imperative.cc 130.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22

23
#include <algorithm>
24
#include <memory>
25
#include <set>
J
Jiabin Yang 已提交
26
#include <string>
27
#include <unordered_map>
28
#include <unordered_set>
29
#include <utility>
J
Jiabin Yang 已提交
30
#include <vector>
31

J
Jiabin Yang 已提交
32
#include "paddle/fluid/eager/api/all.h"
33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/scope_guard.h"
35
#include "paddle/fluid/imperative/all_reduce.h"
36
#include "paddle/fluid/imperative/amp_auto_cast.h"
37
#include "paddle/fluid/imperative/basic_engine.h"
38
#include "paddle/fluid/imperative/bkcl_context.h"
39
#include "paddle/fluid/imperative/cncl_context.h"
40
#include "paddle/fluid/imperative/data_loader.h"
41
#include "paddle/fluid/imperative/gloo_context.h"
42
#include "paddle/fluid/imperative/hccl_context.h"
K
kuizhiqing 已提交
43
#include "paddle/fluid/imperative/heter_ccl_context.h"
44
#include "paddle/fluid/imperative/hooks.h"
45
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
46
#include "paddle/fluid/imperative/nccl_context.h"
47
#include "paddle/fluid/imperative/partial_grad_engine.h"
48
#include "paddle/fluid/imperative/profiler.h"
49
#include "paddle/fluid/imperative/py_layer_fwd.h"
50
#include "paddle/fluid/imperative/reducer.h"
51
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
52
#include "paddle/fluid/imperative/type_defs.h"
53
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
54
#include "paddle/fluid/operators/utils.h"
55
#include "paddle/fluid/pybind/eager_utils.h"
56
#include "paddle/fluid/pybind/op_function.h"
57
#include "paddle/fluid/pybind/pybind_boost_headers.h"
J
Jiabin Yang 已提交
58
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
59
#include "paddle/fluid/pybind/tensor_py.h"
60
#include "paddle/fluid/pybind/uva_utils.h"
61
#include "paddle/phi/core/compat/arg_map_context.h"
62
#include "paddle/phi/core/type_defs.h"
63

64 65 66
namespace paddle {
namespace pybind {

67 68
PyTypeObject *g_varbase_pytype = nullptr;

69 70
namespace py = ::pybind11;

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
104 105
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
123 124 125 126 127
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
128 129 130 131 132 133
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
134 135 136 137 138
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
139 140
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
141 142
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
143 144
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
145 146
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
147 148
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
F
fwenguang 已提交
149 150
  } else if (py::isinstance<platform::MLUPlace>(place_obj)) {
    return place_obj.cast<platform::MLUPlace>();
151 152
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
153 154
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
155
        "Place should be one of "
156 157
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace/CustomPlace"));
L
Leo Chen 已提交
158 159 160
  }
}

L
Leo Chen 已提交
161
// only initialize varbase, but not its tensor.
162 163 164 165
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
166 167 168
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
169 170 171

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
172
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
173 174 175 176 177 178 179 180 181
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
182 183 184 185 186 187 188
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
189
  InitVarBaseOnly(self, name, persistable, stop_gradient);
190
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
191
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
192
  if (platform::is_cpu_place(place)) {
193
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
194
  } else if (platform::is_xpu_place(place)) {
195
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
196
  } else if (platform::is_gpu_place(place)) {
197
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
198
  } else if (platform::is_cuda_pinned_place(place)) {
199 200
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
201
  } else if (platform::is_npu_place(place)) {
202
    SetTensorFromPyArray<platform::NPUPlace>(tensor, array, place, zero_copy);
203 204
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
F
fwenguang 已提交
205
  } else if (platform::is_mlu_place(place)) {
206
    SetTensorFromPyArray<platform::MLUPlace>(tensor, array, place, zero_copy);
207
  } else if (platform::is_custom_place(place)) {
208 209
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
210
  } else {
L
Leo Chen 已提交
211
    PADDLE_THROW(platform::errors::InvalidArgument(
212
        "Place should be one of "
213 214
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace"));
J
Jiabin Yang 已提交
215
  }
216
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
217 218 219 220
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
221
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
222 223 224 225 226 227
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
228 229 230
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
231
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
232 233 234 235 236 237 238

