imperative.cc 129.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif

23 24 25 26
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
27

28
#include <algorithm>
29
#include <memory>
30
#include <set>
J
Jiabin Yang 已提交
31
#include <string>
32
#include <unordered_map>
33
#include <unordered_set>
34
#include <utility>
J
Jiabin Yang 已提交
35
#include <vector>
36

J
Jiabin Yang 已提交
37
#include "paddle/fluid/eager/api/all.h"
38
#include "paddle/fluid/framework/convert_utils.h"
39
#include "paddle/fluid/framework/scope_guard.h"
40
#include "paddle/fluid/imperative/all_reduce.h"
41
#include "paddle/fluid/imperative/amp_auto_cast.h"
42
#include "paddle/fluid/imperative/basic_engine.h"
43
#include "paddle/fluid/imperative/bkcl_context.h"
44
#include "paddle/fluid/imperative/data_loader.h"
45
#include "paddle/fluid/imperative/gloo_context.h"
K
kuizhiqing 已提交
46
#include "paddle/fluid/imperative/heter_ccl_context.h"
47
#include "paddle/fluid/imperative/hooks.h"
48
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
49
#include "paddle/fluid/imperative/nccl_context.h"
50
#include "paddle/fluid/imperative/partial_grad_engine.h"
51
#include "paddle/fluid/imperative/profiler.h"
52
#include "paddle/fluid/imperative/reducer.h"
53
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
54
#include "paddle/fluid/imperative/type_defs.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
56
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/pybind/cuda_streams_py.h"
58
#include "paddle/fluid/pybind/eager_utils.h"
59
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
60
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
61
#include "paddle/fluid/pybind/tensor_py.h"
62
#include "paddle/fluid/pybind/uva_utils.h"
63
#include "paddle/phi/core/compat/arg_map_context.h"
64
#include "paddle/phi/core/type_defs.h"
65

66
PHI_DECLARE_bool(set_to_1d);
67 68 69
namespace paddle {
namespace pybind {

70
std::atomic<int> VarBaseUniqueNameID{0};
71 72
PyTypeObject *g_varbase_pytype = nullptr;

73 74
namespace py = ::pybind11;

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
108 109
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
127 128 129 130 131
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
132 133 134 135 136 137
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
138 139 140 141 142
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
143 144
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
145 146
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
147 148
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
149 150
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
151 152
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
153 154
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
155 156
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
157
        "Place should be one of "
158
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
张春乔 已提交
159
        "CustomPlace"));
L
Leo Chen 已提交
160 161 162
  }
}

L
Leo Chen 已提交
163
// only initialize varbase, but not its tensor.
164 165 166 167
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
168 169 170
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
171 172 173

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
174
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
175 176 177 178 179 180 181 182 183
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
184 185 186 187 188 189 190
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
191
  InitVarBaseOnly(self, name, persistable, stop_gradient);
192
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
L
Leo Chen 已提交
193
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
194
  if (platform::is_cpu_place(place)) {
195
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
196
  } else if (platform::is_xpu_place(place)) {
197
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
198
  } else if (platform::is_gpu_place(place)) {
199
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
200
  } else if (platform::is_cuda_pinned_place(place)) {
201 202
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
203 204
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
205
  } else if (platform::is_custom_place(place)) {
206 207
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
208
  } else {
L
Leo Chen 已提交
209
    PADDLE_THROW(platform::errors::InvalidArgument(
210
        "Place should be one of "
张春乔 已提交
211
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"));
J
Jiabin Yang 已提交
212
  }
213
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
214 215 216 217
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
218
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
219 220 221 222 223 224
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
225 226 227
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
228
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
229 230 231 232 233 234 235

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
236 237
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
238 239 240
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
241
}
242

243 244
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
245 246
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
247 248
                                        bool persistable = false,
                                        bool zero_copy = false,
249 250 251 252 253
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
254
  if (name == "") {
255 256
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
257
  }
258 259
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
260
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
261
  new (self) imperative::VarBase(name);
262
  self->SetPersistable(persistable);
263
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
264 265 266
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
267 268
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
269
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
270 271 272
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
273 274
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
275
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
276
  InitVarBaseAndTensor(self, array, place, "");
277
}
278

B
Baibaifan 已提交
279
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
280
                                                const phi::DenseTensor &tensor,
B
Baibaifan 已提交
281
                                                const std::string &name) {
282 283
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
284 285 286
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
287
  new (self) imperative::VarBase(name_);
288 289
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
290
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
291
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
292 293 294 295 296 297 298 299 300 301
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

