imperative.cc 128.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif

23 24 25 26
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
27

28
#include <algorithm>
29
#include <memory>
30
#include <set>
J
Jiabin Yang 已提交
31
#include <string>
32
#include <unordered_map>
33
#include <unordered_set>
34
#include <utility>
J
Jiabin Yang 已提交
35
#include <vector>
36

J
Jiabin Yang 已提交
37
#include "paddle/fluid/eager/api/all.h"
38
#include "paddle/fluid/framework/convert_utils.h"
39
#include "paddle/fluid/framework/scope_guard.h"
40
#include "paddle/fluid/imperative/all_reduce.h"
41
#include "paddle/fluid/imperative/amp_auto_cast.h"
42
#include "paddle/fluid/imperative/basic_engine.h"
43
#include "paddle/fluid/imperative/bkcl_context.h"
44
#include "paddle/fluid/imperative/data_loader.h"
45
#include "paddle/fluid/imperative/gloo_context.h"
K
kuizhiqing 已提交
46
#include "paddle/fluid/imperative/heter_ccl_context.h"
47
#include "paddle/fluid/imperative/hooks.h"
48
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
49
#include "paddle/fluid/imperative/nccl_context.h"
50
#include "paddle/fluid/imperative/partial_grad_engine.h"
51
#include "paddle/fluid/imperative/profiler.h"
52
#include "paddle/fluid/imperative/reducer.h"
53
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
54
#include "paddle/fluid/imperative/type_defs.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
56
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/pybind/cuda_streams_py.h"
58
#include "paddle/fluid/pybind/eager_utils.h"
59
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
60
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
61
#include "paddle/fluid/pybind/tensor_py.h"
62
#include "paddle/fluid/pybind/uva_utils.h"
63
#include "paddle/phi/core/compat/arg_map_context.h"
64
#include "paddle/phi/core/type_defs.h"
65

66 67 68
namespace paddle {
namespace pybind {

69
std::atomic<int> VarBaseUniqueNameID{0};
70 71
PyTypeObject *g_varbase_pytype = nullptr;

72 73
namespace py = ::pybind11;

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
107 108
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
126 127 128 129 130
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
131 132 133 134 135 136
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
137 138 139 140 141
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
142 143
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
144 145
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
146 147
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
148 149
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
150 151
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
152 153
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
154 155
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
156
        "Place should be one of "
157 158
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace/CustomPlace"));
L
Leo Chen 已提交
159 160 161
  }
}

L
Leo Chen 已提交
162
// only initialize varbase, but not its tensor.
163 164 165 166
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
167 168 169
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
170 171 172

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
173
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
174 175 176 177 178 179 180 181 182
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
183 184 185 186 187 188 189
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
190
  InitVarBaseOnly(self, name, persistable, stop_gradient);
191
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
L
Leo Chen 已提交
192
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
193
  if (platform::is_cpu_place(place)) {
194
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
195
  } else if (platform::is_xpu_place(place)) {
196
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
197
  } else if (platform::is_gpu_place(place)) {
198
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
199
  } else if (platform::is_cuda_pinned_place(place)) {
200 201
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
202
  } else if (platform::is_npu_place(place)) {
203
    SetTensorFromPyArray<platform::NPUPlace>(tensor, array, place, zero_copy);
204 205
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
206
  } else if (platform::is_custom_place(place)) {
207 208
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
209
  } else {
L
Leo Chen 已提交
210
    PADDLE_THROW(platform::errors::InvalidArgument(
211
        "Place should be one of "
212 213
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace"));
J
Jiabin Yang 已提交
214
  }
215
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
216 217 218 219
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
220
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
221 222 223 224 225 226
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
227 228 229
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
230
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
231 232 233 234 235 236 237

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
238 239
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
240 241 242
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
243
}
244

245 246
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
247 248
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
249 250
                                        bool persistable = false,
                                        bool zero_copy = false,
251 252 253 254 255
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
256
  if (name == "") {
257 258
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
259
  }
260 261
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
262
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
263
  new (self) imperative::VarBase(name);
264
  self->SetPersistable(persistable);
265
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
266 267 268
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
269 270
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
271
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
272 273 274
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
275 276
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
277
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
278
  InitVarBaseAndTensor(self, array, place, "");
279
}
280