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
239 240
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
241 242 243
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
244
}
245

246 247
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
248 249
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
250 251
                                        bool persistable = false,
                                        bool zero_copy = false,
252 253 254 255 256
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
257
  if (name == "") {
258 259
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
260
  }
261 262
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
263
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
264
  new (self) imperative::VarBase(name);
265 266
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
267 268 269
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
270 271
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
272
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
273 274 275
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
276 277
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
278
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
279
  InitVarBaseAndTensor(self, array, place, "");
280
}
281

B
Baibaifan 已提交
282 283 284
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
                                                const framework::Tensor &tensor,
                                                const std::string &name) {
285 286
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
287 288 289
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
290
  new (self) imperative::VarBase(name_);
291 292
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
293
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
294 295 296 297 298 299 300 301 302 303 304
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

305 306 307
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
                                         const framework::Tensor &tensor,
B
Baibaifan 已提交
308 309
                                         const P &place,
                                         const std::string &name) {
310
  VLOG(4) << "Init VarBase";
311 312 313
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
314
  new (self) imperative::VarBase(name_);
315 316
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
317
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
318 319 320 321 322 323 324 325 326 327 328
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

329 330 331 332 333
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
334
  } else {
335
    return framework::ToTypeName(var.Var().Type());
336 337
  }
}
L
Leo Chen 已提交
338

J
Jiabin Yang 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
            .Get<framework::LoDTensor>());
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

bool PyCheckTensor(PyObject *obj) {
  return py::isinstance<imperative::VarBase>(obj);
}
356
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
357 358 359 360 361 362 363 364 365 366 367 368 369

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

370
  if (PyList_Check(py_obj)) {  // List of VarBase
371 372 373
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
374 375 376
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
377 378 379
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
380
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
381 382 383
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
384 385 386
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
387 388 389
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
390 391 392
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
393 394 395 396
  }

  return result;
}
397

J
Jiabin Yang 已提交
398 399 400
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
401 402 403 404 405 406
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
407

408
  PADDLE_ENFORCE_EQ(
409 410
      PyErr_Occurred(),
      nullptr,
411
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
412 413 414
  return result;
}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
432 433
      PyErr_Occurred(),
      nullptr,
434 435 436 437
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

438
template <typename P>
439 440
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
441 442
                        const P &dst_device,
                        const bool blocking) {
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
      if (src->Var().IsType<framework::LoDTensor>()) {
        auto &src_tensor = src->Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
463 464
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
465
        auto *dst_selected_rows =
466
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
467 468
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
469 470
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

496
// Bind Methods
J
Jiabin Yang 已提交
497
void BindImperative(py::module *m_ptr) {
498 499
  auto &m = *m_ptr;

500 501
  BindOpFunctions(&m);

502 503
#ifndef _WIN32
  // Dygraph DataLoader signal handler
504 505
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
506 507
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
508 509 510 511 512 513 514 515 516 517
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
518
  });
519 520
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
542 543
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
544 545 546 547 548 549 550 551
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
552 553
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
554
          // 3. allocate shared memory
555
          void *data_ptr = t.data();
556
          size_t data_size = t.numel() * framework::DataTypeSize(t.dtype());
557 558 559 560 561 562
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
563 564 565 566 567
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
568 569 570 571 572 573 574 575
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

576 577 578 579 580 581
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
582 583
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
584 585 586 587 588 589 590 591
            platform::errors::InvalidArgument(
                "Faild to convert input data to a regular ndarray.\n  * "
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
        framework::LoDTensor t;
592 593
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
594 595 596 597 598 599 600 601 602
        // 3. allocate shared memory
        void *data_ptr = t.data();
        size_t data_size = t.numel() * framework::DataTypeSize(t.dtype());
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
603 604 605 606 607
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
608 609 610 611 612
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
613

