imperative.cc 127.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif

23 24 25 26
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
27

28
#include <algorithm>
29
#include <memory>
30
#include <set>
J
Jiabin Yang 已提交
31
#include <string>
32
#include <unordered_map>
33
#include <unordered_set>
34
#include <utility>
J
Jiabin Yang 已提交
35
#include <vector>
36

J
Jiabin Yang 已提交
37
#include "paddle/fluid/eager/api/all.h"
38
#include "paddle/fluid/framework/convert_utils.h"
39
#include "paddle/fluid/framework/scope_guard.h"
40
#include "paddle/fluid/imperative/all_reduce.h"
41
#include "paddle/fluid/imperative/amp_auto_cast.h"
42
#include "paddle/fluid/imperative/basic_engine.h"
43
#include "paddle/fluid/imperative/bkcl_context.h"
44
#include "paddle/fluid/imperative/data_loader.h"
45
#include "paddle/fluid/imperative/gloo_context.h"
K
kuizhiqing 已提交
46
#include "paddle/fluid/imperative/heter_ccl_context.h"
47
#include "paddle/fluid/imperative/hooks.h"
48
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
49
#include "paddle/fluid/imperative/nccl_context.h"
50
#include "paddle/fluid/imperative/partial_grad_engine.h"
51
#include "paddle/fluid/imperative/profiler.h"
52
#include "paddle/fluid/imperative/reducer.h"
53
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
54
#include "paddle/fluid/imperative/type_defs.h"
55
#include "paddle/fluid/imperative/xccl_context.h"
56
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
57
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
58
#include "paddle/fluid/pybind/cuda_streams_py.h"
59
#include "paddle/fluid/pybind/eager_utils.h"
60
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
61
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
62
#include "paddle/fluid/pybind/tensor_py.h"
63
#include "paddle/fluid/pybind/uva_utils.h"
64
#include "paddle/phi/core/compat/arg_map_context.h"
65
#include "paddle/phi/core/type_defs.h"
66

67
PHI_DECLARE_bool(set_to_1d);
68 69 70
namespace paddle {
namespace pybind {

71
std::atomic<int> VarBaseUniqueNameID{0};
72 73
PyTypeObject *g_varbase_pytype = nullptr;

74 75
namespace py = ::pybind11;

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
109 110
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
128 129 130 131 132
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
133 134 135 136 137 138
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
139 140 141 142 143
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
144 145
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
146 147
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
148 149
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
150 151
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
152 153
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
154 155
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
156
        "Place should be one of "
张春乔 已提交
157
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/IPUPlace/"
张春乔 已提交
158
        "CustomPlace"));
L
Leo Chen 已提交
159 160 161
  }
}

L
Leo Chen 已提交
162
// only initialize varbase, but not its tensor.
163 164 165 166
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
167 168 169
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
170 171 172

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
173
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
174 175 176 177 178 179 180 181 182
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
183 184 185 186 187 188 189
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
190
  InitVarBaseOnly(self, name, persistable, stop_gradient);
191
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
L
Leo Chen 已提交
192
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
193
  if (platform::is_cpu_place(place)) {
194
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
195
  } else if (platform::is_xpu_place(place)) {
196
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
197
  } else if (platform::is_gpu_place(place)) {
198
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
199
  } else if (platform::is_cuda_pinned_place(place)) {
200 201
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
202 203
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
204
  } else if (platform::is_custom_place(place)) {
205 206
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
207
  } else {
L
Leo Chen 已提交
208
    PADDLE_THROW(platform::errors::InvalidArgument(
209
        "Place should be one of "
张春乔 已提交
210
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/IPUPlace/"));
J
Jiabin Yang 已提交
211
  }
212
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
213 214 215 216
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
217
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
218 219 220 221 222 223
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
224 225 226
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
227
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
228 229 230 231 232 233 234

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
235 236
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
237 238 239
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
240
}
241

242 243
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
244 245
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
246 247
                                        bool persistable = false,
                                        bool zero_copy = false,
248 249 250 251 252
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
253
  if (name == "") {
254 255
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
256
  }
257 258
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
259
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
260
  new (self) imperative::VarBase(name);
261
  self->SetPersistable(persistable);
262
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
263 264 265
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
266 267
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
268
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
269 270 271
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
272 273
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
274
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
275
  InitVarBaseAndTensor(self, array, place, "");
276
}
277