B
Baibaifan 已提交
281
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
282
                                                const phi::DenseTensor &tensor,
B
Baibaifan 已提交
283
                                                const std::string &name) {
284 285
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
286 287 288
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
289
  new (self) imperative::VarBase(name_);
290 291
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
292
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
293
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
294 295 296 297 298 299 300 301 302 303
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

304 305
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
306
                                         const phi::DenseTensor &tensor,
B
Baibaifan 已提交
307 308
                                         const P &place,
                                         const std::string &name) {
309
  VLOG(4) << "Init VarBase";
310 311 312
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
313
  new (self) imperative::VarBase(name_);
314 315
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
316
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
317
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
318 319 320 321 322 323 324 325 326 327
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

328 329 330 331 332
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
333
  } else {
334
    return framework::ToTypeName(var.Var().Type());
335 336
  }
}
L
Leo Chen 已提交
337

J
Jiabin Yang 已提交
338 339 340 341 342 343
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
344
            .Get<phi::DenseTensor>());
J
Jiabin Yang 已提交
345 346
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
347
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
348 349 350 351
        "method, when you reach this means we got another type index."));
  }
}

352
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
353 354 355 356 357 358 359 360 361 362 363 364 365

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

366
  if (PyList_Check(py_obj)) {  // List of VarBase
367 368 369
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
370 371 372
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
373 374 375
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
376
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
377 378 379
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
380 381 382
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
383 384 385
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
386 387 388
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
389 390 391 392
  }

  return result;
}
393

J
Jiabin Yang 已提交
394 395 396
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
397 398 399 400 401 402
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
403

404
  PADDLE_ENFORCE_EQ(
405 406
      PyErr_Occurred(),
      nullptr,
407
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
408 409 410
  return result;
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
428 429
      PyErr_Occurred(),
      nullptr,
430 431 432 433
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

434
template <typename P>
435 436
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
437 438
                        const P &dst_device,
                        const bool blocking) {
439 440 441 442 443 444 445 446
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
447 448 449
      if (src->Var().IsType<phi::DenseTensor>()) {
        auto &src_tensor = src->Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
450 451 452 453 454 455 456 457 458
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
459 460
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
461
        auto *dst_selected_rows =
462
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
463 464
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
465 466
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

492
// Bind Methods
J
Jiabin Yang 已提交
493
void BindImperative(py::module *m_ptr) {
494 495
  auto &m = *m_ptr;

496 497
#ifndef _WIN32
  // Dygraph DataLoader signal handler
498 499
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
500 501
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
502 503 504 505 506 507 508 509 510 511
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
512
  });
513 514
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
536 537
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
538
              platform::errors::InvalidArgument(
539
                  "Failed to convert input data to a regular ndarray.\n  * "
540 541 542 543 544
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
545
          phi::DenseTensor t;
546 547
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
548
          // 3. allocate shared memory
549
          void *data_ptr = t.data();
550
          size_t data_size = t.numel() * phi::SizeOf(t.dtype());
551 552 553 554 555 556
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
557 558 559 560 561
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
562 563 564 565 566 567 568 569
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

570 571 572 573 574 575
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
576 577
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
578
            platform::errors::InvalidArgument(
579
                "Failed to convert input data to a regular ndarray.\n  * "
580 581 582 583 584
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
585
        phi::DenseTensor t;
586 587
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
588 589
        // 3. allocate shared memory
        void *data_ptr = t.data();
590
        size_t data_size = t.numel() * phi::SizeOf(t.dtype());
591 592 593 594 595 596
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
597 598 599 600 601
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
602 603 604 605 606
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
607

608 609
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
610
      auto t = tensor_list[i].cast<phi::DenseTensor>();
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
626 627 628 629 630

  m.def("_set_max_memory_map_allocation_pool_size", [](int32_t size) {
    memory::allocation::MemoryMapAllocationPool::Instance().SetMaxPoolSize(
        size);
  });
631 632
#endif