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

634 635
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
636 637 638 639
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
640 641
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
642 643 644
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
645 646
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
647
          egr::Controller::Instance().SetCurrentTracer(tracer);
648
          imperative::SetCurrentTracer(tracer);
649
        });
650 651 652 653
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
654 655 656 657 658 659 660
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
661
      .def("__init__",
662 663 664 665 666 667
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
              const std::vector<int> &dims,
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
668
             VLOG(4) << "Init VarBase";
669 670 671
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
672
                   "generated_tensor");
673 674 675 676
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
677 678 679 680 681 682
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
683
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
684 685
             }
           })
686 687 688 689 690 691 692
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
693
           py::arg("stop_gradient") = -1)
694 695 696 697 698 699 700
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
701
           py::arg("stop_gradient") = -1)
702 703 704 705 706 707 708
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
709
           py::arg("stop_gradient") = -1)
710 711 712 713 714 715 716
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
717
           py::arg("stop_gradient") = -1)
718 719 720 721 722 723 724
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
725
           py::arg("stop_gradient") = -1)
726 727 728 729 730 731 732
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::MLUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
F
fwenguang 已提交
733
           py::arg("stop_gradient") = -1)
734 735 736 737 738 739 740
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
741
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
742
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::MLUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
781
           py::arg("name") = "")
782
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
783 784
      .def(
          "__setitem_varbase__",
785 786
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
                self->MutableVar()->GetMutable<framework::LoDTensor>();
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

816 817 818 819 820
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
844 845 846 847 848 849 850 851 852 853
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
870 871
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
872 873 874 875 876 877 878 879 880 881
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

              if (PyCheckTensor(value_obj.ptr())) {
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
882 883 884 885 886 887

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
888 889 890 891 892 893 894
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
895
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
896 897 898 899
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
900
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
901 902 903 904
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
905 906
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
907 908 909 910
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
911 912
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
913 914 915 916
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
917
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
918 919 920 921 922 923 924 925 926 927 928
                  }
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
                      "float32, int32 or int64, "
                      "please check the type of tensor."));
                }

                SetTensorFromPyArray(value_tensor->MutableVar()
                                         ->GetMutable<framework::LoDTensor>(),
929 930 931
                                     value,
                                     self->Place(),
                                     false);
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
                    py::isinstance<py::bool_>(value_obj)) {
                  if (self->DataType() == framework::proto::VarType::FP32) {
                    attrs["fp32_values"] =
                        std::vector<float>{value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
                    attrs["fp64_values"] =
                        std::vector<double>{value_obj.cast<double>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
                    attrs["int32_values"] =
                        std::vector<int32_t>{value_obj.cast<int32_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
                    attrs["int64_values"] =
                        std::vector<int64_t>{value_obj.cast<int64_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
                    attrs["bool_values"] =
                        std::vector<int>{value_obj.cast<bool>()};
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
                        "float32, int32 or int64, "
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
979 980 981 982
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
                    index_var->MutableVar()->GetMutable<framework::LoDTensor>();
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
1000 1001
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1002 1003
            }
          })
1004
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1005
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1006
             VLOG(4) << "Call _getitem_index_not_tensor";
1007
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1008 1009 1010 1011
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
S
songyouwei 已提交
1012 1013
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1025 1026 1027
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1028

Z
zyfncg 已提交
1029
             auto out = slice_axes.empty() && !list_select_flag
1030 1031 1032 1033
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1034

1035
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1036
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
             if (!none_axes.empty()) {
               // Deal with cases when all axes are decreased.
               // After slice, the shape of out is [1], which should have been
               // [], but Paddle doesn't support scalar.
               // In order to ensure the correctness of the final shape of out,
               // one dimension of out needs to be decreased.
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 1, 1, None] # out.shape : (1)
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 none_axes.pop_back();
               }
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1097 1098 1099 1100 1101 1102 1103 1104
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               auto *idx_tensor = select_index->MutableVar()
                                      ->GetMutable<framework::LoDTensor>();
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1105 1106
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1107 1108 1109 1110 1111 1112 1113

