imperative.cc 15.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22
#include <memory>
J
Jiabin Yang 已提交
23
#include <string>
24 25
#include <unordered_map>
#include <utility>
J
Jiabin Yang 已提交
26 27
#include <vector>
#include "paddle/fluid/imperative/backward_strategy.h"
28
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
29
#include "paddle/fluid/imperative/nccl_context.h"
30
#include "paddle/fluid/imperative/profiler.h"
31
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
32
#include "paddle/fluid/imperative/type_defs.h"
33

34 35
#include "paddle/fluid/pybind/pybind_boost_headers.h"

36 37 38
namespace paddle {
namespace pybind {

39 40
namespace py = ::pybind11;

41 42 43 44
class Layer : public imperative::Layer {
 public:
  using imperative::Layer::Layer;  // Inherit constructors

45 46 47 48
  std::vector<std::shared_ptr<imperative::VarBase>> Forward(
      const std::vector<std::shared_ptr<imperative::VarBase>> &inputs)
      override {
    PYBIND11_OVERLOAD(std::vector<std::shared_ptr<imperative::VarBase>>, Layer,
J
Jiabin Yang 已提交
49
                      Forward, inputs);  // NOLINT
50 51 52
  }
};

J
Jiabin Yang 已提交
53 54 55
// warper for pyobject to avoid imperative module depend on python
// TODO(jiabin) Add OpBase's pybind interface back to enable backward hook
class PYBIND11_HIDDEN PyCallableObject {
56
 public:
J
Jiabin Yang 已提交
57 58 59 60 61 62 63 64 65 66
  PyCallableObject(std::shared_ptr<py::object> py_obj_ptr)
      : py_obj_ptr_(std::move(py_obj_ptr)) {}
  ~PyCallableObject() {
    py::call_guard<py::gil_scoped_acquire>();
    py_obj_ptr_.reset();
  }
  void operator()() {
    py::call_guard<py::gil_scoped_acquire>();
    py_obj_ptr_->operator()(this);
  }
67

J
Jiabin Yang 已提交
68 69
 private:
  std::shared_ptr<py::object> py_obj_ptr_;
70 71
};

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
// Function like obj.attr_name in Python.
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  const char *kIVarField = "_ivar";
  PyObject *py_ivar = GetPythonAttribute(py_obj, kIVarField);
  std::vector<std::shared_ptr<imperative::VarBase>> result;

  if (py_ivar) {  // Variable
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    Py_DECREF(py_ivar);
  } else if (PyList_Check(py_obj)) {  // List of Variable
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
      PyObject *py_ivar =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kIVarField);
      PADDLE_ENFORCE_NOT_NULL(py_ivar);
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
      Py_DECREF(py_ivar);
    }
  } else if (PyTuple_Check(py_obj)) {  // Tuple of Variable
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
      PyObject *py_ivar =
          PyObject_GetAttrString(PyTuple_GET_ITEM(py_obj, i), kIVarField);
      PADDLE_ENFORCE_NOT_NULL(py_ivar);
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
      Py_DECREF(py_ivar);
    }
  } else {
    PADDLE_THROW(
J
Jiabin Yang 已提交
141
        "unsupported type %s, must be Variable, list[Variable] or "
142 143 144 145 146 147 148
        "tuple[Variable]",
        py::str(handle));
  }

  return result;
}

J
Jiabin Yang 已提交
149
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
150

J
Jiabin Yang 已提交
151 152 153
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
154 155 156 157 158 159
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
160 161 162

  PADDLE_ENFORCE_EQ(PyErr_Occurred() == nullptr, true,
                    py::str(py::handle(PyErr_Occurred())));
163 164 165
  return result;
}

J
Jiabin Yang 已提交
166 167 168 169 170 171 172 173 174 175
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
  } else {
    return framework::ToTypeName(var.Var().Type());
  }
}

176
// Bind Methods
J
Jiabin Yang 已提交
177
void BindImperative(py::module *m_ptr) {
178 179 180
  auto &m = *m_ptr;

  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
181 182
      m, "BackwardStrategy", R"DOC(

J
Jiabin Yang 已提交
183
    BackwardStrategy is a descriptor of how to run the backward process.
184

J
Jiabin Yang 已提交
185 186
    **Note**:
        **This API is only avaliable in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **Mode**
187

J
Jiabin Yang 已提交
188 189
    Attribute:
        **sort_sum_gradient**:
190

J
Jiabin Yang 已提交
191
        If framework will sum the gradient by the reverse order of trace. eg. x_var ( :ref:`api_guide_Variable` ) will be the input of multiple OP such as :ref:`api_fluid_layers_scale` , this attr will decide if framework will sum gradient of `x_var` by the reverse order.
L
lujun 已提交
192

J
Jiabin Yang 已提交
193
        By Default: False
L
lujun 已提交
194

J
Jiabin Yang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle.fluid as fluid

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    x_var = fluid.dygraph.to_variable(x)
                    sums_inputs = []
                    # x_var will be multi-scales' input here
                    for _ in range(10):
                        sums_inputs.append(fluid.layers.scale(x_var))
                    ret2 = fluid.layers.sums(sums_inputs)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
213
      )DOC");
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });

