Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
56c54ccc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
56c54ccc
编写于
4月 15, 2020
作者:
Z
zhupengyang
提交者:
GitHub
4月 15, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Op(prelu/relu/f.relu/f.log_softmax) error message enhancement (#23792)
上级
c2a60bb1
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
75 addition
and
52 deletion
+75
-52
paddle/fluid/operators/prelu_op.cc
paddle/fluid/operators/prelu_op.cc
+10
-5
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+1
-1
python/paddle/fluid/tests/unittests/test_prelu_op.py
python/paddle/fluid/tests/unittests/test_prelu_op.py
+56
-43
python/paddle/nn/functional/activation.py
python/paddle/nn/functional/activation.py
+8
-3
未找到文件。
paddle/fluid/operators/prelu_op.cc
浏览文件 @
56c54ccc
...
...
@@ -31,10 +31,11 @@ class PReluOp : public framework::OperatorWithKernel {
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
std
::
string
mode
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"mode"
);
if
(
mode
==
"all"
)
{
PADDLE_ENFORCE_EQ
(
product
(
ctx
->
GetInputDim
(
"Alpha"
)),
1
,
platform
::
errors
::
InvalidArgument
(
"For mode 'all', size of weight Alpha must be one."
));
PADDLE_ENFORCE_EQ
(
product
(
ctx
->
GetInputDim
(
"Alpha"
)),
1
,
platform
::
errors
::
InvalidArgument
(
"For mode 'all', size of weight Alpha must be one. "
"But recevied alpha's size: %d."
,
product
(
ctx
->
GetInputDim
(
"Alpha"
))));
}
else
if
(
mode
==
"channel"
)
{
PADDLE_ENFORCE_EQ
(
product
(
ctx
->
GetInputDim
(
"Alpha"
)),
x_dim
[
1
],
platform
::
errors
::
InvalidArgument
(
...
...
@@ -67,7 +68,11 @@ class PReluOp : public framework::OperatorWithKernel {
"x's size: %d."
,
alpha_product
,
x_product
));
}
else
{
PADDLE_THROW
(
"Unkown mode %s"
,
mode
);
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Attr(mode) of prelu must be one of 'all', 'channel', or 'element'. "
"But recevied "
"mode: '%s'."
,
mode
));
}
ctx
->
ShareDim
(
"X"
,
/*->*/
"Out"
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
56c54ccc
...
...
@@ -463,7 +463,7 @@ class TestReluOpError(unittest.TestCase):
def
test_errors
(
self
):
with
program_guard
(
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
sqrt
,
1
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
relu
,
1
)
# The input dtype must be float16, float32, float64.
x_int32
=
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
relu
,
x_int32
)
...
...
python/paddle/fluid/tests/unittests/test_prelu_op.py
浏览文件 @
56c54ccc
...
...
@@ -23,21 +23,18 @@ from paddle.fluid import Program, program_guard
from
op_test
import
OpTest
,
skip_check_grad_ci
class
TestPRelu
API
Error
(
unittest
.
TestCase
):
class
TestPRelu
Op
Error
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
layer
=
fluid
.
PRelu
(
mode
=
'all'
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
1.0
)))
# the input must be Variable.
x0
=
fluid
.
create_lod_tensor
(
np
.
array
([
-
1
,
3
,
5
,
5
]),
[[
1
,
1
,
1
,
1
]],
fluid
.
CPUPlace
())
self
.
assertRaises
(
TypeError
,
layer
,
x0
)
# the input dtype must be float32
data_t
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
5
,
200
,
100
,
100
],
dtype
=
"float64"
)
self
.
assertRaises
(
TypeError
,
layer
,
data_t
)
with
program_guard
(
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
prelu
,
0.1
,
'all'
)
# The input dtype must be float16, float32, float64.
x_int32
=
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
prelu
,
x_int32
,
'all'
)
# support the input dtype is float32
x_fp16
=
fluid
.
layers
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float32'
)
fluid
.
layers
.
prelu
(
x_fp16
,
'all'
)
class
PReluTest
(
OpTest
):
...
...
@@ -79,39 +76,55 @@ class PReluTest(OpTest):
self
.
check_grad
([
'X'
,
'Alpha'
],
'Out'
)
# TODO(minqiyang): Resume these test cases after fixing Python3 CI job issues
if
six
.