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1114
             return out;
1115
           })
1116 1117 1118 1119 1120
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
            const auto &tensor = self->Var().Get<framework::LoDTensor>();
            PADDLE_ENFORCE_EQ(
1121 1122
                tensor.IsInitialized(),
                true,
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1141 1142
                  numel,
                  1,
1143 1144 1145 1146 1147 1148
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1149 1150
                  offset,
                  numel,
1151 1152 1153
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1154 1155
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1156 1157 1158 1159 1160 1161
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1162 1163
                    index,
                    dims[i],
1164 1165
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1166 1167 1168
                        index,
                        i,
                        dims[i]));
1169 1170 1171 1172
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1173
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1174 1175
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1176 1177
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1178 1179 1180 1181 1182
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1183
                "Unsupported tensor data type: %s", tensor.dtype()));
1184 1185
          },
          py::return_value_policy::copy)
1186 1187 1188 1189
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1190 1191
                 var->IsInitialized(),
                 true,
1192 1193 1194 1195 1196
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1197 1198 1199 1200 1201 1202 1203 1204
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1205 1206 1207 1208 1209
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1210 1211
      .def(
          "numpy",
1212

1213 1214 1215
          [](imperative::VarBase &self) -> py::array {
            const auto &tensor = self.MutableVar()->Get<framework::LoDTensor>();
            PADDLE_ENFORCE_EQ(
1216 1217
                tensor.IsInitialized(),
                true,
1218 1219 1220 1221 1222 1223
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1224 1225
        Returns a numpy array shows the value of current Tensor.
        
1226
        Returns:
Z
Zhou Wei 已提交
1227
            ndarray: The numpy value of current Tensor.
1228 1229

        Returns type:
Z
Zhou Wei 已提交
1230
            ndarray: dtype is same as current Tensor
1231 1232 1233 1234

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1235
                import paddle
1236 1237
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1238 1239 1240 1241
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1242
       )DOC")
1243 1244 1245 1246 1247
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1248 1249
                self.Var().IsInitialized(),
                true,
1250 1251
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1252

1253 1254 1255 1256 1257 1258 1259
            PADDLE_ENFORCE_EQ(
                self.Var().IsType<framework::LoDTensor>() ||
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1260

1261 1262
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1263

1264 1265 1266
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1267

1268 1269 1270 1271
            if (self.Var().IsType<framework::LoDTensor>()) {
              const auto &origin_tensor =
                  self.Var().Get<framework::LoDTensor>();
              PADDLE_ENFORCE_EQ(
1272 1273
                  origin_tensor.IsInitialized(),
                  true,
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
                  detach_var->MutableVar()->GetMutable<framework::LoDTensor>();
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1289 1290
                  origin_selected_rows.value().IsInitialized(),
                  true,
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1308 1309
          py::return_value_policy::take_ownership,
          R"DOC(
1310

1311
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1312 1313
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1314

1315
        Returns: The detached Tensor.
1316 1317 1318 1319

        Examples:
            .. code-block:: python

1320
                import paddle
Z
Zhou Wei 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
                y.backward() 
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
             
1346
       )DOC")
1347 1348 1349 1350
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1351

1352
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1353

1354
        The Gradient of current Tensor will be set to ``0`` .
1355 1356 1357 1358 1359 1360

        Returns:  None

        Examples:
             .. code-block:: python

1361
                import paddle
Z
Zhou Wei 已提交
1362 1363 1364 1365 1366 1367 1368
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1369
      )DOC")
1370 1371
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1372 1373
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1374 1375 1376 1377
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
            const auto &tensor = self->Var().Get<framework::LoDTensor>();
1378 1379
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1391 1392
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1424
      .def("_grad_name", &imperative::VarBase::GradVarName)
1425 1426 1427 1428 1429 1430
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
            return self.MutableGradVar()->Get<framework::LoDTensor>();
          },
          py::return_value_policy::reference)
1431 1432 1433 1434
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1435
      .def("_reset_grad_inplace_version",
1436
           [](imperative::VarBase &self, bool set_to_zero) {
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1448 1449
             py::gil_scoped_release release;

