imperative.cc 130.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22

23
#include <algorithm>
24
#include <memory>
25
#include <set>
J
Jiabin Yang 已提交
26
#include <string>
27
#include <unordered_map>
28
#include <unordered_set>
29
#include <utility>
J
Jiabin Yang 已提交
30
#include <vector>
31

J
Jiabin Yang 已提交
32
#include "paddle/fluid/eager/api/all.h"
33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/scope_guard.h"
35
#include "paddle/fluid/imperative/all_reduce.h"
36
#include "paddle/fluid/imperative/amp_auto_cast.h"
37
#include "paddle/fluid/imperative/basic_engine.h"
38
#include "paddle/fluid/imperative/bkcl_context.h"
39
#include "paddle/fluid/imperative/cncl_context.h"
40
#include "paddle/fluid/imperative/data_loader.h"
41
#include "paddle/fluid/imperative/gloo_context.h"
42
#include "paddle/fluid/imperative/hccl_context.h"
K
kuizhiqing 已提交
43
#include "paddle/fluid/imperative/heter_ccl_context.h"
44
#include "paddle/fluid/imperative/hooks.h"
45
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
46
#include "paddle/fluid/imperative/nccl_context.h"
47
#include "paddle/fluid/imperative/partial_grad_engine.h"
48
#include "paddle/fluid/imperative/profiler.h"
49
#include "paddle/fluid/imperative/reducer.h"
50
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
51
#include "paddle/fluid/imperative/type_defs.h"
52
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
53
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
54
#include "paddle/fluid/pybind/cuda_streams_py.h"
55
#include "paddle/fluid/pybind/eager_utils.h"
56
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
59
#include "paddle/fluid/pybind/uva_utils.h"
60
#include "paddle/phi/core/compat/arg_map_context.h"
61
#include "paddle/phi/core/type_defs.h"
62

63 64 65
namespace paddle {
namespace pybind {

66
std::atomic<int> VarBaseUniqueNameID{0};
67 68
PyTypeObject *g_varbase_pytype = nullptr;

69 70
namespace py = ::pybind11;

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
104 105
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
123 124 125 126 127
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
128 129 130 131 132 133
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
134 135 136 137 138
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
139 140
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
141 142
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
143 144
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
145 146
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
147 148
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
F
fwenguang 已提交
149 150
  } else if (py::isinstance<platform::MLUPlace>(place_obj)) {
    return place_obj.cast<platform::MLUPlace>();
151 152
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
153 154
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
155
        "Place should be one of "
156 157
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace/CustomPlace"));
L
Leo Chen 已提交
158 159 160
  }
}

L
Leo Chen 已提交
161
// only initialize varbase, but not its tensor.
162 163 164 165
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
166 167 168
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
169 170 171

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
172
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
173 174 175 176 177 178 179 180 181
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
182 183 184 185 186 187 188
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
189
  InitVarBaseOnly(self, name, persistable, stop_gradient);
190
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
L
Leo Chen 已提交
191
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
192
  if (platform::is_cpu_place(place)) {
193
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
194
  } else if (platform::is_xpu_place(place)) {
195
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
196
  } else if (platform::is_gpu_place(place)) {
197
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
198
  } else if (platform::is_cuda_pinned_place(place)) {
199 200
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
201
  } else if (platform::is_npu_place(place)) {
202
    SetTensorFromPyArray<platform::NPUPlace>(tensor, array, place, zero_copy);
203 204
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
F
fwenguang 已提交
205
  } else if (platform::is_mlu_place(place)) {
206
    SetTensorFromPyArray<platform::MLUPlace>(tensor, array, place, zero_copy);
207
  } else if (platform::is_custom_place(place)) {
208 209
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
210
  } else {
L
Leo Chen 已提交
211
    PADDLE_THROW(platform::errors::InvalidArgument(
212
        "Place should be one of "
213 214
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace"));
J
Jiabin Yang 已提交
215
  }
216
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
217 218 219 220
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
221
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
222 223 224 225 226 227
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
228 229 230
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
231
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
232 233 234 235 236 237 238

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
239 240
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
241 242 243
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
244
}
245

246 247
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
248 249
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
250 251
                                        bool persistable = false,
                                        bool zero_copy = false,
252 253 254 255 256
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
257
  if (name == "") {
258 259
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
260
  }
261 262
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
263
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
264
  new (self) imperative::VarBase(name);
265
  self->SetPersistable(persistable);
266
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
267 268 269
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
270 271
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
272
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
273 274 275
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
276 277
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
278
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
279
  InitVarBaseAndTensor(self, array, place, "");
280
}
281