302 303
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
304
                                         const phi::DenseTensor &tensor,
B
Baibaifan 已提交
305 306
                                         const P &place,
                                         const std::string &name) {
307
  VLOG(4) << "Init VarBase";
308 309 310
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
311
  new (self) imperative::VarBase(name_);
312 313
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
314
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
315
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
316 317 318 319 320 321 322 323 324 325
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

326 327 328 329 330
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
331
  } else {
332
    return framework::ToTypeName(var.Var().Type());
333 334
  }
}
L
Leo Chen 已提交
335

J
Jiabin Yang 已提交
336 337 338 339 340 341
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
342
            .Get<phi::DenseTensor>());
J
Jiabin Yang 已提交
343 344
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
345
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
346 347 348 349
        "method, when you reach this means we got another type index."));
  }
}

350
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
351 352 353 354 355 356 357 358 359 360 361 362 363

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

364
  if (PyList_Check(py_obj)) {  // List of VarBase
365 366 367
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
368 369 370
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
371 372 373
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
374
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
375 376 377
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
378 379 380
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
381 382 383
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
384 385 386
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
387 388 389 390
  }

  return result;
}
391

J
Jiabin Yang 已提交
392 393 394
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
395 396 397 398 399 400
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
401

402
  PADDLE_ENFORCE_EQ(
403 404
      PyErr_Occurred(),
      nullptr,
405
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
406 407 408
  return result;
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
426 427
      PyErr_Occurred(),
      nullptr,
428 429 430 431
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

432
template <typename P>
433 434
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
435 436
                        const P &dst_device,
                        const bool blocking) {
437 438 439 440 441 442 443 444
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
445 446 447
      if (src->Var().IsType<phi::DenseTensor>()) {
        auto &src_tensor = src->Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
448 449 450 451 452 453 454 455 456
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
457 458
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
459
        auto *dst_selected_rows =
460
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
461 462
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
463 464
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

490
// Bind Methods
J
Jiabin Yang 已提交
491
void BindImperative(py::module *m_ptr) {
492 493
  auto &m = *m_ptr;

494 495
#ifndef _WIN32
  // Dygraph DataLoader signal handler
496 497
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
498 499
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
500 501 502 503 504 505 506 507 508 509
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
510
  });
511 512
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
534 535
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
536
              platform::errors::InvalidArgument(
537
                  "Failed to convert input data to a regular ndarray.\n  * "
538 539 540 541 542
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
543
          phi::DenseTensor t;
544 545
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
546
          // 3. allocate shared memory
547
          void *data_ptr = t.data();
548
          size_t data_size = t.numel() * phi::SizeOf(t.dtype());
549 550 551 552 553 554
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
555 556 557 558 559
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
560 561 562 563 564 565 566 567
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

568 569 570 571 572 573
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
574 575
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
576
            platform::errors::InvalidArgument(
577
                "Failed to convert input data to a regular ndarray.\n  * "
578 579 580 581 582
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
583
        phi::DenseTensor t;
584 585
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
586 587
        // 3. allocate shared memory
        void *data_ptr = t.data();
588
        size_t data_size = t.numel() * phi::SizeOf(t.dtype());
589 590 591 592 593 594
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
595 596 597 598 599
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
600 601 602 603 604
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
605

606 607
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
608
      auto t = tensor_list[i].cast<phi::DenseTensor>();
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
624 625 626 627 628

  m.def("_set_max_memory_map_allocation_pool_size", [](int32_t size) {
    memory::allocation::MemoryMapAllocationPool::Instance().SetMaxPoolSize(
        size);
  });
629 630
#endif

631 632
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
633 634 635 636
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
637 638
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
639 640 641
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
642 643
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
644
          egr::Controller::Instance().SetCurrentTracer(tracer);
645
          imperative::SetCurrentTracer(tracer);
646
        });
647 648 649 650
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
651 652 653 654 655 656 657
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
658
      .def("__init__",
659 660
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
661
              const std::vector<int64_t> &dims,
662 663 664
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
665
             VLOG(4) << "Init VarBase";
666 667 668
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
669
                   "generated_tensor");
670 671 672 673
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
674 675 676 677
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
678
               auto *tensor = self.MutableVar()->GetMutable<phi::DenseTensor>();
679
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
680 681
             }
           })
682 683 684 685 686 687 688
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
689
           py::arg("stop_gradient") = -1)
690 691 692 693 694 695 696
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
697
           py::arg("stop_gradient") = -1)
698 699 700 701 702 703 704
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
705
           py::arg("stop_gradient") = -1)
706 707 708 709 710 711 712
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
713
           py::arg("stop_gradient") = -1)
714 715 716 717 718 719 720
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
721
           py::arg("stop_gradient") = -1)
722 723 724 725 726 727 728
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
729
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
730
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
764
           py::arg("name") = "")
765
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
766 767
      .def(
          "__setitem_varbase__",
768 769
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
770 771 772 773
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
774
                self->MutableVar()->GetMutable<phi::DenseTensor>();
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