1450 1451 1452
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1453 1454 1455
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1456 1457
             }
           })
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
                  grad_var->MutableVar()->IsType<framework::LoDTensor>()
                      ? grad_var->MutableVar()
                            ->GetMutable<framework::LoDTensor>()
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1479 1480 1481 1482
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1483 1484
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1485
             return self.Var().IsType<phi::SelectedRows>();
1486
           })
1487 1488 1489 1490 1491
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1492
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1493
#if NCCL_VERSION_CODE >= 2212
1494
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1495
#else
1496
               if (!self.Var().IsType<phi::SelectedRows>()) {
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1510
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1511 1512 1513
            }
          },
          py::call_guard<py::gil_scoped_release>())
1514 1515 1516
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1517 1518
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1519
                 platform::errors::InvalidArgument(
1520 1521 1522
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1523 1524 1525 1526 1527
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1528 1529
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1530
                 platform::errors::InvalidArgument(
1531 1532 1533
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1534
           })
1535 1536 1537
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1538 1539
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1551 1552 1553 1554
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1555 1556
                self.IsLeaf(),
                true,
1557 1558 1559
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1560 1561
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1562 1563 1564 1565 1566 1567 1568 1569
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
              
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1617 1618 1619
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1620
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1621 1622 1623 1624
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1625
#endif
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1651 1652 1653
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1654 1655
             py::handle &handle,
             bool blocking) {
1656
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1657 1658 1659
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1660
#else
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1695
#endif
1696
          },
1697 1698 1699
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1700 1701 1702 1703 1704 1705
        Returns a copy of this Tensor in GPU memory.

        If this Tensor is already in GPU memory and device_id is default, 
        then no copy is performed and the original Tensor is returned.
        
        Args:
1706
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1707 1708 1709 1710 1711 1712
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be 
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1713
              # required: gpu
1714 1715
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1716
              print(x.place)        # Place(cpu)
1717 1718

              y = x.cuda()
1719
              print(y.place)        # Place(gpu:0)
1720 1721
            
              y = x.cuda(None)
1722
              print(y.place)        # Place(gpu:0)
1723

1724 1725 1726
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1727
       )DOC")
1728 1729 1730
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1731
#ifndef _WIN32
1732
            PADDLE_ENFORCE_EQ(
1733 1734
                platform::is_cpu_place(self->Place()),
                true,
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
            auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1751 1752 1753 1754 1755
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1756 1757
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1758 1759 1760 1761
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1762 1763
          },
          py::return_value_policy::reference)
1764
#if defined(PADDLE_WITH_CUDA)
1765 1766 1767
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1768 1769
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1770 1771 1772 1773 1774 1775 1776
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
                self->MutableVar()->GetMutable<framework::LoDTensor>();
            tensor_uva(self_tensor, device_id);
          },
1777 1778 1779
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1795
      .def("copy_", &imperative::VarBase::CopyFrom)
1796 1797 1798
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1799 1800
             const platform::CPUPlace &place,
             bool blocking) {
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1819 1820
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1831 1832
             const platform::XPUPlace &place,
             bool blocking) {
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1843 1844
             const platform::CUDAPlace &place,
             bool blocking) {
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1855 1856
             const platform::NPUPlace &place,
             bool blocking) {
1857 1858 1859 1860 1861 1862 1863
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1876 1877 1878
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1879 1880
             const platform::MLUPlace &place,
             bool blocking) {
1881 1882 1883 1884 1885 1886 1887
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1888 1889 1890
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1891 1892
             const platform::CustomPlace &place,
             bool blocking) {
1893 1894 1895 1896 1897 1898 1899
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1900 1901 1902
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1903 1904
             const platform::Place &place,
             bool blocking) {
1905 1906 1907 1908 1909 1910 1911 1912
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1913 1914
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1915
          py::return_value_policy::reference)
1916 1917 1918
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1919
             PADDLE_ENFORCE_EQ(
1920 1921
                 t->IsInitialized(),
                 true,
1922 1923
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1924 1925 1926 1927 1928
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1929
             PADDLE_ENFORCE_EQ(
1930 1931
                 t->IsInitialized(),
                 true,
1932 1933
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1934 1935
             return t->offset();
           })
1936
      .def("_share_buffer_to",
1937
           [](const std::shared_ptr<imperative::VarBase> &self,
1938 1939 1940 1941
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
1942 1943
                 src->IsInitialized(),
                 true,
1944 1945 1946
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1947
             dst_->ShareDataTypeWith(*src);
1948 1949 1950
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1951 1952 1953 1954 1955 1956 1957
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1958
           })
1959 1960 1961 1962 1963 1964
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
1965 1966
                 src->IsInitialized(),
                 true,
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1983 1984
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1985 1986
              int64_t begin_idx,
              int64_t end_idx) {
1987
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1988
             PADDLE_ENFORCE_EQ(
1989 1990
                 t->IsInitialized(),
                 true,
1991 1992
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
             return t->numel();
           })
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2026 2027
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2028 2029 2030
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2031 2032
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2033
                    &imperative::VarBase::SetPersistable)
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
              return phi::vectorize<int>(
                  self.Var().Get<framework::LoDTensor>().dims());
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2056 2057
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
                             R"DOC(
      Whether a Tensor is leaf Tensor.