B
Baibaifan 已提交
282
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
283
                                                const phi::DenseTensor &tensor,
B
Baibaifan 已提交
284
                                                const std::string &name) {
285 286
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
287 288 289
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
290
  new (self) imperative::VarBase(name_);
291 292
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
293
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
294
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
295 296 297 298 299 300 301 302 303 304
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

305 306
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
307
                                         const phi::DenseTensor &tensor,
B
Baibaifan 已提交
308 309
                                         const P &place,
                                         const std::string &name) {
310
  VLOG(4) << "Init VarBase";
311 312 313
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
314
  new (self) imperative::VarBase(name_);
315 316
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
317
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
318
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
319 320 321 322 323 324 325 326 327 328
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

329 330 331 332 333
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
334
  } else {
335
    return framework::ToTypeName(var.Var().Type());
336 337
  }
}
L
Leo Chen 已提交
338

J
Jiabin Yang 已提交
339 340 341 342 343 344
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
345
            .Get<phi::DenseTensor>());
J
Jiabin Yang 已提交
346 347 348 349 350 351 352
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

353
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
354 355 356 357 358 359 360 361 362 363 364 365 366

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

367
  if (PyList_Check(py_obj)) {  // List of VarBase
368 369 370
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
371 372 373
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
374 375 376
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
377
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
378 379 380
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
381 382 383
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
384 385 386
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
387 388 389
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
390 391 392 393
  }

  return result;
}
394

J
Jiabin Yang 已提交
395 396 397
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
398 399 400 401 402 403
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
404

405
  PADDLE_ENFORCE_EQ(
406 407
      PyErr_Occurred(),
      nullptr,
408
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
409 410 411
  return result;
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
429 430
      PyErr_Occurred(),
      nullptr,
431 432 433 434
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

435
template <typename P>
436 437
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
438 439
                        const P &dst_device,
                        const bool blocking) {
440 441 442 443 444 445 446 447
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
448 449 450
      if (src->Var().IsType<phi::DenseTensor>()) {
        auto &src_tensor = src->Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
451 452 453 454 455 456 457 458 459
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
460 461
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
462
        auto *dst_selected_rows =
463
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
464 465
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
466 467
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

493
// Bind Methods
J
Jiabin Yang 已提交
494
void BindImperative(py::module *m_ptr) {
495 496
  auto &m = *m_ptr;

497 498
#ifndef _WIN32
  // Dygraph DataLoader signal handler
499 500
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
501 502
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
503 504 505 506 507 508 509 510 511 512
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
513
  });
514 515
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
537 538
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
539
              platform::errors::InvalidArgument(
540
                  "Failed to convert input data to a regular ndarray.\n  * "
541 542 543 544 545
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
546
          phi::DenseTensor t;
547 548
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
549
          // 3. allocate shared memory
550
          void *data_ptr = t.data();
551
          size_t data_size = t.numel() * phi::SizeOf(t.dtype());
552 553 554 555 556 557
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
558 559 560 561 562
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
563 564 565 566 567 568 569 570
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

571 572 573 574 575 576
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
577 578
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
579
            platform::errors::InvalidArgument(
580
                "Failed to convert input data to a regular ndarray.\n  * "
581 582 583 584 585
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
586
        phi::DenseTensor t;
587 588
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
589 590
        // 3. allocate shared memory
        void *data_ptr = t.data();
591
        size_t data_size = t.numel() * phi::SizeOf(t.dtype());
592 593 594 595 596 597
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
598 599 600 601 602
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
603 604 605 606 607
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
608

609 610
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
611
      auto t = tensor_list[i].cast<phi::DenseTensor>();
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