799 800 801 802 803
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
827 828 829 830 831 832 833 834 835 836
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
853 854
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
855 856 857 858 859 860
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

861
              if (py::isinstance<imperative::VarBase>(value_obj.ptr())) {
862 863 864
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
865 866 867 868 869 870

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
871 872 873 874 875 876 877
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
878
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
879 880 881 882
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
883
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
884 885 886 887
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
888 889
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
890 891 892 893
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
894 895
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
896 897 898 899
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
900
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
901
                  }
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX64) {
                  if (!py::isinstance<py::array_t<std::complex<float>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<float>>(
                            value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX128) {
                  if (!py::isinstance<py::array_t<std::complex<double>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<double>>(
                            value_obj);
                  }
918 919 920 921
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
922 923
                      "float32, float64, complex64, complex128, int32 or "
                      "int64, "
924 925 926
                      "please check the type of tensor."));
                }

927 928 929 930 931
                SetTensorFromPyArray(
                    value_tensor->MutableVar()->GetMutable<phi::DenseTensor>(),
                    value,
                    self->Place(),
                    false);
932 933 934 935 936 937
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
938 939
                    py::isinstance<py::bool_>(value_obj) ||
                    PyComplex_Check(value_obj.ptr())) {
940
                  if (self->DataType() == framework::proto::VarType::FP32) {
941 942
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
943 944
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
945 946
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<double>()};
947 948
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
949 950
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int32_t>()};
951 952
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
953 954
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int64_t>()};
955 956
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
957 958
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<bool>()};
959 960
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP16) {
961 962 963 964 965 966 967 968 969 970
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX64) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<float>>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX128) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<double>>()};
971 972 973 974
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
975 976
                        "float32, float64, complex64, complex128, int32, int64 "
                        "or float16, "
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
993 994 995 996
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
997 998 999 1000 1001 1002 1003 1004 1005 1006
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
1007
                    index_var->MutableVar()->GetMutable<phi::DenseTensor>();
1008 1009 1010 1011 1012 1013
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
1014 1015
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1016 1017
            }
          })
1018
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1019
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1020
             VLOG(4) << "Call _getitem_index_not_tensor";
1021
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1022 1023 1024 1025
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
1026
             auto tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1038 1039 1040
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1041

Z
zyfncg 已提交
1042
             auto out = slice_axes.empty() && !list_select_flag
1043 1044 1045 1046
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1047

1048
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1049
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1068 1069

             bool set_to_1d = FLAGS_set_to_1d;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

             if (set_to_1d) {
               // NOTE(zoooo0820): When all axes are decreased, the output
               // will be 1-D with FLAGS_set_to_1d=True. In this case, one
               // `None` should be pop out, otherwise the output shape will be
               // not correct.
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 VLOG(0) << "Warning: In Tensor '__getitem__', if the number "
                            "of scalar "
                            "elements "
                            "in the index is equal to the rank of the Tensor, "
                            "the output "
                            "should "
                            "be 0-D. In order to be consistent with the "
                            "behavior of previous "
                            "versions, it will be processed to 1-D. But it is "
                            "not correct and "
                            "will be "
                            "removed in release 2.6. "
                            "If 1-D is still wanted, please modify the index "
                            "element from "
                            "scalar to slice "
                            "(e.g. 'x[i]' => 'x[i:i+1]'). ";
                 if (!none_axes.empty()) {
1095 1096 1097
                   none_axes.pop_back();
                 }
               }
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
             }
             if (!none_axes.empty()) {
               // Deal with cases that decrease_axes is not empty
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
               for (auto &axis : none_axes) {
                 int len = 0;
                 for (int da : decrease_axis) {
                   if (da < axis) {
                     len++;
1109 1110
                   }
                 }
1111
                 axis -= len;
1112
               }
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

               imperative::NameVarBaseMap ins = {{"X", {out}}};
               framework::AttributeMap attrs = {{"axes", none_axes}};
               auto new_out = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               auto out_xshape = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                  {"XShape", {out_xshape}}};
               tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

               return new_out;
1125 1126
             }

Z
zyfncg 已提交
1127 1128 1129 1130
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
1131 1132
               auto *idx_tensor =
                   select_index->MutableVar()->GetMutable<phi::DenseTensor>();
Z
zyfncg 已提交
1133 1134
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1135 1136
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1137 1138 1139 1140 1141 1142 1143