      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor. 
      
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2086
      .def_property_readonly(
2087 2088
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2089
          py::return_value_policy::copy)
2090 2091 2092 2093 2094 2095
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2096
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2097
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2098

2099 2100 2101 2102 2103
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2104 2105 2106 2107 2108 2109 2110
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2111
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2112
      m, "Tracer", R"DOC()DOC")
2113
      .def("__init__",
J
Jiabin Yang 已提交
2114
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2115 2116 2117
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2118 2119
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2120
                    &imperative::Tracer::SetAmpLevel)
2121 2122
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2123
                    &imperative::Tracer::SetAmpDtype)
2124 2125
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2126
                    &imperative::Tracer::SetHasGrad)
2127 2128 2129 2130 2131 2132 2133 2134
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2135
              self.SetExpectedPlace(*p);
2136 2137
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2138 2139
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2140 2141 2142
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2143 2144
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2145 2146
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2147
              self.SetExpectedPlace(*p);
2148 2149
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2150 2151
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2152
              self.SetExpectedPlace(*p);
2153 2154
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2155 2156 2157 2158 2159
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2160 2161 2162 2163 2164
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
F
fwenguang 已提交
2165 2166 2167 2168 2169
            } else if (py::isinstance<platform::MLUPlace>(obj)) {
              auto p = obj.cast<platform::MLUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2170 2171 2172 2173 2174
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2175 2176 2177 2178 2179
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2180
            } else {
L
Leo Chen 已提交
2181
              PADDLE_THROW(platform::errors::InvalidArgument(
2182
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
2183
                  "CPUPlace, NPUPlace, IPUPlace, MLUPlace"
L
Leo Chen 已提交
2184 2185
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2186 2187
            }
          })
2188 2189 2190
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2191 2192
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2193
           py::arg("key") = "dygraph_tmp")
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2210
             VLOG(5) << "AMP operators changed, "
2211 2212
                     << imperative::AmpOperators::Instance();
           })
2213 2214 2215
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2216 2217
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2218
           })
C
Chen Weihang 已提交
2219
      .def("_get_kernel_signature",
2220 2221 2222 2223
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2241 2242
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2243 2244 2245
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2246 2247
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2248 2249
             }
           })
2250
      .def("trace",
2251 2252 2253 2254 2255 2256
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2257 2258 2259 2260 2261 2262
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2263 2264 2265 2266 2267 2268 2269
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2270 2271
             }
           })
2272
      .def("trace",
2273 2274 2275 2276 2277 2278
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2279 2280
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2281 2282 2283 2284
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2285 2286 2287 2288 2289 2290 2291
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2292 2293
             }
           })
M
minqiyang 已提交
2294
      .def("trace",
2295 2296 2297 2298 2299 2300
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2301 2302
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2303 2304
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2305 2306
             {
               py::gil_scoped_release release;
2307 2308 2309 2310 2311 2312 2313
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2314
             }
M
minqiyang 已提交
2315
           })
2316
      .def("trace",
2317 2318 2319 2320 2321 2322
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::NPUPlace &place,
Z
zyfncg 已提交
2323 2324
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2325
             auto ins_map = ConvertToNameVarBaseMap(ins);
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
             }
           })
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2348 2349 2350
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2351 2352 2353 2354 2355 2356 2357
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2358 2359
             }
           })
F
fwenguang 已提交
2360
      .def("trace",
2361 2362 2363 2364 2365 2366
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::MLUPlace &place,
Z
zyfncg 已提交
2367 2368
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
F
fwenguang 已提交
2369 2370 2371 2372
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2373 2374 2375 2376 2377 2378 2379
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
F
fwenguang 已提交
2380 2381
             }
           })
J
Jiabin Yang 已提交
2382
      .def("trace",
2383 2384 2385 2386 2387 2388
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2389 2390
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2391 2392 2393 2394
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2395 2396 2397 2398 2399 2400 2401
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2402 2403
             }
           });
2404 2405