629 630
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
631 632 633 634
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
635 636
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
637 638 639
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
640 641
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
642
          egr::Controller::Instance().SetCurrentTracer(tracer);
643
          imperative::SetCurrentTracer(tracer);
644
        });
645 646 647 648
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
649 650 651 652 653 654 655
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
656
      .def("__init__",
657 658
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
659
              const std::vector<int64_t> &dims,
660 661 662
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
663
             VLOG(4) << "Init VarBase";
664 665 666
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
667
                   "generated_tensor");
668 669 670 671
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
672 673 674 675
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
676
               auto *tensor = self.MutableVar()->GetMutable<phi::DenseTensor>();
677
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
678 679
             }
           })
680 681 682 683 684 685 686
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
687
           py::arg("stop_gradient") = -1)
688 689 690 691 692 693 694
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
695
           py::arg("stop_gradient") = -1)
696 697 698 699 700 701 702
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
703
           py::arg("stop_gradient") = -1)
704 705 706 707 708 709 710
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
711
           py::arg("stop_gradient") = -1)
712 713 714 715 716 717 718
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
719
           py::arg("stop_gradient") = -1)
720 721 722 723 724 725 726
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::MLUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
F
fwenguang 已提交
727
           py::arg("stop_gradient") = -1)
728 729 730 731 732 733 734
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
735
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
736
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::MLUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
775
           py::arg("name") = "")
776
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
777 778
      .def(
          "__setitem_varbase__",
779 780
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
781 782 783 784
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
785
                self->MutableVar()->GetMutable<phi::DenseTensor>();
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

810 811 812 813 814
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
838 839 840 841 842 843 844 845 846 847
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
864 865
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
866 867 868 869 870 871
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

872
              if (py::isinstance<imperative::VarBase>(value_obj.ptr())) {
873 874 875
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
876 877 878 879 880 881

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
882 883 884 885 886 887 888
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
889
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
890 891 892 893
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
894
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
895 896 897 898
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
899 900
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
901 902 903 904
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
905 906
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
907 908 909 910
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
911
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
912 913 914 915 916 917 918 919 920
                  }
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
                      "float32, int32 or int64, "
                      "please check the type of tensor."));
                }

921 922 923 924 925
                SetTensorFromPyArray(
                    value_tensor->MutableVar()->GetMutable<phi::DenseTensor>(),
                    value,
                    self->Place(),
                    false);
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
                    py::isinstance<py::bool_>(value_obj)) {
                  if (self->DataType() == framework::proto::VarType::FP32) {
                    attrs["fp32_values"] =
                        std::vector<float>{value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
                    attrs["fp64_values"] =
                        std::vector<double>{value_obj.cast<double>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
                    attrs["int32_values"] =
                        std::vector<int32_t>{value_obj.cast<int32_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
                    attrs["int64_values"] =
                        std::vector<int64_t>{value_obj.cast<int64_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
                    attrs["bool_values"] =
                        std::vector<int>{value_obj.cast<bool>()};
952 953 954 955
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP16) {
                    attrs["fp16_values"] =
                        std::vector<float>{value_obj.cast<float>()};
956 957 958 959
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
960
                        "float32, int32, int64 or float16, "
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
977 978 979 980
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
981 982 983 984 985 986 987 988 989 990
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
991
                    index_var->MutableVar()->GetMutable<phi::DenseTensor>();
992 993 994 995 996 997
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
998 999
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1000 1001
            }
          })
1002
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1003
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1004
             VLOG(4) << "Call _getitem_index_not_tensor";
1005
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1006 1007 1008 1009
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
1010
             auto tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1022 1023 1024
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1025

Z
zyfncg 已提交
1026
             auto out = slice_axes.empty() && !list_select_flag
1027 1028 1029 1030
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1031

1032
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1033
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
             if (!none_axes.empty()) {
               // Deal with cases when all axes are decreased.
               // After slice, the shape of out is [1], which should have been
               // [], but Paddle doesn't support scalar.
               // In order to ensure the correctness of the final shape of out,
               // one dimension of out needs to be decreased.
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 1, 1, None] # out.shape : (1)
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 none_axes.pop_back();
               }
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1094 1095 1096 1097
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
1098 1099
               auto *idx_tensor =
                   select_index->MutableVar()->GetMutable<phi::DenseTensor>();
Z
zyfncg 已提交
1100 1101
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1102 1103
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1104 1105 1106 1107 1108 1109 1110

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1111
             return out;
1112
           })
1113 1114 1115
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
1116
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1117
            PADDLE_ENFORCE_EQ(
1118 1119
                tensor.IsInitialized(),
                true,
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1138 1139
                  numel,
                  1,
1140 1141 1142 1143 1144 1145
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1146 1147
                  offset,
                  numel,
1148 1149 1150
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1151 1152
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1153 1154 1155 1156 1157 1158
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1159 1160
                    index,
                    dims[i],
1161 1162
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1163 1164 1165
                        index,
                        i,
                        dims[i]));
1166 1167 1168 1169
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1170
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1171 1172
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1173 1174
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1175 1176 1177 1178 1179
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1180
                "Unsupported tensor data type: %s", tensor.dtype()));
1181 1182
          },
          py::return_value_policy::copy)
1183 1184 1185 1186
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1187 1188
                 var->IsInitialized(),
                 true,
1189 1190 1191 1192 1193
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1194 1195 1196 1197 1198 1199 1200 1201
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1202 1203 1204 1205 1206
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1207 1208
      .def(
          "numpy",
1209