B
Baibaifan 已提交
278
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
279
                                                const phi::DenseTensor &tensor,
B
Baibaifan 已提交
280
                                                const std::string &name) {
281 282
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
283 284 285
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
286
  new (self) imperative::VarBase(name_);
287 288
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
289
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
290
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
291 292 293 294 295 296 297 298 299 300
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

301 302
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
303
                                         const phi::DenseTensor &tensor,
B
Baibaifan 已提交
304 305
                                         const P &place,
                                         const std::string &name) {
306
  VLOG(4) << "Init VarBase";
307 308 309
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
310
  new (self) imperative::VarBase(name_);
311 312
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
313
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
314
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
315 316 317 318 319 320 321 322 323 324
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

325 326 327 328 329
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
330
  } else {
331
    return framework::ToTypeName(var.Var().Type());
332 333
  }
}
L
Leo Chen 已提交
334

J
Jiabin Yang 已提交
335 336 337 338 339 340
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
341
            .Get<phi::DenseTensor>());
J
Jiabin Yang 已提交
342 343
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
344
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
345 346 347 348
        "method, when you reach this means we got another type index."));
  }
}

349
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
350 351 352 353 354 355 356 357 358 359 360 361 362

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

363
  if (PyList_Check(py_obj)) {  // List of VarBase
364 365 366
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
367 368 369
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
370 371 372
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
373
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
374 375 376
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
377 378 379
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
380 381 382
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
383 384 385
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
386 387 388 389
  }

  return result;
}
390

J
Jiabin Yang 已提交
391 392 393
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
394 395 396 397 398 399
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
400

401
  PADDLE_ENFORCE_EQ(
402 403
      PyErr_Occurred(),
      nullptr,
404
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
405 406 407
  return result;
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
425 426
      PyErr_Occurred(),
      nullptr,
427 428 429 430
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

431
template <typename P>
432 433
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
434 435
                        const P &dst_device,
                        const bool blocking) {
436 437 438 439 440 441 442 443
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
444 445 446
      if (src->Var().IsType<phi::DenseTensor>()) {
        auto &src_tensor = src->Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
447 448 449 450 451 452 453 454 455
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
456 457
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
458
        auto *dst_selected_rows =
459
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
460 461
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
462 463
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

489
// Bind Methods
J
Jiabin Yang 已提交
490
void BindImperative(py::module *m_ptr) {
491 492
  auto &m = *m_ptr;

493 494
#ifndef _WIN32
  // Dygraph DataLoader signal handler
495 496
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
497 498
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
499 500 501 502 503 504 505 506 507 508
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
509
  });
510 511
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
533 534
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
535
              platform::errors::InvalidArgument(
536
                  "Failed to convert input data to a regular ndarray.\n  * "
537 538 539 540 541
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
542
          phi::DenseTensor t;
543 544
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
545
          // 3. allocate shared memory
546
          void *data_ptr = t.data();
547
          size_t data_size = t.numel() * phi::SizeOf(t.dtype());
548 549 550 551 552 553
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
554 555 556 557 558
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
559 560 561 562 563 564 565 566
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

567 568 569 570 571 572
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
573 574
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
575
            platform::errors::InvalidArgument(
576
                "Failed to convert input data to a regular ndarray.\n  * "
577 578 579 580 581
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
582
        phi::DenseTensor t;
583 584
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
585 586
        // 3. allocate shared memory
        void *data_ptr = t.data();
587
        size_t data_size = t.numel() * phi::SizeOf(t.dtype());
588 589 590 591 592 593
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
594 595 596 597 598
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
599 600 601 602 603
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
604

605 606
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
607
      auto t = tensor_list[i].cast<phi::DenseTensor>();
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
623 624 625 626 627

  m.def("_set_max_memory_map_allocation_pool_size", [](int32_t size) {
    memory::allocation::MemoryMapAllocationPool::Instance().SetMaxPoolSize(
        size);
  });
628 629
#endif