  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
229 230 231 232
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });

233
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>>(
J
Jiabin Yang 已提交
234 235
      m, "VarBase",
      R"DOC()DOC")
Z
Zeng Jinle 已提交
236
      .def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
J
Jiabin Yang 已提交
237 238 239 240
      .def("__init__",
           [](imperative::VarBase &self, const std::string &name,
              framework::proto::VarType::Type type,
              framework::proto::VarType::Type dtype,
241
              const std::vector<int> &dims, bool persistable) {
J
Jiabin Yang 已提交
242 243 244 245 246 247 248 249 250 251
             new (&self) imperative::VarBase(name);
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
               tensor->Resize(framework::make_ddim(dims));
             }
           })
252 253
      .def("_run_backward",
           [](imperative::VarBase &self,
J
Jiabin Yang 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
              const imperative::detail::BackwardStrategy &bckst,
              const imperative::Tracer &tracer) {
             // TODO(jiabin): when we impl more backward execution we can select
             // them

             imperative::Engine *engine = tracer.GetDefaultEngine();
             VLOG(3) << "Start backward";
             engine->Init(&self, bckst);
             engine->Execute();
             VLOG(3) << "Finish backward";
           },
           py::call_guard<py::gil_scoped_release>())
      .def("_grad_name", &imperative::VarBase::GradVarName)
      .def("_grad_value",
           [](imperative::VarBase &self) {
             return self.MutableGradVar()->Get<framework::LoDTensor>();
           },
           py::return_value_policy::reference)
272 273
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
      .def("_grad_ivar",
J
Jiabin Yang 已提交
274 275 276 277 278 279 280 281 282
           [](const imperative::VarBase &self) {
             auto &grad_var = self.GradVarBase();
             if (grad_var && grad_var->Var().IsInitialized()) {
               return grad_var;
             } else {
               return std::shared_ptr<imperative::VarBase>(nullptr);
             }
           },
           py::return_value_policy::copy)
283 284
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
J
Jiabin Yang 已提交
285 286
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
287 288
      .def("_copy_to",
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
J
Jiabin Yang 已提交
289 290 291
              bool blocking) { return self.NewVarBase(place, blocking); },
           py::return_value_policy::copy)
      .def("value", [](imperative::VarBase &self) { return self.MutableVar(); },
292 293 294
           py::return_value_policy::reference)
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
J
Jiabin Yang 已提交
295 296 297 298
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
299
              return framework::vectorize<int>(
J
Jiabin Yang 已提交
300 301 302 303 304 305 306 307
                  self.Var().Get<framework::LoDTensor>().dims());
            } else {
              VLOG(2) << "It is meaningless to get shape of variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
      .def_property_readonly("type", &imperative::VarBase::Type)
308
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
J
Jiabin Yang 已提交
309
      .def_property("persistable", &imperative::VarBase::Persistable,
310
                    &imperative::VarBase::SetPersistable)
311 312 313
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient);
314 315 316

  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
317 318 319 320 321
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<std::shared_ptr<imperative::VarBase>> &inputs) {
             return self.Forward(inputs);
           });
322

323
  py::class_<imperative::Tracer>(m, "Tracer", "")
324
      .def("__init__",
J
Jiabin Yang 已提交
325
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
M
minqiyang 已提交
326
      .def("trace",
J
Jiabin Yang 已提交
327 328 329 330 331 332
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CUDAPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
333 334
             {
               py::gil_scoped_release release;
J
Jiabin Yang 已提交
335 336
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
337
             }
M
minqiyang 已提交
338
           })
J
Jiabin Yang 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351
      .def("trace",
           [](imperative::Tracer &self, const std::string &type,
              const PyNameVarBaseMap &ins, const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs, const platform::CPUPlace &place,
              bool trace_backward) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp(type, std::move(ins_map), std::move(outs_map),
                            std::move(attrs), place, trace_backward);
             }
           });
352 353

  // define parallel context
354 355 356
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
357 358
      .def_property(
          "nranks",
359 360
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
361 362 363
            self.nranks_ = nranks;
          })
      .def_property("local_rank",
364
                    [](const imperative::ParallelStrategy &self) {
365 366
                      return self.local_rank_;
                    },
367
                    [](imperative::ParallelStrategy &self, int local_rank) {
368 369 370 371
                      self.local_rank_ = local_rank;
                    })
      .def_property(
          "trainer_endpoints",
372
          [](const imperative::ParallelStrategy &self) {
373 374
            return self.trainer_endpoints_;
          },
375
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
376 377 378
            self.trainer_endpoints_ = eps;
          })
      .def_property("current_endpoint",
379
                    [](const imperative::ParallelStrategy &self) {
380 381
                      return self.current_endpoint_;
                    },
382 383
                    [](imperative::ParallelStrategy &self,
                       const std::string &ep) { self.current_endpoint_ = ep; });
384
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
385 386
  py::class_<imperative::NCCLParallelContext> nccl_ctx(m,
                                                       "NCCLParallelContext");
387 388

  nccl_ctx
389 390 391
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); });
392
#endif
393 394 395 396
}

}  // namespace pybind
}  // namespace paddle