1210
          [](imperative::VarBase &self) -> py::array {
1211
            const auto &tensor = self.MutableVar()->Get<phi::DenseTensor>();
1212
            PADDLE_ENFORCE_EQ(
1213 1214
                tensor.IsInitialized(),
                true,
1215 1216 1217 1218 1219 1220
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1221
        Returns a numpy array shows the value of current Tensor.
1222

1223
        Returns:
Z
Zhou Wei 已提交
1224
            ndarray: The numpy value of current Tensor.
1225 1226

        Returns type:
Z
Zhou Wei 已提交
1227
            ndarray: dtype is same as current Tensor
1228 1229 1230 1231

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1232
                import paddle
1233 1234
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1235 1236 1237 1238
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1239
       )DOC")
1240 1241 1242 1243 1244
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1245 1246
                self.Var().IsInitialized(),
                true,
1247 1248
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1249

1250
            PADDLE_ENFORCE_EQ(
1251
                self.Var().IsType<phi::DenseTensor>() ||
1252 1253 1254 1255 1256
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1257

1258 1259
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1260

1261 1262 1263
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1264

1265 1266
            if (self.Var().IsType<phi::DenseTensor>()) {
              const auto &origin_tensor = self.Var().Get<phi::DenseTensor>();
1267
              PADDLE_ENFORCE_EQ(
1268 1269
                  origin_tensor.IsInitialized(),
                  true,
1270 1271 1272 1273
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
1274
                  detach_var->MutableVar()->GetMutable<phi::DenseTensor>();
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1285 1286
                  origin_selected_rows.value().IsInitialized(),
                  true,
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1304 1305
          py::return_value_policy::take_ownership,
          R"DOC(
1306

1307
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1308 1309
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1310

1311
        Returns: The detached Tensor.
1312 1313 1314 1315

        Examples:
            .. code-block:: python

1316
                import paddle
Z
Zhou Wei 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
1338
                y.backward()
Z
Zhou Wei 已提交
1339 1340
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
1341

1342
       )DOC")
1343 1344 1345 1346
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1347

1348
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1349

1350
        The Gradient of current Tensor will be set to ``0`` .
1351 1352 1353 1354 1355 1356

        Returns:  None

        Examples:
             .. code-block:: python

1357
                import paddle
Z
Zhou Wei 已提交
1358 1359 1360 1361 1362 1363 1364
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1365
      )DOC")
1366 1367
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1368 1369
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1370 1371 1372
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
1373
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1374 1375
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1387 1388
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1420
      .def("_grad_name", &imperative::VarBase::GradVarName)
1421 1422 1423
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
1424
            return self.MutableGradVar()->Get<phi::DenseTensor>();
1425 1426
          },
          py::return_value_policy::reference)
1427 1428 1429 1430
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1431
      .def("_reset_grad_inplace_version",
1432
           [](imperative::VarBase &self, bool set_to_zero) {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1444 1445
             py::gil_scoped_release release;

1446 1447 1448
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1449 1450 1451
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1452 1453
             }
           })
1454 1455 1456 1457 1458 1459 1460
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
1461 1462
                  grad_var->MutableVar()->IsType<phi::DenseTensor>()
                      ? grad_var->MutableVar()->GetMutable<phi::DenseTensor>()
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1474 1475 1476 1477
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1478 1479
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1480
             return self.Var().IsType<phi::SelectedRows>();
1481
           })
1482 1483 1484 1485 1486
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1487
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1488
#if NCCL_VERSION_CODE >= 2212
1489
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1490
#else
1491
               if (!self.Var().IsType<phi::SelectedRows>()) {
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1505
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1506 1507 1508
            }
          },
          py::call_guard<py::gil_scoped_release>())
1509 1510 1511
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1512 1513
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1514
                 platform::errors::InvalidArgument(
1515 1516 1517
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1518 1519 1520 1521 1522
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1523 1524
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1525
                 platform::errors::InvalidArgument(
1526 1527 1528
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1529
           })
1530 1531 1532
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1533 1534
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1546 1547 1548 1549
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1550 1551
                self.IsLeaf(),
                true,
1552 1553 1554
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1555 1556
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1557 1558 1559 1560 1561 1562 1563 1564
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
1607

1608 1609 1610 1611
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1612 1613 1614
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1615
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1616 1617 1618 1619
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1620
#endif
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1646 1647 1648
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1649 1650
             py::handle &handle,
             bool blocking) {
1651
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1652 1653 1654
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1655
#else
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1690
#endif
1691
          },
1692 1693 1694
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1695 1696
        Returns a copy of this Tensor in GPU memory.