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1144
             return out;
1145
           })
1146 1147 1148
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
1149
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1150
            PADDLE_ENFORCE_EQ(
1151 1152
                tensor.IsInitialized(),
                true,
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1171 1172
                  numel,
                  1,
1173 1174 1175 1176 1177 1178
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1179 1180
                  offset,
                  numel,
1181 1182 1183
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1184 1185
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1186 1187 1188 1189 1190 1191
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1192 1193
                    index,
                    dims[i],
1194 1195
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1196 1197 1198
                        index,
                        i,
                        dims[i]));
1199 1200 1201 1202
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1203
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1204 1205
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1206 1207
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1208 1209 1210 1211 1212
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1213
                "Unsupported tensor data type: %s", tensor.dtype()));
1214 1215
          },
          py::return_value_policy::copy)
1216 1217 1218 1219
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1220 1221
                 var->IsInitialized(),
                 true,
1222 1223 1224 1225 1226
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1227 1228 1229 1230 1231 1232 1233 1234
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1235 1236 1237 1238 1239
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1240 1241
      .def(
          "numpy",
1242

1243
          [](imperative::VarBase &self) -> py::array {
1244
            const auto &tensor = self.MutableVar()->Get<phi::DenseTensor>();
1245
            PADDLE_ENFORCE_EQ(
1246 1247
                tensor.IsInitialized(),
                true,
1248 1249 1250 1251 1252 1253
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1254
        Returns a numpy array shows the value of current Tensor.
1255

1256
        Returns:
Z
Zhou Wei 已提交
1257
            ndarray: The numpy value of current Tensor.
1258 1259

        Returns type:
Z
Zhou Wei 已提交
1260
            ndarray: dtype is same as current Tensor
1261 1262 1263 1264

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1265
                import paddle
1266 1267
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1268 1269 1270 1271
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1272
       )DOC")
1273 1274 1275 1276 1277
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1278 1279
                self.Var().IsInitialized(),
                true,
1280 1281
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1282

1283
            PADDLE_ENFORCE_EQ(
1284
                self.Var().IsType<phi::DenseTensor>() ||
1285 1286 1287 1288 1289
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1290

1291 1292
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1293

1294 1295 1296
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1297

1298 1299
            if (self.Var().IsType<phi::DenseTensor>()) {
              const auto &origin_tensor = self.Var().Get<phi::DenseTensor>();
1300
              PADDLE_ENFORCE_EQ(
1301 1302
                  origin_tensor.IsInitialized(),
                  true,
1303 1304 1305 1306
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
1307
                  detach_var->MutableVar()->GetMutable<phi::DenseTensor>();
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1318 1319
                  origin_selected_rows.value().IsInitialized(),
                  true,
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1337 1338
          py::return_value_policy::take_ownership,
          R"DOC(
1339

1340
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1341 1342
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1343

1344
        Returns: The detached Tensor.
1345 1346 1347 1348

        Examples:
            .. code-block:: python

1349
                import paddle
Z
Zhou Wei 已提交
1350

1351
                x = paddle.to_tensor([1.0], stop_gradient=False)
Z
Zhou Wei 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
1371
                y.backward()
Z
Zhou Wei 已提交
1372 1373
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
1374

1375
       )DOC")
1376 1377 1378 1379
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1380

1381
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1382

1383
        The Gradient of current Tensor will be set to ``0`` .
1384 1385 1386 1387 1388 1389

        Returns:  None

        Examples:
             .. code-block:: python

1390
                import paddle
Z
Zhou Wei 已提交
1391 1392 1393 1394 1395 1396 1397
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1398
      )DOC")
1399 1400
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1401 1402
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1403 1404 1405
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
1406
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1407 1408
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1420 1421
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1453
      .def("_grad_name", &imperative::VarBase::GradVarName)
1454 1455 1456
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
1457
            return self.MutableGradVar()->Get<phi::DenseTensor>();
1458 1459
          },
          py::return_value_policy::reference)
1460 1461 1462 1463
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1464
      .def("_reset_grad_inplace_version",
1465
           [](imperative::VarBase &self, bool set_to_zero) {
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1477 1478
             py::gil_scoped_release release;