  // define parallel context
2406 2407 2408
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2409 2410
      .def_property(
          "nranks",
2411 2412
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2413 2414
            self.nranks_ = nranks;
          })
2415 2416 2417 2418 2419 2420 2421 2422
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2423 2424
      .def_property(
          "trainer_endpoints",
2425
          [](const imperative::ParallelStrategy &self) {
2426 2427
            return self.trainer_endpoints_;
          },
2428
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2429 2430
            self.trainer_endpoints_ = eps;
          })
2431 2432 2433 2434 2435 2436 2437 2438
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2439 2440 2441 2442 2443 2444
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2445

2446 2447 2448 2449
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2450
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2451
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
R
ronnywang 已提交
2452
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
F
fwenguang 已提交
2453
  m.def("varbase_copy", &VarBaseCopy<platform::MLUPlace>);
2454

2455 2456 2457 2458 2459 2460 2461
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2476 2477 2478 2479 2480
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2481 2482 2483 2484
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2485 2486
         bool retain_graph,
         const imperative::Tracer &tracer) {
2487 2488 2489 2490 2491 2492 2493 2494
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2495 2496 2497
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||          \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL) || \
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_CNCL)
2498 2499 2500 2501 2502 2503
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2504 2505 2506 2507
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2518 2519
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2520
        py::arg("tensor_indices") = std::vector<int64_t>{},
2521
        py::call_guard<py::gil_scoped_release>());
2522
#endif
2523

2524
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2525 2526
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2527 2528 2529 2530
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2531 2532 2533 2534
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2535 2536 2537
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2538 2539
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2540 2541 2542 2543
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2544 2545 2546 2547
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2548
#endif
2549 2550 2551

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2552 2553
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2554 2555 2556 2557 2558 2559 2560
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2561 2562 2563 2564
           py::arg("ring_id"));
#endif

#if defined(PADDLE_WITH_ASCEND_CL)
2565 2566
  py::class_<imperative::HCCLParallelContext,
             imperative::ParallelContext,
2567 2568 2569 2570 2571 2572 2573
             std::shared_ptr<imperative::HCCLParallelContext>>(
      m, "HCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::NPUPlace &>())
      .def("init", [](imperative::HCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::HCCLParallelContext::InitWithRingID,
2574 2575 2576
           py::arg("ring_id"));
#endif

2577
#if defined(PADDLE_WITH_CNCL)
2578 2579
  py::class_<imperative::CNCLParallelContext,
             imperative::ParallelContext,
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
             std::shared_ptr<imperative::CNCLParallelContext>>(
      m, "CNCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::MLUPlace &>())
      .def("init", [](imperative::CNCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::CNCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2590 2591
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL)
2592 2593
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2594 2595 2596 2597 2598 2599
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

2600
  m.def("pylayer_apply",
2601 2602 2603 2604
        [](const platform::CPUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2605 2606 2607 2608
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
2609 2610 2611 2612
        [](const platform::CUDAPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2613 2614 2615 2616
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
2617 2618 2619 2620
        [](const platform::XPUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2621 2622 2623 2624
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
2625 2626 2627 2628
        [](const platform::CUDAPinnedPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2629 2630
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2631 2632

  m.def("pylayer_apply",
2633 2634 2635 2636
        [](const platform::NPUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2637 2638
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
F
fwenguang 已提交
2639
  m.def("pylayer_apply",
2640 2641 2642 2643
        [](const platform::MLUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
F
fwenguang 已提交
2644 2645
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
R
ronnywang 已提交
2646
  m.def("pylayer_apply",
2647 2648 2649 2650
        [](const platform::CustomPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
R
ronnywang 已提交
2651 2652
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2653