630 631
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
632 633 634 635
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
636 637
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
638 639 640
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
641 642
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
643
          egr::Controller::Instance().SetCurrentTracer(tracer);
644
          imperative::SetCurrentTracer(tracer);
645
        });
646 647 648 649
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
650 651 652 653 654 655 656
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
657
      .def("__init__",
658 659
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
660
              const std::vector<int64_t> &dims,
661 662 663
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
664
             VLOG(4) << "Init VarBase";
665 666 667
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
668
                   "generated_tensor");
669 670 671 672
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
673 674 675 676
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
677
               auto *tensor = self.MutableVar()->GetMutable<phi::DenseTensor>();
678
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
679 680
             }
           })
681 682 683 684 685 686 687
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
688
           py::arg("stop_gradient") = -1)
689 690 691 692 693 694 695
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
696
           py::arg("stop_gradient") = -1)
697 698 699 700 701 702 703
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
704
           py::arg("stop_gradient") = -1)
705 706 707 708 709 710 711
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
712
           py::arg("stop_gradient") = -1)
713 714 715 716 717 718 719
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
720
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
721
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
750
           py::arg("name") = "")
751
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
752 753
      .def(
          "__setitem_varbase__",
754 755
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
756 757 758 759
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
760
                self->MutableVar()->GetMutable<phi::DenseTensor>();
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

785 786 787 788 789
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
813 814 815 816 817 818 819 820 821 822
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
839 840
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
841 842 843 844 845 846
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

847
              if (py::isinstance<imperative::VarBase>(value_obj.ptr())) {
848 849 850
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
851 852 853 854 855 856

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
857 858 859 860 861 862 863
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
864
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
865 866 867 868
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
869
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
870 871 872 873
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
874 875
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
876 877 878 879
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
880 881
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
882 883 884 885
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
886
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
887
                  }
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX64) {
                  if (!py::isinstance<py::array_t<std::complex<float>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<float>>(
                            value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX128) {
                  if (!py::isinstance<py::array_t<std::complex<double>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<double>>(
                            value_obj);
                  }
904 905 906 907
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
908 909
                      "float32, float64, complex64, complex128, int32 or "
                      "int64, "
910 911 912
                      "please check the type of tensor."));
                }

913 914 915 916 917
                SetTensorFromPyArray(
                    value_tensor->MutableVar()->GetMutable<phi::DenseTensor>(),
                    value,
                    self->Place(),
                    false);
918 919 920 921 922 923
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
924 925
                    py::isinstance<py::bool_>(value_obj) ||
                    PyComplex_Check(value_obj.ptr())) {
926
                  if (self->DataType() == framework::proto::VarType::FP32) {
927 928
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
929 930
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
931 932
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<double>()};
933 934
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
935 936
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int32_t>()};
937 938
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
939 940
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int64_t>()};
941 942
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
943 944
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<bool>()};
945 946
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP16) {
947 948 949 950 951 952 953 954 955 956
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX64) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<float>>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX128) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<double>>()};
957 958 959 960
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
961 962
                        "float32, float64, complex64, complex128, int32, int64 "
                        "or float16, "
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
979 980 981 982
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
983 984 985 986 987 988 989 990 991 992
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
993
                    index_var->MutableVar()->GetMutable<phi::DenseTensor>();
994 995 996 997 998 999
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
1000 1001
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1002 1003
            }
          })
1004
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1005
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1006
             VLOG(4) << "Call _getitem_index_not_tensor";
1007
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1008 1009 1010 1011
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
1012
             auto tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1024 1025 1026
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1027

Z
zyfncg 已提交
1028
             auto out = slice_axes.empty() && !list_select_flag
1029 1030 1031 1032
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1033

1034
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1035
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1054 1055

             bool set_to_1d = FLAGS_set_to_1d;
1056 1057 1058 1059 1060 1061 1062 1063

             if (set_to_1d) {
               // NOTE(zoooo0820): When all axes are decreased, the output
               // will be 1-D with FLAGS_set_to_1d=True. In this case, one
               // `None` should be pop out, otherwise the output shape will be
               // not correct.
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
J
JYChen 已提交
1064
                 VLOG(1) << "Warning: In Tensor '__getitem__', if the number "
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
                            "of scalar "
                            "elements "
                            "in the index is equal to the rank of the Tensor, "
                            "the output "
                            "should "
                            "be 0-D. In order to be consistent with the "
                            "behavior of previous "
                            "versions, it will be processed to 1-D. But it is "
                            "not correct and "
                            "will be "
                            "removed in release 2.6. "
                            "If 1-D is still wanted, please modify the index "
                            "element from "
                            "scalar to slice "
                            "(e.g. 'x[i]' => 'x[i:i+1]'). ";
                 if (!none_axes.empty()) {
1081 1082 1083
                   none_axes.pop_back();
                 }
               }
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
             }
             if (!none_axes.empty()) {
               // Deal with cases that decrease_axes is not empty
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
               for (auto &axis : none_axes) {
                 int len = 0;
                 for (int da : decrease_axis) {
                   if (da < axis) {
                     len++;
1095 1096
                   }
                 }
1097
                 axis -= len;
1098
               }
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