633 634
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
635 636 637 638
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
639 640
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
641 642 643
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
644 645
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
646
          egr::Controller::Instance().SetCurrentTracer(tracer);
647
          imperative::SetCurrentTracer(tracer);
648
        });
649 650 651 652
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
653 654 655 656 657 658 659
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
660
      .def("__init__",
661 662
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
663
              const std::vector<int64_t> &dims,
664 665 666
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
667
             VLOG(4) << "Init VarBase";
668 669 670
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
671
                   "generated_tensor");
672 673 674 675
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
676 677 678 679
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
680
               auto *tensor = self.MutableVar()->GetMutable<phi::DenseTensor>();
681
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
682 683
             }
           })
684 685 686 687 688 689 690
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
691
           py::arg("stop_gradient") = -1)
692 693 694 695 696 697 698
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
699
           py::arg("stop_gradient") = -1)
700 701 702 703 704 705 706
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
707
           py::arg("stop_gradient") = -1)
708 709 710 711 712 713 714
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
715
           py::arg("stop_gradient") = -1)
716 717 718 719 720 721 722
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
723
           py::arg("stop_gradient") = -1)
724 725 726 727 728 729 730
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
731
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
732
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
766
           py::arg("name") = "")
767
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
768 769
      .def(
          "__setitem_varbase__",
770 771
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
772 773 774 775
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
776
                self->MutableVar()->GetMutable<phi::DenseTensor>();
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

801 802 803 804 805
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
829 830 831 832 833 834 835 836 837 838
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
855 856
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
857 858 859 860 861 862
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

863
              if (py::isinstance<imperative::VarBase>(value_obj.ptr())) {
864 865 866
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
867 868 869 870 871 872

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
873 874 875 876 877 878 879
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
880
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
881 882 883 884
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
885
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
886 887 888 889
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
890 891
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
892 893 894 895
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
896 897
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
898 899 900 901
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
902
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
903
                  }
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX64) {
                  if (!py::isinstance<py::array_t<std::complex<float>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<float>>(
                            value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX128) {
                  if (!py::isinstance<py::array_t<std::complex<double>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<double>>(
                            value_obj);
                  }
920 921 922 923
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
924 925
                      "float32, float64, complex64, complex128, int32 or "
                      "int64, "
926 927 928
                      "please check the type of tensor."));
                }

929 930 931 932 933
                SetTensorFromPyArray(
                    value_tensor->MutableVar()->GetMutable<phi::DenseTensor>(),
                    value,
                    self->Place(),
                    false);
934 935 936 937 938 939
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
940 941
                    py::isinstance<py::bool_>(value_obj) ||
                    PyComplex_Check(value_obj.ptr())) {
942
                  if (self->DataType() == framework::proto::VarType::FP32) {
943 944
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
945 946
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
947 948
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<double>()};
949 950
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
951 952
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int32_t>()};
953 954
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
955 956
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int64_t>()};
957 958
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
959 960
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<bool>()};
961 962
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP16) {
963 964 965 966 967 968 969 970 971 972
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX64) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<float>>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX128) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<double>>()};
973 974 975 976
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
977 978
                        "float32, float64, complex64, complex128, int32, int64 "
                        "or float16, "
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
995 996 997 998
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
1009
                    index_var->MutableVar()->GetMutable<phi::DenseTensor>();
1010 1011 1012 1013 1014 1015
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
1016 1017
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1018 1019
            }
          })
1020
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1021
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1022
             VLOG(4) << "Call _getitem_index_not_tensor";
1023
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1024 1025 1026 1027
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
1028
             auto tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1040 1041 1042
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1043

Z
zyfncg 已提交
1044
             auto out = slice_axes.empty() && !list_select_flag
1045 1046 1047 1048
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1049

1050
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1051
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
             if (!none_axes.empty()) {
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1100 1101 1102 1103
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
1104 1105
               auto *idx_tensor =
                   select_index->MutableVar()->GetMutable<phi::DenseTensor>();
Z
zyfncg 已提交
1106 1107
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1108 1109
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1110 1111 1112 1113 1114 1115 1116