1479 1480 1481
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1482 1483 1484
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1485 1486
             }
           })
1487 1488 1489 1490 1491 1492 1493
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
1494 1495
                  grad_var->MutableVar()->IsType<phi::DenseTensor>()
                      ? grad_var->MutableVar()->GetMutable<phi::DenseTensor>()
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1507 1508 1509 1510
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1511 1512
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1513
             return self.Var().IsType<phi::SelectedRows>();
1514
           })
1515 1516 1517 1518 1519
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1520
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1521
#if NCCL_VERSION_CODE >= 2212
1522
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1523
#else
1524
               if (!self.Var().IsType<phi::SelectedRows>()) {
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1538
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1539 1540 1541
            }
          },
          py::call_guard<py::gil_scoped_release>())
1542 1543 1544
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1545 1546
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1547
                 platform::errors::InvalidArgument(
1548 1549 1550
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1551 1552 1553 1554 1555
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1556 1557
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1558
                 platform::errors::InvalidArgument(
1559 1560 1561
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1562
           })
1563 1564 1565
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1566 1567
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1579 1580 1581 1582
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1583 1584
                self.IsLeaf(),
                true,
1585 1586 1587
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1588 1589
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1590 1591 1592 1593 1594 1595 1596 1597
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
1640

1641 1642 1643 1644
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1645 1646 1647
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1648
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1649 1650 1651 1652
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1653
#endif
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1679 1680 1681
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1682 1683
             py::handle &handle,
             bool blocking) {
1684
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1685 1686 1687
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1688
#else
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1723
#endif
1724
          },
1725 1726 1727
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1728 1729
        Returns a copy of this Tensor in GPU memory.

1730
        If this Tensor is already in GPU memory and device_id is default,
1731
        then no copy is performed and the original Tensor is returned.
1732

1733
        Args:
1734
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1735
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be
1736 1737 1738 1739 1740
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1741
              # required: gpu
1742 1743
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1744
              print(x.place)        # Place(cpu)
1745 1746

              y = x.cuda()
1747
              print(y.place)        # Place(gpu:0)
1748

1749
              y = x.cuda(None)
1750
              print(y.place)        # Place(gpu:0)
1751

1752 1753 1754
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1755
       )DOC")
1756 1757 1758
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1759
#ifndef _WIN32
1760
            PADDLE_ENFORCE_EQ(
1761 1762
                platform::is_cpu_place(self->Place()),
                true,
1763 1764 1765
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
1766
            auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1779 1780 1781 1782 1783
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1784 1785
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1786 1787 1788 1789
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1790 1791
          },
          py::return_value_policy::reference)
1792
#if defined(PADDLE_WITH_CUDA)
1793 1794 1795
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1796 1797
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1798 1799 1800 1801
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
1802
                self->MutableVar()->GetMutable<phi::DenseTensor>();
1803 1804
            tensor_uva(self_tensor, device_id);
          },
1805 1806 1807
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1823
      .def("copy_", &imperative::VarBase::CopyFrom)
1824 1825 1826
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1827 1828
             const platform::CPUPlace &place,
             bool blocking) {
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1847 1848
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1859 1860
             const platform::XPUPlace &place,
             bool blocking) {
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1871 1872
             const platform::CUDAPlace &place,
             bool blocking) {
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1883 1884
             const platform::NPUPlace &place,
             bool blocking) {
1885 1886 1887 1888 1889 1890 1891
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1904 1905 1906
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1907 1908
             const platform::CustomPlace &place,
             bool blocking) {
1909 1910 1911 1912 1913 1914 1915
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1916 1917 1918
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1919 1920
             const platform::Place &place,
             bool blocking) {
1921 1922 1923 1924 1925 1926 1927 1928
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1929 1930
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1931
          py::return_value_policy::reference)
1932 1933
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1934
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1935
             PADDLE_ENFORCE_EQ(
1936 1937
                 t->IsInitialized(),
                 true,
1938 1939
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1940 1941 1942 1943
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1944
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1945
             PADDLE_ENFORCE_EQ(
1946 1947
                 t->IsInitialized(),
                 true,
1948 1949
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1950 1951
             return t->offset();
           })
1952
      .def("_share_buffer_to",
1953
           [](const std::shared_ptr<imperative::VarBase> &self,
1954
              std::shared_ptr<imperative::VarBase> &dst) {
1955 1956
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1957
             PADDLE_ENFORCE_EQ(
1958 1959
                 src->IsInitialized(),
                 true,
1960 1961 1962
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1963
             dst_->ShareDataTypeWith(*src);
1964 1965 1966
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1967
              std::shared_ptr<imperative::VarBase> &dst) {
1968 1969
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1970 1971 1972 1973
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1974
           })
1975 1976 1977
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1978 1979
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1980
             PADDLE_ENFORCE_EQ(
1981 1982
                 src->IsInitialized(),
                 true,
1983 1984 1985 1986 1987 1988 1989 1990 1991
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1992 1993
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1994 1995 1996 1997 1998
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1999 2000
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
2001 2002
              int64_t begin_idx,
              int64_t end_idx) {
2003
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
2004
             PADDLE_ENFORCE_EQ(
2005 2006
                 t->IsInitialized(),
                 true,
2007 2008
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
2009 2010 2011 2012 2013 2014 2015
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
2016
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
2017 2018
             return t->numel();
           })
2019 2020
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
2021