1697
        If this Tensor is already in GPU memory and device_id is default,
1698
        then no copy is performed and the original Tensor is returned.
1699

1700
        Args:
1701
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1702
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be
1703 1704 1705 1706 1707
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1708
              # required: gpu
1709 1710
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1711
              print(x.place)        # Place(cpu)
1712 1713

              y = x.cuda()
1714
              print(y.place)        # Place(gpu:0)
1715

1716
              y = x.cuda(None)
1717
              print(y.place)        # Place(gpu:0)
1718

1719 1720 1721
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1722
       )DOC")
1723 1724 1725
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1726
#ifndef _WIN32
1727
            PADDLE_ENFORCE_EQ(
1728 1729
                platform::is_cpu_place(self->Place()),
                true,
1730 1731 1732
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
1733
            auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1746 1747 1748 1749 1750
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1751 1752
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1753 1754 1755 1756
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1757 1758
          },
          py::return_value_policy::reference)
1759
#if defined(PADDLE_WITH_CUDA)
1760 1761 1762
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1763 1764
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1765 1766 1767 1768
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
1769
                self->MutableVar()->GetMutable<phi::DenseTensor>();
1770 1771
            tensor_uva(self_tensor, device_id);
          },
1772 1773 1774
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1790
      .def("copy_", &imperative::VarBase::CopyFrom)
1791 1792 1793
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1794 1795
             const platform::CPUPlace &place,
             bool blocking) {
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1814 1815
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1826 1827
             const platform::XPUPlace &place,
             bool blocking) {
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1838 1839
             const platform::CUDAPlace &place,
             bool blocking) {
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1850 1851
             const platform::NPUPlace &place,
             bool blocking) {
1852 1853 1854 1855 1856 1857 1858
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1871 1872 1873
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1874 1875
             const platform::MLUPlace &place,
             bool blocking) {
1876 1877 1878 1879 1880 1881 1882
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1883 1884 1885
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1886 1887
             const platform::CustomPlace &place,
             bool blocking) {
1888 1889 1890 1891 1892 1893 1894
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1895 1896 1897
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1898 1899
             const platform::Place &place,
             bool blocking) {
1900 1901 1902 1903 1904 1905 1906 1907
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1908 1909
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1910
          py::return_value_policy::reference)
1911 1912
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1913
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1914
             PADDLE_ENFORCE_EQ(
1915 1916
                 t->IsInitialized(),
                 true,
1917 1918
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1919 1920 1921 1922
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1923
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1924
             PADDLE_ENFORCE_EQ(
1925 1926
                 t->IsInitialized(),
                 true,
1927 1928
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1929 1930
             return t->offset();
           })
1931
      .def("_share_buffer_to",
1932
           [](const std::shared_ptr<imperative::VarBase> &self,
1933
              std::shared_ptr<imperative::VarBase> &dst) {
1934 1935
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1936
             PADDLE_ENFORCE_EQ(
1937 1938
                 src->IsInitialized(),
                 true,
1939 1940 1941
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1942
             dst_->ShareDataTypeWith(*src);
1943 1944 1945
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1946
              std::shared_ptr<imperative::VarBase> &dst) {
1947 1948
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1949 1950 1951 1952
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1953
           })
1954 1955 1956
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1957 1958
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1959
             PADDLE_ENFORCE_EQ(
1960 1961
                 src->IsInitialized(),
                 true,
1962 1963 1964 1965 1966 1967 1968 1969 1970
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1971 1972
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1973 1974 1975 1976 1977
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1978 1979
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1980 1981
              int64_t begin_idx,
              int64_t end_idx) {
1982
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1983
             PADDLE_ENFORCE_EQ(
1984 1985
                 t->IsInitialized(),
                 true,
1986 1987
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1988 1989 1990 1991 1992 1993 1994
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
1995
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1996 1997
             return t->numel();
           })
1998 1999
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2021 2022
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2023 2024 2025
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2026 2027
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2028
                    &imperative::VarBase::SetPersistable)
2029 2030 2031
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
2032
            if (self.Var().IsType<phi::DenseTensor>()) {
2033
              auto value = phi::vectorize<int>(
2034 2035
                  self.Var().Get<phi::DenseTensor>().dims());
              auto tensor = self.Var().Get<phi::DenseTensor>();
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