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1117
             return out;
1118
           })
1119 1120 1121
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
1122
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1123
            PADDLE_ENFORCE_EQ(
1124 1125
                tensor.IsInitialized(),
                true,
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1144 1145
                  numel,
                  1,
1146 1147 1148 1149 1150 1151
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1152 1153
                  offset,
                  numel,
1154 1155 1156
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1157 1158
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1159 1160 1161 1162 1163 1164
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1165 1166
                    index,
                    dims[i],
1167 1168
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1169 1170 1171
                        index,
                        i,
                        dims[i]));
1172 1173 1174 1175
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1176
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1177 1178
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1179 1180
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1181 1182 1183 1184 1185
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1186
                "Unsupported tensor data type: %s", tensor.dtype()));
1187 1188
          },
          py::return_value_policy::copy)
1189 1190 1191 1192
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1193 1194
                 var->IsInitialized(),
                 true,
1195 1196 1197 1198 1199
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1200 1201 1202 1203 1204 1205 1206 1207
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1208 1209 1210 1211 1212
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1213 1214
      .def(
          "numpy",
1215

1216
          [](imperative::VarBase &self) -> py::array {
1217
            const auto &tensor = self.MutableVar()->Get<phi::DenseTensor>();
1218
            PADDLE_ENFORCE_EQ(
1219 1220
                tensor.IsInitialized(),
                true,
1221 1222 1223 1224 1225 1226
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1227
        Returns a numpy array shows the value of current Tensor.
1228

1229
        Returns:
Z
Zhou Wei 已提交
1230
            ndarray: The numpy value of current Tensor.
1231 1232

        Returns type:
Z
Zhou Wei 已提交
1233
            ndarray: dtype is same as current Tensor
1234 1235 1236 1237

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1238
                import paddle
1239 1240
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1241 1242 1243 1244
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1245
       )DOC")
1246 1247 1248 1249 1250
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1251 1252
                self.Var().IsInitialized(),
                true,
1253 1254
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1255

1256
            PADDLE_ENFORCE_EQ(
1257
                self.Var().IsType<phi::DenseTensor>() ||
1258 1259 1260 1261 1262
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1263

1264 1265
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1266

1267 1268 1269
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1270

1271 1272
            if (self.Var().IsType<phi::DenseTensor>()) {
              const auto &origin_tensor = self.Var().Get<phi::DenseTensor>();
1273
              PADDLE_ENFORCE_EQ(
1274 1275
                  origin_tensor.IsInitialized(),
                  true,
1276 1277 1278 1279
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
1280
                  detach_var->MutableVar()->GetMutable<phi::DenseTensor>();
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1291 1292
                  origin_selected_rows.value().IsInitialized(),
                  true,
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1310 1311
          py::return_value_policy::take_ownership,
          R"DOC(
1312

1313
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1314 1315
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1316

1317
        Returns: The detached Tensor.
1318 1319 1320 1321

        Examples:
            .. code-block:: python

1322
                import paddle
Z
Zhou Wei 已提交
1323

1324
                x = paddle.to_tensor([1.0], stop_gradient=False)
Z
Zhou Wei 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
1344
                y.backward()
Z
Zhou Wei 已提交
1345 1346
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
1347

1348
       )DOC")
1349 1350 1351 1352
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1353

1354
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1355

1356
        The Gradient of current Tensor will be set to ``0`` .
1357 1358 1359 1360 1361 1362

        Returns:  None

        Examples:
             .. code-block:: python

1363
                import paddle
Z
Zhou Wei 已提交
1364 1365 1366 1367 1368 1369 1370
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1371
      )DOC")
1372 1373
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1374 1375
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1376 1377 1378
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
1379
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1380 1381
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1393 1394
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1426
      .def("_grad_name", &imperative::VarBase::GradVarName)
1427 1428 1429
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
1430
            return self.MutableGradVar()->Get<phi::DenseTensor>();
1431 1432
          },
          py::return_value_policy::reference)
1433 1434 1435 1436
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1437
      .def("_reset_grad_inplace_version",
1438
           [](imperative::VarBase &self, bool set_to_zero) {
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1450 1451
             py::gil_scoped_release release;