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2042 2043
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2044 2045 2046
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2047 2048
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2049
                    &imperative::VarBase::SetPersistable)
2050 2051 2052
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
2053
            if (self.Var().IsType<phi::DenseTensor>()) {
2054
              auto value = phi::vectorize<int>(
2055 2056
                  self.Var().Get<phi::DenseTensor>().dims());
              auto tensor = self.Var().Get<phi::DenseTensor>();
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

2073 2074
              if (change_dim &&
                  phi::DataLayoutToString(desired_layout) == "NCHW") {
2075 2076 2077 2078 2079 2080 2081 2082 2083
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
2084 2085
              } else if (change_dim &&
                         phi::DataLayoutToString(desired_layout) == "NHWC") {
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2113 2114 2115
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
2116 2117
            if (self.Var().IsType<phi::DenseTensor>()) {
              auto layout = self.Var().Get<phi::DenseTensor>().layout();
2118
              return phi::DataLayoutToString(layout);
2119 2120 2121
            }
            return std::string("");
          })
2122 2123
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2124 2125 2126
                             R"DOC(
      Whether a Tensor is leaf Tensor.

2127 2128
      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor.

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2152
      .def_property_readonly(
2153 2154
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2155
          py::return_value_policy::copy)
2156 2157 2158 2159 2160 2161
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2162
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2163
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2164

2165 2166 2167 2168 2169
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2170 2171
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
2172
      .value("OD", paddle::imperative::AmpLevel::OD)
L
Leo Chen 已提交
2173 2174 2175 2176 2177
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2178
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2179
      m, "Tracer", R"DOC()DOC")
2180
      .def("__init__",
J
Jiabin Yang 已提交
2181
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2182 2183 2184
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2185 2186
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2187
                    &imperative::Tracer::SetAmpLevel)
2188 2189
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2190
                    &imperative::Tracer::SetAmpDtype)
2191 2192
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2193
                    &imperative::Tracer::SetHasGrad)
2194 2195 2196 2197 2198 2199 2200 2201
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2202
              self.SetExpectedPlace(*p);
2203 2204
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2205 2206
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2207 2208 2209
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2210 2211
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2212 2213
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2214
              self.SetExpectedPlace(*p);
2215 2216
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2217 2218
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2219
              self.SetExpectedPlace(*p);
2220 2221
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2222 2223 2224 2225 2226
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2227 2228 2229 2230 2231
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2232 2233 2234 2235 2236
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2237 2238 2239 2240 2241
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2242
            } else {
L
Leo Chen 已提交
2243
              PADDLE_THROW(platform::errors::InvalidArgument(
2244
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
张春乔 已提交
2245
                  "CPUPlace, NPUPlace, IPUPlace"
L
Leo Chen 已提交
2246 2247
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2248 2249
            }
          })
2250 2251 2252
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2253 2254
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2255
           py::arg("key") = "dygraph_tmp")
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2272
             VLOG(5) << "AMP operators changed, "
2273 2274
                     << imperative::AmpOperators::Instance();
           })
2275 2276 2277
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2278 2279
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2280
           })
C
Chen Weihang 已提交
2281
      .def("_get_kernel_signature",
2282 2283 2284 2285
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2303 2304
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2305 2306 2307
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2308 2309
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2310 2311
             }
           })
2312
      .def("trace",
2313 2314 2315 2316 2317 2318
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2319 2320 2321 2322 2323 2324
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2325 2326 2327 2328 2329 2330 2331
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2332 2333
             }
           })
2334
      .def("trace",
2335 2336 2337 2338 2339 2340
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2341 2342
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2343 2344 2345 2346
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2347 2348 2349 2350 2351 2352 2353
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2354 2355
             }
           })
M
minqiyang 已提交
2356
      .def("trace",
2357 2358 2359 2360 2361 2362
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2363 2364
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2365 2366
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2367 2368
             {
               py::gil_scoped_release release;
2369 2370 2371 2372 2373 2374 2375
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2376
             }
M
minqiyang 已提交
2377
           })
2378
      .def("trace",
2379 2380 2381 2382 2383 2384
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::NPUPlace &place,
Z
zyfncg 已提交
2385 2386
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2387
             auto ins_map = ConvertToNameVarBaseMap(ins);
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
             }
           })
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2410 2411 2412
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2413 2414 2415 2416 2417 2418 2419
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2420 2421
             }
           })
J
Jiabin Yang 已提交
2422
      .def("trace",
2423 2424 2425 2426 2427 2428
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2429 2430
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2431 2432 2433 2434
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2435 2436 2437 2438 2439 2440 2441
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2442 2443
             }
           });
2444 2445