2052 2053
              if (change_dim &&
                  phi::DataLayoutToString(desired_layout) == "NCHW") {
2054 2055 2056 2057 2058 2059 2060 2061 2062
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
2063 2064
              } else if (change_dim &&
                         phi::DataLayoutToString(desired_layout) == "NHWC") {
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2092 2093 2094
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
2095 2096
            if (self.Var().IsType<phi::DenseTensor>()) {
              auto layout = self.Var().Get<phi::DenseTensor>().layout();
2097
              return phi::DataLayoutToString(layout);
2098 2099 2100
            }
            return std::string("");
          })
2101 2102
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2103 2104 2105
                             R"DOC(
      Whether a Tensor is leaf Tensor.

2106 2107
      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor.

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2131
      .def_property_readonly(
2132 2133
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2134
          py::return_value_policy::copy)
2135 2136 2137 2138 2139 2140
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2141
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2142
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2143

2144 2145 2146 2147 2148
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2149 2150 2151 2152 2153 2154 2155
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2156
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2157
      m, "Tracer", R"DOC()DOC")
2158
      .def("__init__",
J
Jiabin Yang 已提交
2159
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2160 2161 2162
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2163 2164
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2165
                    &imperative::Tracer::SetAmpLevel)
2166 2167
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2168
                    &imperative::Tracer::SetAmpDtype)
2169 2170
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2171
                    &imperative::Tracer::SetHasGrad)
2172 2173 2174 2175 2176 2177 2178 2179
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2180
              self.SetExpectedPlace(*p);
2181 2182
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2183 2184
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2185 2186 2187
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2188 2189
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2190 2191
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2192
              self.SetExpectedPlace(*p);
2193 2194
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2195 2196
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2197
              self.SetExpectedPlace(*p);
2198 2199
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2200 2201 2202 2203 2204
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2205 2206 2207 2208 2209
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
F
fwenguang 已提交
2210 2211 2212 2213 2214
            } else if (py::isinstance<platform::MLUPlace>(obj)) {
              auto p = obj.cast<platform::MLUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2215 2216 2217 2218 2219
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2220 2221 2222 2223 2224
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2225
            } else {
L
Leo Chen 已提交
2226
              PADDLE_THROW(platform::errors::InvalidArgument(
2227
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
2228
                  "CPUPlace, NPUPlace, IPUPlace, MLUPlace"
L
Leo Chen 已提交
2229 2230
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2231 2232
            }
          })
2233 2234 2235
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2236 2237
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2238
           py::arg("key") = "dygraph_tmp")
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2255
             VLOG(5) << "AMP operators changed, "
2256 2257
                     << imperative::AmpOperators::Instance();
           })
2258 2259 2260
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2261 2262
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2263
           })
C
Chen Weihang 已提交
2264
      .def("_get_kernel_signature",
2265 2266 2267 2268
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2286 2287
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2288 2289 2290
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2291 2292
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2293 2294
             }
           })
2295
      .def("trace",
2296 2297 2298 2299 2300 2301
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2302 2303 2304 2305 2306 2307
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2308 2309 2310 2311 2312 2313 2314
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2315 2316
             }
           })
2317
      .def("trace",
2318 2319 2320 2321 2322 2323
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2324 2325
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2326 2327 2328 2329
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2330 2331 2332 2333 2334 2335 2336
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2337 2338
             }
           })
M
minqiyang 已提交
2339
      .def("trace",
2340 2341 2342 2343 2344 2345
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2346 2347
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2348 2349
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2350 2351
             {
               py::gil_scoped_release release;
2352 2353 2354 2355 2356 2357 2358
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2359
             }
M
minqiyang 已提交
2360
           })
2361
      .def("trace",
2362 2363 2364 2365 2366 2367
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::NPUPlace &place,
Z
zyfncg 已提交
2368 2369
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2370
             auto ins_map = ConvertToNameVarBaseMap(ins);
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
             }
           })
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2393 2394 2395
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2396 2397 2398 2399 2400 2401 2402
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2403 2404
             }
           })
F
fwenguang 已提交
2405
      .def("trace",
2406 2407 2408 2409 2410 2411
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::MLUPlace &place,
Z
zyfncg 已提交
2412 2413
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
F
fwenguang 已提交
2414 2415 2416 2417
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2418 2419 2420 2421 2422 2423 2424
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
F
fwenguang 已提交
2425 2426
             }
           })
J
Jiabin Yang 已提交
2427
      .def("trace",
2428 2429 2430 2431 2432 2433
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2434 2435
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2436 2437 2438 2439
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2440 2441 2442 2443 2444 2445 2446
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2447 2448
             }
           });
2449 2450