               imperative::NameVarBaseMap ins = {{"X", {out}}};
               framework::AttributeMap attrs = {{"axes", none_axes}};
               auto new_out = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               auto out_xshape = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                  {"XShape", {out_xshape}}};
               tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

               return new_out;
1111 1112
             }

Z
zyfncg 已提交
1113 1114 1115 1116
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
1117 1118
               auto *idx_tensor =
                   select_index->MutableVar()->GetMutable<phi::DenseTensor>();
Z
zyfncg 已提交
1119 1120
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1121 1122
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1123 1124 1125 1126 1127 1128 1129

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1130
             return out;
1131
           })
1132 1133 1134
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
1135
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1136
            PADDLE_ENFORCE_EQ(
1137 1138
                tensor.IsInitialized(),
                true,
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1157 1158
                  numel,
                  1,
1159 1160 1161 1162 1163 1164
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1165 1166
                  offset,
                  numel,
1167 1168 1169
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1170 1171
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1172 1173 1174 1175 1176 1177
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1178 1179
                    index,
                    dims[i],
1180 1181
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1182 1183 1184
                        index,
                        i,
                        dims[i]));
1185 1186 1187 1188
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1189
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1190 1191
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1192 1193
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1194 1195 1196 1197 1198
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1199
                "Unsupported tensor data type: %s", tensor.dtype()));
1200 1201
          },
          py::return_value_policy::copy)
1202 1203 1204 1205
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1206 1207
                 var->IsInitialized(),
                 true,
1208 1209 1210 1211 1212
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1213 1214 1215 1216 1217 1218 1219 1220
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1221 1222 1223 1224 1225
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1226 1227
      .def(
          "numpy",
1228

1229
          [](imperative::VarBase &self) -> py::array {
1230
            const auto &tensor = self.MutableVar()->Get<phi::DenseTensor>();
1231
            PADDLE_ENFORCE_EQ(
1232 1233
                tensor.IsInitialized(),
                true,
1234 1235 1236 1237 1238 1239
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1240
        Returns a numpy array shows the value of current Tensor.
1241

1242
        Returns:
Z
Zhou Wei 已提交
1243
            ndarray: The numpy value of current Tensor.
1244 1245

        Returns type:
Z
Zhou Wei 已提交
1246
            ndarray: dtype is same as current Tensor
1247 1248 1249 1250

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1251
                import paddle
1252 1253
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1254 1255 1256 1257
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1258
       )DOC")
1259 1260 1261 1262 1263
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1264 1265
                self.Var().IsInitialized(),
                true,
1266 1267
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1268

1269
            PADDLE_ENFORCE_EQ(
1270
                self.Var().IsType<phi::DenseTensor>() ||
1271 1272 1273 1274 1275
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1276

1277 1278
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1279

1280 1281 1282
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1283

1284 1285
            if (self.Var().IsType<phi::DenseTensor>()) {
              const auto &origin_tensor = self.Var().Get<phi::DenseTensor>();
1286
              PADDLE_ENFORCE_EQ(
1287 1288
                  origin_tensor.IsInitialized(),
                  true,
1289 1290 1291 1292
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
1293
                  detach_var->MutableVar()->GetMutable<phi::DenseTensor>();
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1304 1305
                  origin_selected_rows.value().IsInitialized(),
                  true,
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1323 1324
          py::return_value_policy::take_ownership,
          R"DOC(
1325

1326
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1327 1328
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1329

1330
        Returns: The detached Tensor.
1331 1332 1333 1334

        Examples:
            .. code-block:: python

1335
                import paddle
Z
Zhou Wei 已提交
1336

1337
                x = paddle.to_tensor([1.0], stop_gradient=False)
Z
Zhou Wei 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
1357
                y.backward()
Z
Zhou Wei 已提交
1358 1359
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
1360

1361
       )DOC")
1362 1363 1364 1365
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1366