  // define parallel context
2446 2447 2448
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2449 2450
      .def_property(
          "nranks",
2451 2452
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2453 2454
            self.nranks_ = nranks;
          })
2455 2456 2457 2458 2459 2460 2461 2462
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2463 2464
      .def_property(
          "trainer_endpoints",
2465
          [](const imperative::ParallelStrategy &self) {
2466 2467
            return self.trainer_endpoints_;
          },
2468
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2469 2470
            self.trainer_endpoints_ = eps;
          })
2471 2472 2473 2474 2475 2476 2477 2478
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2479 2480 2481 2482 2483 2484
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2485

2486 2487 2488 2489
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2490
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2491
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
R
ronnywang 已提交
2492
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
2493

2494 2495 2496 2497 2498 2499 2500
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2515 2516 2517 2518 2519
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2520 2521 2522 2523
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2524 2525
         bool retain_graph,
         const imperative::Tracer &tracer) {
2526 2527 2528 2529 2530 2531 2532 2533
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

K
Kim Yann 已提交
2534 2535
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
2536 2537 2538 2539 2540 2541
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2542 2543 2544 2545
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2556 2557
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2558
        py::arg("tensor_indices") = std::vector<int64_t>{},
2559
        py::call_guard<py::gil_scoped_release>());
2560
#endif
2561

2562
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2563 2564
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2565 2566 2567 2568
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2569 2570 2571 2572
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2573 2574 2575
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2576 2577
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2578 2579 2580 2581
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2582 2583 2584 2585
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2586
#endif
2587 2588 2589

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2590 2591
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2592 2593 2594 2595 2596 2597 2598
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2599 2600 2601
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2602
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
张春乔 已提交
2603
    defined(PADDLE_WITH_XPU_BKCL)
2604 2605
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2606 2607 2608 2609 2610 2611
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

S
Siming Dai 已提交
2612
#if defined(PADDLE_WITH_CUDA)
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2634 2635
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2649 2650 2651 2652
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

2664
      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and
S
Siming Dai 已提交
2665 2666 2667 2668 2669 2670 2671 2672
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
2673

S
Siming Dai 已提交
2674 2675 2676 2677 2678 2679 2680
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2681 2682 2683
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2684 2685 2686 2687
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2688
        PADDLE_ENFORCE_EQ(
2689 2690
            platform::is_gpu_place(src.Place()),
            true,
2691 2692 2693 2694
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2695 2696
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2697 2698 2699 2700 2701
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2702 2703
            platform::is_cpu_place(offset.Place()),
            true,
2704 2705 2706 2707
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2708 2709
            platform::is_cpu_place(count.Place()),
            true,
2710 2711 2712 2713 2714 2715
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
2716 2717 2718 2719
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2720 2721
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2722 2723
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2724 2725
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2726 2727
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2728 2729
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2730 2731
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2732 2733 2734
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2735 2736
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2737 2738 2739 2740 2741
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2742 2743
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2744 2745 2746 2747 2748
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2749 2750
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2751 2752 2753 2754 2755 2756 2757 2758 2759