1452 1453 1454
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1455 1456 1457
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1458 1459
             }
           })
1460 1461 1462 1463 1464 1465 1466
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
1467 1468
                  grad_var->MutableVar()->IsType<phi::DenseTensor>()
                      ? grad_var->MutableVar()->GetMutable<phi::DenseTensor>()
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1480 1481 1482 1483
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1484 1485
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1486
             return self.Var().IsType<phi::SelectedRows>();
1487
           })
1488 1489 1490 1491 1492
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1493
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1494
#if NCCL_VERSION_CODE >= 2212
1495
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1496
#else
1497
               if (!self.Var().IsType<phi::SelectedRows>()) {
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1511
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1512 1513 1514
            }
          },
          py::call_guard<py::gil_scoped_release>())
1515 1516 1517
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1518 1519
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1520
                 platform::errors::InvalidArgument(
1521 1522 1523
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1524 1525 1526 1527 1528
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1529 1530
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1531
                 platform::errors::InvalidArgument(
1532 1533 1534
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1535
           })
1536 1537 1538
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1539 1540
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1552 1553 1554 1555
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1556 1557
                self.IsLeaf(),
                true,
1558 1559 1560
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1561 1562
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1563 1564 1565 1566 1567 1568 1569 1570
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
1613

1614 1615 1616 1617
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1618 1619 1620
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1621
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1622 1623 1624 1625
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1626
#endif
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1652 1653 1654
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1655 1656
             py::handle &handle,
             bool blocking) {
1657
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1658 1659 1660
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1661
#else
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1696
#endif
1697
          },
1698 1699 1700
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1701 1702
        Returns a copy of this Tensor in GPU memory.

1703
        If this Tensor is already in GPU memory and device_id is default,
1704
        then no copy is performed and the original Tensor is returned.
1705

1706
        Args:
1707
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1708
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be
1709 1710 1711 1712 1713
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1714
              # required: gpu
1715 1716
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1717
              print(x.place)        # Place(cpu)
1718 1719

              y = x.cuda()
1720
              print(y.place)        # Place(gpu:0)
1721

1722
              y = x.cuda(None)
1723
              print(y.place)        # Place(gpu:0)
1724

1725 1726 1727
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1728
       )DOC")
1729 1730 1731
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1732
#ifndef _WIN32
1733
            PADDLE_ENFORCE_EQ(
1734 1735
                platform::is_cpu_place(self->Place()),
                true,
1736 1737 1738
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
1739
            auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1752 1753 1754 1755 1756
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1757 1758
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1759 1760 1761 1762
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1763 1764
          },
          py::return_value_policy::reference)
1765
#if defined(PADDLE_WITH_CUDA)
1766 1767 1768
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1769 1770
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1771 1772 1773 1774
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
1775
                self->MutableVar()->GetMutable<phi::DenseTensor>();
1776 1777
            tensor_uva(self_tensor, device_id);
          },
1778 1779 1780
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1796
      .def("copy_", &imperative::VarBase::CopyFrom)
1797 1798 1799
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1800 1801
             const platform::CPUPlace &place,
             bool blocking) {
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1820 1821
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1832 1833
             const platform::XPUPlace &place,
             bool blocking) {
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1844 1845
             const platform::CUDAPlace &place,
             bool blocking) {
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1856 1857
             const platform::NPUPlace &place,
             bool blocking) {
1858 1859 1860 1861 1862 1863 1864
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1877 1878 1879
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1880 1881
             const platform::CustomPlace &place,
             bool blocking) {
1882 1883 1884 1885 1886 1887 1888
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1889 1890 1891
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1892 1893
             const platform::Place &place,
             bool blocking) {
1894 1895 1896 1897 1898 1899 1900 1901
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1902 1903
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1904
          py::return_value_policy::reference)
1905 1906
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1907
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1908
             PADDLE_ENFORCE_EQ(
1909 1910
                 t->IsInitialized(),
                 true,
1911 1912
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1913 1914 1915 1916
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1917
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1918
             PADDLE_ENFORCE_EQ(
1919 1920
                 t->IsInitialized(),
                 true,
1921 1922
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1923 1924
             return t->offset();
           })
1925
      .def("_share_buffer_to",
1926
           [](const std::shared_ptr<imperative::VarBase> &self,
1927
              std::shared_ptr<imperative::VarBase> &dst) {
1928 1929
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1930
             PADDLE_ENFORCE_EQ(
1931 1932
                 src->IsInitialized(),
                 true,
1933 1934 1935
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1936
             dst_->ShareDataTypeWith(*src);
1937 1938 1939
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1940
              std::shared_ptr<imperative::VarBase> &dst) {
1941 1942
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1943 1944 1945 1946
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1947
           })
1948 1949 1950
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1951 1952
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1953
             PADDLE_ENFORCE_EQ(
1954 1955
                 src->IsInitialized(),
                 true,
1956 1957 1958 1959 1960 1961 1962 1963 1964
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1965 1966
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1967 1968 1969 1970 1971
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1972 1973
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1974 1975
              int64_t begin_idx,
              int64_t end_idx) {
1976
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1977
             PADDLE_ENFORCE_EQ(
1978 1979
                 t->IsInitialized(),
                 true,
1980 1981
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1982 1983 1984 1985 1986 1987 1988
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
1989
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1990 1991
             return t->numel();
           })
1992 1993
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
1994