1367
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1368

1369
        The Gradient of current Tensor will be set to ``0`` .
1370 1371 1372 1373 1374 1375

        Returns:  None

        Examples:
             .. code-block:: python

1376
                import paddle
Z
Zhou Wei 已提交
1377 1378 1379 1380 1381 1382 1383
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1384
      )DOC")
1385 1386
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1387 1388
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1389 1390 1391
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
1392
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1393 1394
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1406 1407
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1439
      .def("_grad_name", &imperative::VarBase::GradVarName)
1440 1441 1442
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
1443
            return self.MutableGradVar()->Get<phi::DenseTensor>();
1444 1445
          },
          py::return_value_policy::reference)
1446 1447 1448 1449
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1450
      .def("_reset_grad_inplace_version",
1451
           [](imperative::VarBase &self, bool set_to_zero) {
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1463 1464
             py::gil_scoped_release release;

1465 1466 1467
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1468 1469 1470
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1471 1472
             }
           })
1473 1474 1475 1476 1477 1478 1479
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
1480 1481
                  grad_var->MutableVar()->IsType<phi::DenseTensor>()
                      ? grad_var->MutableVar()->GetMutable<phi::DenseTensor>()
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1493 1494 1495 1496
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1497 1498
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1499
             return self.Var().IsType<phi::SelectedRows>();
1500
           })
1501 1502 1503 1504 1505
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1506
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1507
#if NCCL_VERSION_CODE >= 2212
1508
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1509
#else
1510
               if (!self.Var().IsType<phi::SelectedRows>()) {
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1524
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1525 1526 1527
            }
          },
          py::call_guard<py::gil_scoped_release>())
1528 1529 1530
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1531 1532
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1533
                 platform::errors::InvalidArgument(
1534 1535 1536
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1537 1538 1539 1540 1541
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1542 1543
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1544
                 platform::errors::InvalidArgument(
1545 1546 1547
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1548
           })
1549 1550 1551
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1552 1553
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1565 1566 1567 1568
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1569 1570
                self.IsLeaf(),
                true,
1571 1572 1573
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1574 1575
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1576 1577 1578 1579 1580 1581 1582 1583
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
1626

1627 1628 1629 1630
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1631 1632 1633
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1634
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1635 1636 1637 1638
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1639
#endif
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1665 1666 1667
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1668 1669
             py::handle &handle,
             bool blocking) {
1670
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1671 1672 1673
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1674
#else
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1709
#endif
1710
          },
1711 1712 1713
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1714 1715
        Returns a copy of this Tensor in GPU memory.

1716
        If this Tensor is already in GPU memory and device_id is default,
1717
        then no copy is performed and the original Tensor is returned.
1718

1719
        Args:
1720
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1721
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be
1722 1723 1724 1725 1726
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1727
              # required: gpu
1728 1729
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1730
              print(x.place)        # Place(cpu)
1731 1732

              y = x.cuda()
1733
              print(y.place)        # Place(gpu:0)
1734

1735
              y = x.cuda(None)
1736
              print(y.place)        # Place(gpu:0)
1737

1738 1739 1740
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1741
       )DOC")
1742 1743 1744
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1745
#ifndef _WIN32
1746
            PADDLE_ENFORCE_EQ(
1747 1748
                platform::is_cpu_place(self->Place()),
                true,
1749 1750 1751
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
1752
            auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1765 1766 1767 1768 1769
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1770 1771
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1772 1773 1774 1775
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1776 1777
          },
          py::return_value_policy::reference)
1778
#if defined(PADDLE_WITH_CUDA)
1779 1780 1781
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1782 1783
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1784 1785 1786 1787
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
1788
                self->MutableVar()->GetMutable<phi::DenseTensor>();
1789 1790
            tensor_uva(self_tensor, device_id);
          },
1791 1792 1793
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1809
      .def("copy_", &imperative::VarBase::CopyFrom)
1810 1811 1812
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1813 1814
             const platform::CPUPlace &place,
             bool blocking) {
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1833 1834
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1845 1846
             const platform::XPUPlace &place,
             bool blocking) {
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1857 1858
             const platform::CUDAPlace &place,
             bool blocking) {
1859 1860 1861 1862 1863 1864 1865
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1878 1879 1880
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1881 1882
             const platform::CustomPlace &place,
             bool blocking) {
1883 1884 1885 1886 1887 1888 1889
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1890 1891 1892
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1893 1894
             const platform::Place &place,
             bool blocking) {
1895 1896 1897 1898 1899 1900 1901 1902
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1903 1904
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1905
          py::return_value_policy::reference)
1906 1907
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1908
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1909
             PADDLE_ENFORCE_EQ(
1910 1911
                 t->IsInitialized(),
                 true,
1912 1913
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1914 1915 1916 1917
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1918
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1919
             PADDLE_ENFORCE_EQ(
1920 1921
                 t->IsInitialized(),
                 true,
1922 1923
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1924 1925
             return t->offset();
           })
1926
      .def("_share_buffer_to",
1927
           [](const std::shared_ptr<imperative::VarBase> &self,
1928
              std::shared_ptr<imperative::VarBase> &dst) {
1929 1930
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1931
             PADDLE_ENFORCE_EQ(
1932 1933
                 src->IsInitialized(),
                 true,
1934 1935 1936
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1937
             dst_->ShareDataTypeWith(*src);
1938 1939 1940
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1941
              std::shared_ptr<imperative::VarBase> &dst) {
1942 1943
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1944 1945 1946 1947
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1948
           })
1949 1950 1951
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1952 1953
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1954
             PADDLE_ENFORCE_EQ(
1955 1956
                 src->IsInitialized(),
                 true,
1957 1958 1959 1960 1961 1962 1963 1964 1965
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1966 1967
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1968 1969 1970 1971 1972
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1973 1974
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1975 1976
              int64_t begin_idx,
              int64_t end_idx) {
1977
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1978
             PADDLE_ENFORCE_EQ(
1979 1980
                 t->IsInitialized(),
                 true,
1981 1982
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1983 1984 1985 1986 1987 1988 1989
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
1990
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1991 1992
             return t->numel();
           })
1993 1994
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2016 2017
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2018 2019 2020
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2021 2022
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2023
                    &imperative::VarBase::SetPersistable)
2024 2025 2026
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
2027
            if (self.Var().IsType<phi::DenseTensor>()) {
2028
              auto value = phi::vectorize<int>(
2029 2030
                  self.Var().Get<phi::DenseTensor>().dims());
              auto tensor = self.Var().Get<phi::DenseTensor>();
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