PY2
:
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class
TestModeAll
(
PReluTest
):
def
init_input_shape
(
self
):
self
.
x_shape
=
(
2
,
3
,
4
,
5
)
def
init_attr
(
self
):
self
.
attrs
=
{
'mode'
:
"all"
}
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
)
class
TestModeAll
(
PReluTest
):
def
init_input_shape
(
self
):
self
.
x_shape
=
(
2
,
3
,
4
,
5
)
class
TestModeElt
(
PReluTest
):
def
init_input_shape
(
self
):
self
.
x_shape
=
(
3
,
2
,
5
,
10
)
def
init_attr
(
self
):
self
.
attrs
=
{
'mode'
:
"all"
}
def
init_attr
(
self
):
self
.
attrs
=
{
'mode'
:
"element"
}
class
TestModeElt
(
PReluTest
):
def
init_input_shape
(
self
):
self
.
x_shape
=
(
3
,
2
,
5
,
10
)
class
TestPReluOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
prelu
,
1
,
'all'
)
# The input dtype must be float16, float32, float64.
x_int32
=
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
12
,
10
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
fluid
.
layers
.
prelu
,
x_int32
,
'all'
)
# support the input dtype is float32
x_fp16
=
fluid
.
layers
.
data
(
name
=
'x_fp16'
,
shape
=
[
12
,
10
],
dtype
=
'float32'
)
fluid
.
layers
.
prelu
(
x_fp16
,
'all'
)
def
init_attr
(
self
):
self
.
attrs
=
{
'mode'
:
"element"
}
def
prelu_t
(
x
,
mode
,
param_attr
=
None
,
name
=
None
):
helper
=
fluid
.
layer_helper
.
LayerHelper
(
'prelu'
,
**
locals
())
alpha_shape
=
[
1
,
x
.
shape
[
1
],
1
,
1
]
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
alpha
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
alpha_shape
,
dtype
=
'float32'
,
is_bias
=
False
,
default_initializer
=
fluid
.
initializer
.
ConstantInitializer
(
0.25
))
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
"prelu"
,
inputs
=
{
"X"
:
x
,
'Alpha'
:
alpha
},
attrs
=
{
"mode"
:
mode
},
outputs
=
{
"Out"
:
out
})
return
out
# error message test if mode is not one of 'all', 'channel', 'element'
class
TestModeError
(
unittest
.
TestCase
):
def
test_mode_error
(
self
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
,
Program
()):
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
2
,
3
,
4
,
5
])
try
:
y
=
prelu_t
(
x
,
'any'
)
except
Exception
as
e
:
assert
(
e
.
args
[
0
].
find
(
'InvalidArgumentError'
)
!=
-
1
)
if
__name__
==
"__main__"
:
...
...
python/paddle/nn/functional/activation.py
浏览文件 @
56c54ccc
...
...
@@ -206,8 +206,10 @@ def relu(input, inplace=False, name=None):
)
return
core
.
ops
.
relu
(
input
)
helper
=
LayerHelper
(
'relu'
,
**
locals
())
check_variable_and_dtype
(
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
],
'relu'
)
helper
=
LayerHelper
(
'relu'
,
**
locals
())
outs
=
input
if
inplace
else
helper
.
create_variable_for_type_inference
(
input
.
dtype
)
helper
.
append_op
(
type
=
'relu'
,
inputs
=
{
'X'
:
[
input
]},
outputs
=
{
'Out'
:
outs
})
...
...
@@ -263,7 +265,7 @@ def sigmoid(input, inplace=False, name=None):
)
return
core
.
ops
.
sigmoid
(
input
)
check_variable_and_dtype
(
input
,
'
X
'
,
[
'float16'
,
'float32'
,
'float64'
],
check_variable_and_dtype
(
input
,
'
input
'
,
[
'float16'
,
'float32'
,
'float64'
],
'sigmoid'
)
helper
=
LayerHelper
(
"sigmoid"
,
**
locals
())
outputs
=
helper
.
create_variable_for_type_inference
(
input
.
dtype
)
...
...
@@ -329,8 +331,11 @@ def log_softmax(input, axis=None, dtype=None, name=None):
False
)
return
core
.
ops
.
log
(
outs_softmax
)
helper
=
LayerHelper
(
"log_softmax"
,
**
locals
())
if
dtype
is
None
:
check_variable_and_dtype
(
input
,
'input'
,
[
'float16'
,
'float32'
,
'float64'
],
'log_softmax'
)
helper
=
LayerHelper
(
"log_softmax"
,
**
locals
())
outs_cast
=
input
if
dtype
is
not
None
:
outs_cast
=
helper
.
create_variable_for_type_inference
(
dtype
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录