation.

    .. math::

1497
        thresholded\_relu(x) =
1498 1499 1500 1501 1502 1503 1504
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1505 1506 1507 1508

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
1509
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

1520 1521 1522 1523 1524
            x = paddle.to_tensor([2., 0., 1.])
            out = F.thresholded_relu(x)
            print(out)
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2., 0., 0.])
1525 1526
    """

H
hong 已提交
1527
    if in_dygraph_mode():
1528
        return _C_ops.thresholded_relu(x, threshold)
H
hong 已提交
1529 1530

    if _in_legacy_dygraph():
1531
        return _legacy_C_ops.thresholded_relu(x, 'threshold', threshold)
1532

1533 1534 1535
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'thresholded_relu'
    )
1536 1537
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
1538 1539 1540 1541 1542 1543
    helper.append_op(
        type='thresholded_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
1544 1545 1546
    return out


1547
def log_softmax(x, axis=-1, dtype=None, name=None):
1548
    r"""
1549 1550
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1551 1552 1553

    .. math::

1554
        \begin{aligned}
1555 1556 1557
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1558 1559

    Parameters:
1560 1561 1562 1563 1564 1565 1566
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1567
            to ``dtype`` before the operation is performed. This is useful for
1568 1569 1570
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
1571
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1572

1573
    Returns:
1574 1575
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1576 1577 1578 1579

    Examples:
        .. code-block:: python

1580 1581 1582
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1583 1584 1585 1586 1587 1588
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1601 1602 1603

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1604

H
hong 已提交
1605
    if in_dygraph_mode():
1606
        if dtype is not None:
1607 1608
            x = _C_ops.cast(x, dtype)
        return _C_ops.log_softmax(x, axis)
1609

H
hong 已提交
1610 1611
    if _in_legacy_dygraph():
        if dtype is not None:
1612 1613
            x = _legacy_C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _legacy_C_ops.log_softmax(x, 'axis', axis)
H
hong 已提交
1614

1615
    if dtype is None:
1616 1617 1618
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'log_softmax'
        )
1619
    else:
1620
        check_dtype(
1621 1622 1623 1624 1625 1626
            dtype,
            'dtype',
            ['float32', 'float64'],
            'log_softmax',
            'If dtype is not None, it only support float32 or float64.',
        )
1627

1628
    helper = LayerHelper("log_softmax", **locals())
1629
    out_cast = x
1630
    if dtype is not None:
1631
        out_cast = helper.create_variable_for_type_inference(dtype)
1632 1633 1634 1635 1636 1637
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype, 'out_dtype': dtype},
        )
1638

1639
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1640 1641 1642 1643 1644 1645
    helper.append_op(
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis},
    )
1646

1647
    return out
F
Feiyu Chan 已提交
1648 1649 1650 1651


def glu(x, axis=-1, name=None):
    r"""
1652
    The gated linear unit. The input is evenly splited into 2 parts along a
F
Feiyu Chan 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
1663 1664 1665
        axis (int, optional): The axis along which split the input tensor. It
            should be in range [-D, D), where D is the dimensions of ``x`` .
            If ``axis`` < 0, it works the same way as :math:`axis + D` .
F
Feiyu Chan 已提交
1666
            Default is -1.
1667
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1668

F
Feiyu Chan 已提交
1669
    Returns:
1670
        A Tensor with the same data type as x. The size of the given aixs is
F
Feiyu Chan 已提交
1671
        halved.
1672

F
Feiyu Chan 已提交
1673 1674
    Examples:
        .. code-block:: python
1675

F
Feiyu Chan 已提交
1676 1677
            import paddle
            from paddle.nn import functional as F
1678

F
Feiyu Chan 已提交
1679 1680 1681 1682 1683 1684 1685
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
1686

F
Feiyu Chan 已提交
1687
    """
1688 1689 1690
    check_variable_and_dtype(
        x, 'input', ['float16', 'float32', 'float64'], "glu"
    )
F
Feiyu Chan 已提交
1691 1692 1693 1694
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719


def gumbel_softmax(x, temperature=1.0, hard=False, axis=-1, name=None):
    r"""
    Samples from the Gumbel-Softmax distribution and optionally discretizes.
    temperature is denoted by t. The calculation process is as follows:

    First, generate gumbel noise:

    .. math::

        G_i = -log(-log(U_i)), U_i \sim U(0,1)

    Second, add noise to ``x``:

    .. math::

        v = [x_1 + G_1,...,x_n + G_n]

    Finally, calculate gumbel_softmax and generate samples:

    .. math::
        gumbel\_softmax(v_i)=\frac{e^{v_i/t}}{\sum_{j=1}^n{e^{v_j/t}}},i=1,2,3...n

    Parameters:
1720 1721
        x (Tensor): An N-D Tensor, the first N - 1 dimensions index into a batch
            of independent distributions and the last dimension represents
1722 1723 1724
            a vector of probabilities with datatype float32, float64.
        temperature (float, optional): non-negative scalar temperature.
            Default is 1.0.
1725 1726
        hard (bool, optional): if True, the returned samples will be discretized as
            one-hot vectors, but will be differentiated as if it is the soft sample
1727
            in autograd. Default is False.
1728
        axis (int, optional): The axis along will be calculated softmax value.
1729
            Default is -1.
1730
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1731

1732
    Returns:
1733 1734
        Sampled tensor of same shape as ``x`` from the Gumbel-Softmax distribution.
        If ``hard = True``, the returned samples will be one-hot, otherwise they will be
1735
        probability distributions that sum to 1 across ``axis``.
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            logits = paddle.randn([4, 6])
            temperature = 0.01
            gumbel_softmax = F.gumbel_softmax(logits, temperature)
            print(gumbel_softmax)
            # out's value is as follows:
            # [[0.00000001, 1.        , 0.00000000, 0.00000000, 0.00000006, 0.00000000],
            # [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 1.        ],
            # [0.00000062, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.99999940],
            # [0.00000000, 0.00000000, 0.00000000, 0.00001258, 0.99998736, 0.00000000]]
1752

1753
    """
H
hong 已提交
1754
    if in_dygraph_mode():
1755
        return _C_ops.gumbel_softmax(x, temperature, hard, axis)
H
hong 已提交
1756

Z
zhiboniu 已提交
1757
    if in_dynamic_mode():
1758 1759 1760
        return _legacy_C_ops.gumbel_softmax(
            x, 'temperature', temperature, 'hard', hard, 'axis', axis
        )
1761 1762 1763 1764

    helper = LayerHelper("gumbel_softmax", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'gumbel_softmax')
    out = helper.create_variable_for_type_inference(x.dtype)
1765 1766 1767 1768 1769 1770
    helper.append_op(
        type='gumbel_softmax',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'temperature': temperature, 'hard': hard, 'axis': axis},
    )
1771
    return out