2047 2048
              if (change_dim &&
                  phi::DataLayoutToString(desired_layout) == "NCHW") {
2049 2050 2051 2052 2053 2054 2055 2056 2057
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
2058 2059
              } else if (change_dim &&
                         phi::DataLayoutToString(desired_layout) == "NHWC") {
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2087 2088 2089
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
2090 2091
            if (self.Var().IsType<phi::DenseTensor>()) {
              auto layout = self.Var().Get<phi::DenseTensor>().layout();
2092
              return phi::DataLayoutToString(layout);
2093 2094 2095
            }
            return std::string("");
          })
2096 2097
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2098 2099 2100
                             R"DOC(
      Whether a Tensor is leaf Tensor.

2101 2102
      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor.

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2126
      .def_property_readonly(
2127 2128
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2129
          py::return_value_policy::copy)
2130 2131 2132 2133 2134 2135
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2136
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2137
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2138

2139 2140 2141 2142 2143
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2144 2145
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
2146
      .value("OD", paddle::imperative::AmpLevel::OD)
L
Leo Chen 已提交
2147 2148 2149 2150 2151
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2152
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2153
      m, "Tracer", R"DOC()DOC")
2154
      .def("__init__",
J
Jiabin Yang 已提交
2155
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2156 2157 2158
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2159 2160
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2161
                    &imperative::Tracer::SetAmpLevel)
2162 2163
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2164
                    &imperative::Tracer::SetAmpDtype)
2165 2166
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2167
                    &imperative::Tracer::SetHasGrad)
2168 2169 2170 2171 2172 2173 2174 2175
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2176
              self.SetExpectedPlace(*p);
2177 2178
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2179 2180
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2181 2182 2183
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2184 2185
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2186 2187
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2188
              self.SetExpectedPlace(*p);
2189 2190
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2191 2192
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2193
              self.SetExpectedPlace(*p);
2194 2195
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2196 2197 2198 2199 2200
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2201 2202 2203 2204 2205
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2206 2207 2208 2209 2210
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2211
            } else {
L
Leo Chen 已提交
2212
              PADDLE_THROW(platform::errors::InvalidArgument(
2213
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
张春乔 已提交
2214
                  "CPUPlace, IPUPlace"
L
Leo Chen 已提交
2215 2216
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2217 2218
            }
          })
2219 2220 2221
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2222 2223
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2224
           py::arg("key") = "dygraph_tmp")
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2241
             VLOG(5) << "AMP operators changed, "
2242 2243
                     << imperative::AmpOperators::Instance();
           })
2244 2245 2246
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2247 2248
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2249
           })
C
Chen Weihang 已提交
2250
      .def("_get_kernel_signature",
2251 2252 2253 2254
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2272 2273
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2274 2275 2276
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2277 2278
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2279 2280
             }
           })
2281
      .def("trace",
2282 2283 2284 2285 2286 2287
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2288 2289 2290 2291 2292 2293
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2294 2295 2296 2297 2298 2299 2300
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2301 2302
             }
           })
2303
      .def("trace",
2304 2305 2306 2307 2308 2309
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2310 2311
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2312 2313 2314 2315
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2316 2317 2318 2319 2320 2321 2322
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2323 2324
             }
           })
M
minqiyang 已提交
2325
      .def("trace",
2326 2327 2328 2329 2330 2331
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2332 2333
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2334 2335
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2336 2337
             {
               py::gil_scoped_release release;
2338 2339 2340 2341 2342 2343 2344
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2345
             }
M
minqiyang 已提交
2346
           })
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2357 2358 2359
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2360 2361 2362 2363 2364 2365 2366
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2367 2368
             }
           })
J
Jiabin Yang 已提交
2369
      .def("trace",
2370 2371 2372 2373 2374 2375
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2376 2377
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2378 2379 2380 2381
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2382 2383 2384 2385 2386 2387 2388
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2389 2390
             }
           });
2391 2392