  // define parallel context
2451 2452 2453
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2454 2455
      .def_property(
          "nranks",
2456 2457
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2458 2459
            self.nranks_ = nranks;
          })
2460 2461 2462 2463 2464 2465 2466 2467
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2468 2469
      .def_property(
          "trainer_endpoints",
2470
          [](const imperative::ParallelStrategy &self) {
2471 2472
            return self.trainer_endpoints_;
          },
2473
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2474 2475
            self.trainer_endpoints_ = eps;
          })
2476 2477 2478 2479 2480 2481 2482 2483
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2484 2485 2486 2487 2488 2489
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2490

2491 2492 2493 2494
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2495
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2496
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
R
ronnywang 已提交
2497
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
F
fwenguang 已提交
2498
  m.def("varbase_copy", &VarBaseCopy<platform::MLUPlace>);
2499

2500 2501 2502 2503 2504 2505 2506
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2521 2522 2523 2524 2525
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2526 2527 2528 2529
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2530 2531
         bool retain_graph,
         const imperative::Tracer &tracer) {
2532 2533 2534 2535 2536 2537 2538 2539
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2540 2541 2542
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||          \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL) || \
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_CNCL)
2543 2544 2545 2546 2547 2548
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2549 2550 2551 2552
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2563 2564
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2565
        py::arg("tensor_indices") = std::vector<int64_t>{},
2566
        py::call_guard<py::gil_scoped_release>());
2567
#endif
2568

2569
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2570 2571
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2572 2573 2574 2575
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2576 2577 2578 2579
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2580 2581 2582
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2583 2584
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2585 2586 2587 2588
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2589 2590 2591 2592
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2593
#endif
2594 2595 2596

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2597 2598
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2599 2600 2601 2602 2603 2604 2605
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2606 2607 2608 2609
           py::arg("ring_id"));
#endif

#if defined(PADDLE_WITH_ASCEND_CL)
2610 2611
  py::class_<imperative::HCCLParallelContext,
             imperative::ParallelContext,
2612 2613 2614 2615 2616 2617 2618
             std::shared_ptr<imperative::HCCLParallelContext>>(
      m, "HCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::NPUPlace &>())
      .def("init", [](imperative::HCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::HCCLParallelContext::InitWithRingID,
2619 2620 2621
           py::arg("ring_id"));
#endif

2622
#if defined(PADDLE_WITH_CNCL)
2623 2624
  py::class_<imperative::CNCLParallelContext,
             imperative::ParallelContext,
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
             std::shared_ptr<imperative::CNCLParallelContext>>(
      m, "CNCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::MLUPlace &>())
      .def("init", [](imperative::CNCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::CNCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2635 2636
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL)
2637 2638
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2639 2640 2641 2642 2643 2644
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

S
Siming Dai 已提交
2645
#if defined(PADDLE_WITH_CUDA)
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2667 2668
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2682 2683 2684 2685
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

2697
      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and
S
Siming Dai 已提交
2698 2699 2700 2701 2702 2703 2704 2705
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
2706

S
Siming Dai 已提交
2707 2708 2709 2710 2711 2712 2713
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2714 2715 2716
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2717 2718 2719 2720
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2721
        PADDLE_ENFORCE_EQ(
2722 2723
            platform::is_gpu_place(src.Place()),
            true,
2724 2725 2726 2727
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2728 2729
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2730 2731 2732 2733 2734
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2735 2736
            platform::is_cpu_place(offset.Place()),
            true,
2737 2738 2739 2740
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2741 2742
            platform::is_cpu_place(count.Place()),
            true,
2743 2744 2745 2746 2747 2748
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
2749 2750 2751 2752
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2753 2754
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2755 2756
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2757 2758
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2759 2760
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2761 2762
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2763 2764
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2765 2766 2767
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2768 2769
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2770 2771 2772 2773 2774
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2775 2776
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2777 2778 2779 2780 2781
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2782 2783
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2784 2785 2786 2787 2788 2789 2790 2791 2792