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2015 2016
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2017 2018 2019
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2020 2021
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2022
                    &imperative::VarBase::SetPersistable)
2023 2024 2025
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
2026
            if (self.Var().IsType<phi::DenseTensor>()) {
2027
              auto value = phi::vectorize<int>(
2028 2029
                  self.Var().Get<phi::DenseTensor>().dims());
              auto tensor = self.Var().Get<phi::DenseTensor>();
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

2046 2047
              if (change_dim &&
                  phi::DataLayoutToString(desired_layout) == "NCHW") {
2048 2049 2050 2051 2052 2053 2054 2055 2056
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
2057 2058
              } else if (change_dim &&
                         phi::DataLayoutToString(desired_layout) == "NHWC") {
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2086 2087 2088
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
2089 2090
            if (self.Var().IsType<phi::DenseTensor>()) {
              auto layout = self.Var().Get<phi::DenseTensor>().layout();
2091
              return phi::DataLayoutToString(layout);
2092 2093 2094
            }
            return std::string("");
          })
2095 2096
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2097 2098 2099
                             R"DOC(
      Whether a Tensor is leaf Tensor.

2100 2101
      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor.

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2125
      .def_property_readonly(
2126 2127
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2128
          py::return_value_policy::copy)
2129 2130 2131 2132 2133 2134
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2135
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2136
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2137

2138 2139 2140 2141 2142
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2143 2144 2145 2146 2147 2148 2149
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2150
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2151
      m, "Tracer", R"DOC()DOC")
2152
      .def("__init__",
J
Jiabin Yang 已提交
2153
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2154 2155 2156
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2157 2158
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2159
                    &imperative::Tracer::SetAmpLevel)
2160 2161
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2162
                    &imperative::Tracer::SetAmpDtype)
2163 2164
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2165
                    &imperative::Tracer::SetHasGrad)
2166 2167 2168 2169 2170 2171 2172 2173
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2174
              self.SetExpectedPlace(*p);
2175 2176
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2177 2178
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2179 2180 2181
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2182 2183
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2184 2185
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2186
              self.SetExpectedPlace(*p);
2187 2188
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2189 2190
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2191
              self.SetExpectedPlace(*p);
2192 2193
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2194 2195 2196 2197 2198
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2199 2200 2201 2202 2203
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2204 2205 2206 2207 2208
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2209 2210 2211 2212 2213
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2214
            } else {
L
Leo Chen 已提交
2215
              PADDLE_THROW(platform::errors::InvalidArgument(
2216
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
2217
                  "CPUPlace, NPUPlace, IPUPlace, MLUPlace"
L
Leo Chen 已提交
2218 2219
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2220 2221
            }
          })
2222 2223 2224
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2225 2226
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2227
           py::arg("key") = "dygraph_tmp")
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2244
             VLOG(5) << "AMP operators changed, "
2245 2246
                     << imperative::AmpOperators::Instance();
           })
2247 2248 2249
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2250 2251
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2252
           })
C
Chen Weihang 已提交
2253
      .def("_get_kernel_signature",
2254 2255 2256 2257
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2275 2276
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2277 2278 2279
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2280 2281
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2282 2283
             }
           })
2284
      .def("trace",
2285 2286 2287 2288 2289 2290
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2291 2292 2293 2294 2295 2296
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2297 2298 2299 2300 2301 2302 2303
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2304 2305
             }
           })
2306
      .def("trace",
2307 2308 2309 2310 2311 2312
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2313 2314
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2315 2316 2317 2318
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2319 2320 2321 2322 2323 2324 2325
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2326 2327
             }
           })
M
minqiyang 已提交
2328
      .def("trace",
2329 2330 2331 2332 2333 2334
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2335 2336
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2337 2338
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2339 2340
             {
               py::gil_scoped_release release;
2341 2342 2343 2344 2345 2346 2347
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2348
             }
M
minqiyang 已提交
2349
           })
2350
      .def("trace",
2351 2352 2353 2354 2355 2356
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::NPUPlace &place,
Z
zyfncg 已提交
2357 2358
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2359
             auto ins_map = ConvertToNameVarBaseMap(ins);
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
             }
           })
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2382 2383 2384
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2385 2386 2387 2388 2389 2390 2391
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2392 2393
             }
           })
J
Jiabin Yang 已提交
2394
      .def("trace",
2395 2396 2397 2398 2399 2400
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2401 2402
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2403 2404 2405 2406
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2407 2408 2409 2410 2411 2412 2413
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2414 2415
             }
           });
2416 2417