  // define parallel context
2393 2394 2395
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2396 2397
      .def_property(
          "nranks",
2398 2399
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2400 2401
            self.nranks_ = nranks;
          })
2402 2403 2404 2405 2406 2407 2408 2409
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2410 2411
      .def_property(
          "trainer_endpoints",
2412
          [](const imperative::ParallelStrategy &self) {
2413 2414
            return self.trainer_endpoints_;
          },
2415
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2416 2417
            self.trainer_endpoints_ = eps;
          })
2418 2419 2420 2421 2422 2423 2424 2425
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2426 2427 2428 2429 2430 2431
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2432

2433 2434 2435 2436
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2437
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
R
ronnywang 已提交
2438
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
2439

2440 2441 2442 2443 2444 2445 2446
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2461 2462 2463 2464 2465
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2466 2467 2468 2469
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2470 2471
         bool retain_graph,
         const imperative::Tracer &tracer) {
2472 2473 2474 2475 2476 2477 2478 2479
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2480 2481 2482
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||     \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO) || \
    defined(PADDLE_WITH_CUSTOM_DEVICE)
2483 2484 2485 2486 2487 2488
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2489 2490 2491 2492
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2503 2504
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2505
        py::arg("tensor_indices") = std::vector<int64_t>{},
2506
        py::call_guard<py::gil_scoped_release>());
2507
#endif
2508

2509
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2510 2511
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2512 2513 2514 2515
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2516 2517 2518 2519
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2520 2521
#endif

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
  py::class_<imperative::XCCLParallelContext,
             imperative::ParallelContext,
             std::shared_ptr<imperative::XCCLParallelContext>>(
      m, "XCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CustomPlace &>())
      .def("init", [](imperative::XCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::XCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
#endif

2535
#if defined(PADDLE_WITH_XPU_BKCL)
2536 2537
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2538 2539 2540 2541
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2542 2543 2544 2545
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2546
#endif
2547 2548 2549

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2550 2551
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2552 2553 2554 2555 2556 2557 2558
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2559 2560 2561
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2562
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
2563
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_CUSTOM_DEVICE)
2564 2565
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2566 2567 2568 2569 2570 2571
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

S
Siming Dai 已提交
2572
#if defined(PADDLE_WITH_CUDA)
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2594 2595
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2609 2610 2611 2612
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

2624
      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and
S
Siming Dai 已提交
2625 2626 2627 2628 2629 2630 2631 2632
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
2633

S
Siming Dai 已提交
2634 2635 2636 2637 2638 2639 2640
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2641 2642 2643
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2644 2645 2646 2647
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2648
        PADDLE_ENFORCE_EQ(
2649 2650
            platform::is_gpu_place(src.Place()),
            true,
2651 2652 2653 2654
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2655 2656
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2657 2658 2659 2660 2661
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2662 2663
            platform::is_cpu_place(offset.Place()),
            true,
2664 2665 2666 2667
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2668 2669
            platform::is_cpu_place(count.Place()),
            true,
2670 2671 2672 2673 2674 2675
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
2676 2677 2678 2679
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2680 2681
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2682 2683
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2684 2685
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2686 2687
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2688 2689
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2690 2691
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2692 2693 2694
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2695 2696
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2697 2698 2699 2700 2701
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2702 2703
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2704 2705 2706 2707 2708
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2709 2710
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2711 2712 2713 2714 2715 2716 2717 2718 2719