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2793 2794
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2795 2796
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2797 2798
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2799 2800
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2801 2802 2803 2804 2805
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2806 2807 2808 2809
          src_offset += c;
        }
      },
      R"DOC(
2810 2811 2812 2813 2814
  This api provides a way to write pieces of source tensor to destination tensor
  inplacely and asynchronously. In which, we use `offset` and `count` to determine
  where to copy. `offset` means the begin points of the copy pieces of `src`, and
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process
  will run asynchronously from cuda to pin memory. We can simply remember this as
2815
  "gpu async_write to pin_memory".
2816

2817
  Arguments:
2818 2819

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2820 2821
                  Besides, `src` should be placed on CUDAPlace.

2822 2823 2824
    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst`
                  should be the same with `src` except for the first dimension.
2825

2826 2827 2828 2829 2830 2831 2832
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
                    should be one-dimensinal.
2833 2834 2835 2836 2837 2838

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
2839
          from paddle.fluid import core
2840
          from paddle.device import cuda
2841

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2862 2863 2864 2865 2866 2867 2868 2869
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2870 2871 2872 2873 2874
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2875 2876
            platform::is_gpu_place(dst.Place()),
            true,
2877 2878 2879 2880
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2881 2882
            platform::is_cpu_place(index.Place()),
            true,
2883 2884 2885 2886
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2887 2888
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2889 2890 2891 2892 2893
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2894 2895
            platform::is_cpu_place(offset.Place()),
            true,
2896 2897 2898 2899
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2900 2901
            platform::is_cpu_place(count.Place()),
            true,
2902 2903 2904 2905
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

2906 2907 2908
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &index_tensor = index.Var().Get<phi::DenseTensor>();
2909
        auto *buffer_tensor =
2910 2911 2912
            buffer.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2913 2914 2915
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2916 2917
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2918 2919 2920 2921
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2922 2923
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2924 2925 2926 2927 2928
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2929 2930
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2931 2932 2933 2934
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2935 2936
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2937 2938 2939 2940
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2941 2942
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2943 2944 2945
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
2946 2947
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2948 2949 2950 2951 2952 2953

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2954 2955
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2956 2957
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2958 2959
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2960 2961
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2962 2963
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2975 2976
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2977 2978 2979 2980 2981 2982 2983
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2984 2985
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2986 2987
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2988 2989
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2990 2991
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2992 2993 2994 2995 2996
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
2997 2998 2999
            dst_offset += c;
          }
        } else {
3000 3001
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
3002 3003 3004 3005 3006
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
3007 3008 3009
        auto index_select = [](const phi::DenseTensor &src_tensor,
                               const phi::DenseTensor &index_tensor,
                               phi::DenseTensor *buffer_tensor) {
3010 3011 3012 3013 3014 3015 3016 3017 3018
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
3019 3020
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
3021 3022 3023 3024 3025 3026
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
3027 3028
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
3029
                        index_tensor.numel() * size * sizeof(float),
3030 3031
                        cudaMemcpyHostToDevice,
                        stream);
3032 3033
      },
      R"DOC(
3034 3035 3036 3037 3038
  This api provides a way to read from pieces of source tensor to destination tensor
  asynchronously. In which, we use `index`, `offset` and `count` to determine where
  to read. `index` means the index position of src tensor we want to read. `offset`
  and count means the begin points and length of pieces of src tensor we want to read.
  To be noted, the copy process will run asynchronously from pin memory to cuda place.
3039 3040 3041
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
3042 3043

    src (Tensor): The source tensor, and the data type should be `float32` currently.
3044
                  Besides, `src` should be placed on CUDAPinnedPlace.
3045 3046 3047

    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should
3048 3049
                  be the same with `src` except for the first dimension.

3050 3051
    index (Tensor): The index tensor, and the data type should be `int64` currently.
                    Besides, `index` should be on CPUplace. The shape of `index` should
3052 3053
                    be one-dimensional.

3054 3055
    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily.
                     The data type should be `float32` currently, and should be placed
3056 3057
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

3058 3059
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
3060 3061
                     should be one-dimensional.

3062 3063
    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
3064
                    should be one-dimensinal.
3065

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
3084

3085 3086 3087
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
3088

3089 3090
)DOC");
#endif
3091 3092 3093 3094
}

}  // namespace pybind
}  // namespace paddle