  // define parallel context
2418 2419 2420
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2421 2422
      .def_property(
          "nranks",
2423 2424
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2425 2426
            self.nranks_ = nranks;
          })
2427 2428 2429 2430 2431 2432 2433 2434
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2435 2436
      .def_property(
          "trainer_endpoints",
2437
          [](const imperative::ParallelStrategy &self) {
2438 2439
            return self.trainer_endpoints_;
          },
2440
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2441 2442
            self.trainer_endpoints_ = eps;
          })
2443 2444 2445 2446 2447 2448 2449 2450
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2451 2452 2453 2454 2455 2456
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2457

2458 2459 2460 2461
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2462
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2463
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
R
ronnywang 已提交
2464
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
2465

2466 2467 2468 2469 2470 2471 2472
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2487 2488 2489 2490 2491
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2492 2493 2494 2495
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2496 2497
         bool retain_graph,
         const imperative::Tracer &tracer) {
2498 2499 2500 2501 2502 2503 2504 2505
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

K
Kim Yann 已提交
2506 2507
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
2508 2509 2510 2511 2512 2513
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2514 2515 2516 2517
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2528 2529
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2530
        py::arg("tensor_indices") = std::vector<int64_t>{},
2531
        py::call_guard<py::gil_scoped_release>());
2532
#endif
2533

2534
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2535 2536
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2537 2538 2539 2540
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2541 2542 2543 2544
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2545 2546 2547
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2548 2549
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2550 2551 2552 2553
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2554 2555 2556 2557
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2558
#endif
2559 2560 2561

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2562 2563
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2564 2565 2566 2567 2568 2569 2570
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2571 2572 2573
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2574
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
张春乔 已提交
2575
    defined(PADDLE_WITH_XPU_BKCL)
2576 2577
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2578 2579 2580 2581 2582 2583
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

S
Siming Dai 已提交
2584
#if defined(PADDLE_WITH_CUDA)
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2606 2607
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2621 2622 2623 2624
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

2636
      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and
S
Siming Dai 已提交
2637 2638 2639 2640 2641 2642 2643 2644
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
2645

S
Siming Dai 已提交
2646 2647 2648 2649 2650 2651 2652
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2653 2654 2655
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2656 2657 2658 2659
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2660
        PADDLE_ENFORCE_EQ(
2661 2662
            platform::is_gpu_place(src.Place()),
            true,
2663 2664 2665 2666
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2667 2668
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2669 2670 2671 2672 2673
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2674 2675
            platform::is_cpu_place(offset.Place()),
            true,
2676 2677 2678 2679
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2680 2681
            platform::is_cpu_place(count.Place()),
            true,
2682 2683 2684 2685 2686 2687
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
2688 2689 2690 2691
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2692 2693
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2694 2695
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2696 2697
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2698 2699
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2700 2701
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2702 2703
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2704 2705 2706
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2707 2708
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2709 2710 2711 2712 2713
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2714 2715
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2716 2717 2718 2719 2720
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2721 2722
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2723 2724 2725 2726 2727 2728 2729 2730 2731