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2760 2761
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2762 2763
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2764 2765
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2766 2767
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2768 2769 2770 2771 2772
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2773 2774 2775 2776
          src_offset += c;
        }
      },
      R"DOC(
2777 2778 2779 2780 2781
  This api provides a way to write pieces of source tensor to destination tensor
  inplacely and asynchronously. In which, we use `offset` and `count` to determine
  where to copy. `offset` means the begin points of the copy pieces of `src`, and
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process
  will run asynchronously from cuda to pin memory. We can simply remember this as
2782
  "gpu async_write to pin_memory".
2783

2784
  Arguments:
2785 2786

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2787 2788
                  Besides, `src` should be placed on CUDAPlace.

2789 2790 2791
    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst`
                  should be the same with `src` except for the first dimension.
2792

2793 2794 2795 2796 2797 2798 2799
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
                    should be one-dimensinal.
2800 2801 2802 2803 2804 2805

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
2806
          from paddle.fluid import core
2807
          from paddle.device import cuda
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2829 2830 2831 2832 2833 2834 2835 2836
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2837 2838 2839 2840 2841
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2842 2843
            platform::is_gpu_place(dst.Place()),
            true,
2844 2845 2846 2847
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2848 2849
            platform::is_cpu_place(index.Place()),
            true,
2850 2851 2852 2853
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2854 2855
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2856 2857 2858 2859 2860
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2861 2862
            platform::is_cpu_place(offset.Place()),
            true,
2863 2864 2865 2866
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2867 2868
            platform::is_cpu_place(count.Place()),
            true,
2869 2870 2871 2872
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

2873 2874 2875
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &index_tensor = index.Var().Get<phi::DenseTensor>();
2876
        auto *buffer_tensor =
2877 2878 2879
            buffer.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2880 2881 2882
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2883 2884
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2885 2886 2887 2888
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2889 2890
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2891 2892 2893 2894 2895
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2896 2897
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2898 2899 2900 2901
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2902 2903
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2904 2905 2906 2907
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2908 2909
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2910 2911 2912
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
2913 2914
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2915 2916 2917 2918 2919 2920

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2921 2922
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2923 2924
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2925 2926
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2927 2928
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2929 2930
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2942 2943
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2944 2945 2946 2947 2948 2949 2950
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2951 2952
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2953 2954
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2955 2956
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2957 2958
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2959 2960 2961 2962 2963
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
2964 2965 2966
            dst_offset += c;
          }
        } else {
2967 2968
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
2969 2970 2971 2972 2973
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
2974 2975 2976
        auto index_select = [](const phi::DenseTensor &src_tensor,
                               const phi::DenseTensor &index_tensor,
                               phi::DenseTensor *buffer_tensor) {
2977 2978 2979 2980 2981 2982 2983 2984 2985
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
2986 2987
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
2988 2989 2990 2991 2992 2993
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
2994 2995
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
2996
                        index_tensor.numel() * size * sizeof(float),
2997 2998
                        cudaMemcpyHostToDevice,
                        stream);
2999 3000
      },
      R"DOC(
3001 3002 3003 3004 3005
  This api provides a way to read from pieces of source tensor to destination tensor
  asynchronously. In which, we use `index`, `offset` and `count` to determine where
  to read. `index` means the index position of src tensor we want to read. `offset`
  and count means the begin points and length of pieces of src tensor we want to read.
  To be noted, the copy process will run asynchronously from pin memory to cuda place.
3006 3007 3008
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
3009 3010

    src (Tensor): The source tensor, and the data type should be `float32` currently.
3011
                  Besides, `src` should be placed on CUDAPinnedPlace.
3012 3013 3014

    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should
3015 3016
                  be the same with `src` except for the first dimension.

3017 3018
    index (Tensor): The index tensor, and the data type should be `int64` currently.
                    Besides, `index` should be on CPUplace. The shape of `index` should
3019 3020
                    be one-dimensional.

3021 3022
    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily.
                     The data type should be `float32` currently, and should be placed
3023 3024
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

3025 3026
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
3027 3028
                     should be one-dimensional.

3029 3030
    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
3031
                    should be one-dimensinal.
3032

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
3051

3052 3053 3054
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
3055

3056 3057
)DOC");
#endif
3058 3059 3060 3061
}

}  // namespace pybind
}  // namespace paddle