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2720 2721
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2722 2723
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2724 2725
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2726 2727
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2728 2729 2730 2731 2732
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2733 2734 2735 2736
          src_offset += c;
        }
      },
      R"DOC(
2737 2738 2739 2740 2741
  This api provides a way to write pieces of source tensor to destination tensor
  inplacely and asynchronously. In which, we use `offset` and `count` to determine
  where to copy. `offset` means the begin points of the copy pieces of `src`, and
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process
  will run asynchronously from cuda to pin memory. We can simply remember this as
2742
  "gpu async_write to pin_memory".
2743

2744
  Arguments:
2745 2746

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2747 2748
                  Besides, `src` should be placed on CUDAPlace.

2749 2750 2751
    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst`
                  should be the same with `src` except for the first dimension.
2752

2753 2754 2755 2756 2757 2758 2759
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
                    should be one-dimensinal.
2760 2761 2762 2763 2764 2765

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
2766
          from paddle.fluid import core
2767
          from paddle.device import cuda
2768

2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2789 2790 2791 2792 2793 2794 2795 2796
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2797 2798 2799 2800 2801
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2802 2803
            platform::is_gpu_place(dst.Place()),
            true,
2804 2805 2806 2807
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2808 2809
            platform::is_cpu_place(index.Place()),
            true,
2810 2811 2812 2813
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2814 2815
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2816 2817 2818 2819 2820
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2821 2822
            platform::is_cpu_place(offset.Place()),
            true,
2823 2824 2825 2826
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2827 2828
            platform::is_cpu_place(count.Place()),
            true,
2829 2830 2831 2832
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

2833 2834 2835
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &index_tensor = index.Var().Get<phi::DenseTensor>();
2836
        auto *buffer_tensor =
2837 2838 2839
            buffer.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2840 2841 2842
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2843 2844
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2845 2846 2847 2848
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2849 2850
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2851 2852 2853 2854 2855
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2856 2857
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2858 2859 2860 2861
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2862 2863
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2864 2865 2866 2867
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2868 2869
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2870 2871 2872
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
2873 2874
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2875 2876 2877 2878 2879 2880

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2881 2882
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2883 2884
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2885 2886
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2887 2888
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2889 2890
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2902 2903
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2904 2905 2906 2907 2908 2909 2910
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2911 2912
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2913 2914
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2915 2916
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2917 2918
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2919 2920 2921 2922 2923
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
2924 2925 2926
            dst_offset += c;
          }
        } else {
2927 2928
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
2929 2930 2931 2932 2933
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
2934 2935 2936
        auto index_select = [](const phi::DenseTensor &src_tensor,
                               const phi::DenseTensor &index_tensor,
                               phi::DenseTensor *buffer_tensor) {
2937 2938 2939 2940 2941 2942 2943 2944 2945
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
2946 2947
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
2948 2949 2950 2951 2952 2953
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
2954 2955
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
2956
                        index_tensor.numel() * size * sizeof(float),
2957 2958
                        cudaMemcpyHostToDevice,
                        stream);
2959 2960
      },
      R"DOC(
2961 2962 2963 2964 2965
  This api provides a way to read from pieces of source tensor to destination tensor
  asynchronously. In which, we use `index`, `offset` and `count` to determine where
  to read. `index` means the index position of src tensor we want to read. `offset`
  and count means the begin points and length of pieces of src tensor we want to read.
  To be noted, the copy process will run asynchronously from pin memory to cuda place.
2966 2967 2968
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
2969 2970

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2971
                  Besides, `src` should be placed on CUDAPinnedPlace.
2972 2973 2974

    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should
2975 2976
                  be the same with `src` except for the first dimension.

2977 2978
    index (Tensor): The index tensor, and the data type should be `int64` currently.
                    Besides, `index` should be on CPUplace. The shape of `index` should
2979 2980
                    be one-dimensional.

2981 2982
    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily.
                     The data type should be `float32` currently, and should be placed
2983 2984
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

2985 2986
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
2987 2988
                     should be one-dimensional.

2989 2990
    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
2991
                    should be one-dimensinal.
2992

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
3011

3012 3013 3014
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
3015

3016 3017
)DOC");
#endif
3018 3019 3020 3021
}

}  // namespace pybind
}  // namespace paddle