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2732 2733
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2734 2735
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2736 2737
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2738 2739
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2740 2741 2742 2743 2744
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2745 2746 2747 2748
          src_offset += c;
        }
      },
      R"DOC(
2749 2750 2751 2752 2753
  This api provides a way to write pieces of source tensor to destination tensor
  inplacely and asynchronously. In which, we use `offset` and `count` to determine
  where to copy. `offset` means the begin points of the copy pieces of `src`, and
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process
  will run asynchronously from cuda to pin memory. We can simply remember this as
2754
  "gpu async_write to pin_memory".
2755

2756
  Arguments:
2757 2758

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2759 2760
                  Besides, `src` should be placed on CUDAPlace.

2761 2762 2763
    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst`
                  should be the same with `src` except for the first dimension.
2764

2765 2766 2767 2768 2769 2770 2771
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
                    should be one-dimensinal.
2772 2773 2774 2775 2776 2777

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
2778
          from paddle.fluid import core
2779
          from paddle.device import cuda
2780

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2801 2802 2803 2804 2805 2806 2807 2808
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2809 2810 2811 2812 2813
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2814 2815
            platform::is_gpu_place(dst.Place()),
            true,
2816 2817 2818 2819
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2820 2821
            platform::is_cpu_place(index.Place()),
            true,
2822 2823 2824 2825
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2826 2827
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2828 2829 2830 2831 2832
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2833 2834
            platform::is_cpu_place(offset.Place()),
            true,
2835 2836 2837 2838
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2839 2840
            platform::is_cpu_place(count.Place()),
            true,
2841 2842 2843 2844
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

2845 2846 2847
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &index_tensor = index.Var().Get<phi::DenseTensor>();
2848
        auto *buffer_tensor =
2849 2850 2851
            buffer.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2852 2853 2854
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2855 2856
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2857 2858 2859 2860
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2861 2862
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2863 2864 2865 2866 2867
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2868 2869
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2870 2871 2872 2873
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2874 2875
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2876 2877 2878 2879
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2880 2881
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2882 2883 2884
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
2885 2886
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2887 2888 2889 2890 2891 2892

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2893 2894
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2895 2896
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2897 2898
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2899 2900
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2901 2902
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2914 2915
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2916 2917 2918 2919 2920 2921 2922
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2923 2924
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2925 2926
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2927 2928
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2929 2930
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2931 2932 2933 2934 2935
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
2936 2937 2938
            dst_offset += c;
          }
        } else {
2939 2940
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
2941 2942 2943 2944 2945
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
2946 2947 2948
        auto index_select = [](const phi::DenseTensor &src_tensor,
                               const phi::DenseTensor &index_tensor,
                               phi::DenseTensor *buffer_tensor) {
2949 2950 2951 2952 2953 2954 2955 2956 2957
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
2958 2959
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
2960 2961 2962 2963 2964 2965
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
2966 2967
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
2968
                        index_tensor.numel() * size * sizeof(float),
2969 2970
                        cudaMemcpyHostToDevice,
                        stream);
2971 2972
      },
      R"DOC(
2973 2974 2975 2976 2977
  This api provides a way to read from pieces of source tensor to destination tensor
  asynchronously. In which, we use `index`, `offset` and `count` to determine where
  to read. `index` means the index position of src tensor we want to read. `offset`
  and count means the begin points and length of pieces of src tensor we want to read.
  To be noted, the copy process will run asynchronously from pin memory to cuda place.
2978 2979 2980
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
2981 2982

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2983
                  Besides, `src` should be placed on CUDAPinnedPlace.
2984 2985 2986

    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should
2987 2988
                  be the same with `src` except for the first dimension.

2989 2990
    index (Tensor): The index tensor, and the data type should be `int64` currently.
                    Besides, `index` should be on CPUplace. The shape of `index` should
2991 2992
                    be one-dimensional.

2993 2994
    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily.
                     The data type should be `float32` currently, and should be placed
2995 2996
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

2997 2998
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
2999 3000
                     should be one-dimensional.

3001 3002
    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
3003
                    should be one-dimensinal.
3004

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
3023

3024 3025 3026
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
3027

3028 3029
)DOC");
#endif
3030 3031 3032 3033
}

}  // namespace pybind
}  // namespace paddle