S
Siming Dai 已提交
2654
#if defined(PADDLE_WITH_CUDA)
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2676 2677
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2691 2692 2693 2694
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and 
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
        
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2723 2724 2725
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2726 2727 2728 2729
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2730
        PADDLE_ENFORCE_EQ(
2731 2732
            platform::is_gpu_place(src.Place()),
            true,
2733 2734 2735 2736
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2737 2738
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2739 2740 2741 2742 2743
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2744 2745
            platform::is_cpu_place(offset.Place()),
            true,
2746 2747 2748 2749
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2750 2751
            platform::is_cpu_place(count.Place()),
            true,
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2764 2765
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2766 2767
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2768 2769
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2770 2771
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2772 2773
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2774 2775 2776
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2777 2778
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2779 2780 2781 2782 2783
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2784 2785
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

        auto stream = paddle::platform::stream::get_current_stream(deviceId)
                          ->raw_stream();

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2802 2803
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2804 2805
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2806 2807
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2808 2809
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2810 2811 2812 2813 2814
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
          src_offset += c;
        }
      },
      R"DOC(
  This api provides a way to write pieces of source tensor to destination tensor 
  inplacely and asynchronously. In which, we use `offset` and `count` to determine 
  where to copy. `offset` means the begin points of the copy pieces of `src`, and 
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process 
  will run asynchronously from cuda to pin memory. We can simply remember this as 
  "gpu async_write to pin_memory".
  
  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPlace.

    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst` 
                  should be the same with `src` except for the first dimension. 

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional. 
    
    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal. 

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core  
          from paddle.device import cuda
          
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2871 2872 2873 2874 2875 2876 2877 2878
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2879 2880 2881 2882 2883
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2884 2885
            platform::is_gpu_place(dst.Place()),
            true,
2886 2887 2888 2889
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2890 2891
            platform::is_cpu_place(index.Place()),
            true,
2892 2893 2894 2895
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2896 2897
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2898 2899 2900 2901 2902
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2903 2904
            platform::is_cpu_place(offset.Place()),
            true,
2905 2906 2907 2908
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2909 2910
            platform::is_cpu_place(count.Place()),
            true,
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &index_tensor = index.Var().Get<framework::LoDTensor>();
        auto *buffer_tensor =
            buffer.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2925 2926
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2927 2928 2929 2930
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2931 2932
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2933 2934 2935 2936 2937
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2938 2939
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2940 2941 2942 2943
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2944 2945
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2946 2947 2948 2949
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2950 2951
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

        auto stream = paddle::platform::stream::get_current_stream(deviceId)
                          ->raw_stream();

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2963 2964
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2965 2966
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2967 2968
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2969 2970
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2971 2972
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2984 2985
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2986 2987 2988 2989 2990 2991 2992
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2993 2994
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2995 2996
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2997 2998
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2999 3000
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
3001 3002 3003 3004 3005
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
3006 3007 3008
            dst_offset += c;
          }
        } else {
3009 3010
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
        auto index_select = [](const framework::Tensor &src_tensor,
                               const framework::Tensor &index_tensor,
                               framework::Tensor *buffer_tensor) {
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
3028 3029
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
3030 3031 3032 3033 3034 3035
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
3036 3037
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
3038
                        index_tensor.numel() * size * sizeof(float),
3039 3040
                        cudaMemcpyHostToDevice,
                        stream);
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
      },
      R"DOC(
  This api provides a way to read from pieces of source tensor to destination tensor 
  asynchronously. In which, we use `index`, `offset` and `count` to determine where 
  to read. `index` means the index position of src tensor we want to read. `offset` 
  and count means the begin points and length of pieces of src tensor we want to read. 
  To be noted, the copy process will run asynchronously from pin memory to cuda place. 
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPinnedPlace.
  
    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should 
                  be the same with `src` except for the first dimension.

    index (Tensor): The index tensor, and the data type should be `int64` currently. 
                    Besides, `index` should be on CPUplace. The shape of `index` should 
                    be one-dimensional.

    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily. 
                     The data type should be `float32` currently, and should be placed 
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal.
    
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
          
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
 
)DOC");
#endif
3100 3101 3102 3103
}

}  // namespace pybind
}  // namespace paddle