imperative.cc 128.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22

23
#include <algorithm>
24
#include <memory>
25
#include <set>
J
Jiabin Yang 已提交
26
#include <string>
27
#include <unordered_map>
28
#include <unordered_set>
29
#include <utility>
J
Jiabin Yang 已提交
30
#include <vector>
31

J
Jiabin Yang 已提交
32
#include "paddle/fluid/eager/api/all.h"
33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/scope_guard.h"
35
#include "paddle/fluid/imperative/all_reduce.h"
36
#include "paddle/fluid/imperative/amp_auto_cast.h"
37
#include "paddle/fluid/imperative/basic_engine.h"
38
#include "paddle/fluid/imperative/bkcl_context.h"
39
#include "paddle/fluid/imperative/cncl_context.h"
40
#include "paddle/fluid/imperative/data_loader.h"
41
#include "paddle/fluid/imperative/gloo_context.h"
42
#include "paddle/fluid/imperative/hccl_context.h"
K
kuizhiqing 已提交
43
#include "paddle/fluid/imperative/heter_ccl_context.h"
44
#include "paddle/fluid/imperative/hooks.h"
45
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
46
#include "paddle/fluid/imperative/nccl_context.h"
47
#include "paddle/fluid/imperative/partial_grad_engine.h"
48
#include "paddle/fluid/imperative/profiler.h"
49
#include "paddle/fluid/imperative/py_layer_fwd.h"
50
#include "paddle/fluid/imperative/reducer.h"
51
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
52
#include "paddle/fluid/imperative/type_defs.h"
53
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
54
#include "paddle/fluid/operators/utils.h"
55
#include "paddle/fluid/pybind/eager_utils.h"
56
#include "paddle/fluid/pybind/op_function.h"
57
#include "paddle/fluid/pybind/pybind_boost_headers.h"
J
Jiabin Yang 已提交
58
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
59
#include "paddle/fluid/pybind/tensor_py.h"
60
#include "paddle/fluid/pybind/uva_utils.h"
61
#include "paddle/phi/core/compat/arg_map_context.h"
62
#include "paddle/phi/core/type_defs.h"
63

64 65 66
namespace paddle {
namespace pybind {

67 68
PyTypeObject *g_varbase_pytype = nullptr;

69 70
namespace py = ::pybind11;

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
104 105
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
123 124 125 126 127
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
128 129 130 131 132 133
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
134 135 136 137 138
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
139 140
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
141 142
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
143 144
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
145 146
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
F
fwenguang 已提交
147 148
  } else if (py::isinstance<platform::MLUPlace>(place_obj)) {
    return place_obj.cast<platform::MLUPlace>();
149 150
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
151 152
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
153
        "Place should be one of "
154 155
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/MLUPlace/"
        "CustomPlace"));
L
Leo Chen 已提交
156 157 158
  }
}

L
Leo Chen 已提交
159
// only initialize varbase, but not its tensor.
160 161 162 163
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
164 165 166
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
167 168 169

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
170
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
171 172 173 174 175 176 177 178 179
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
180 181 182 183 184 185 186
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
187
  InitVarBaseOnly(self, name, persistable, stop_gradient);
188
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
L
Leo Chen 已提交
189
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
190
  if (platform::is_cpu_place(place)) {
191
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
192
  } else if (platform::is_xpu_place(place)) {
193
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
194
  } else if (platform::is_gpu_place(place)) {
195
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
196
  } else if (platform::is_cuda_pinned_place(place)) {
197 198
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
199
  } else if (platform::is_npu_place(place)) {
200
    SetTensorFromPyArray<platform::NPUPlace>(tensor, array, place, zero_copy);
F
fwenguang 已提交
201
  } else if (platform::is_mlu_place(place)) {
202
    SetTensorFromPyArray<platform::MLUPlace>(tensor, array, place, zero_copy);
203
  } else if (platform::is_custom_place(place)) {
204 205
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
206
  } else {
L
Leo Chen 已提交
207
    PADDLE_THROW(platform::errors::InvalidArgument(
208
        "Place should be one of "
F
fwenguang 已提交
209
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/MLUPlace"));
J
Jiabin Yang 已提交
210
  }
211
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
212 213 214 215
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
216
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
217 218 219 220 221 222
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
223 224 225
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
226
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
227 228 229 230 231 232 233

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
234 235
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
236 237 238
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
239
}
240

241 242
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
243 244
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
245 246
                                        bool persistable = false,
                                        bool zero_copy = false,
247 248 249 250 251
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
252
  if (name == "") {
253 254
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
255
  }
256 257
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
258
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
259
  new (self) imperative::VarBase(name);
260 261
  self->SetPersistable(persistable);
  auto *tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
262 263 264
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
265 266
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
267
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
268 269 270
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
271 272
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
273
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
274
  InitVarBaseAndTensor(self, array, place, "");
275
}
276

B
Baibaifan 已提交
277 278 279
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
                                                const framework::Tensor &tensor,
                                                const std::string &name) {
280 281
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
282 283 284
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
285
  new (self) imperative::VarBase(name_);
286 287
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
288
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
289 290 291 292 293 294 295 296 297 298 299
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

300 301 302
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
                                         const framework::Tensor &tensor,
B
Baibaifan 已提交
303 304
                                         const P &place,
                                         const std::string &name) {
305
  VLOG(4) << "Init VarBase";
306 307 308
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
309
  new (self) imperative::VarBase(name_);
310 311
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
312
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
313 314 315 316 317 318 319 320 321 322 323
  auto *new_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

324 325 326 327 328
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
329
  } else {
330
    return framework::ToTypeName(var.Var().Type());
331 332
  }
}
L
Leo Chen 已提交
333

J
Jiabin Yang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
            .Get<framework::LoDTensor>());
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

bool PyCheckTensor(PyObject *obj) {
  return py::isinstance<imperative::VarBase>(obj);
}
351
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
352 353 354 355 356 357 358 359 360 361 362 363 364

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

365
  if (PyList_Check(py_obj)) {  // List of VarBase
366 367 368
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
369 370 371
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
372 373 374
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
375
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
376 377 378
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
379 380 381
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
382 383 384
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
385 386 387
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
388 389 390 391
  }

  return result;
}
392

J
Jiabin Yang 已提交
393 394 395
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
396 397 398 399 400 401
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
402

403
  PADDLE_ENFORCE_EQ(
404 405
      PyErr_Occurred(),
      nullptr,
406
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
407 408 409
  return result;
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
427 428
      PyErr_Occurred(),
      nullptr,
429 430 431 432
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

433
template <typename P>
434 435
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
436 437
                        const P &dst_device,
                        const bool blocking) {
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
      if (src->Var().IsType<framework::LoDTensor>()) {
        auto &src_tensor = src->Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
458 459
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
460
        auto *dst_selected_rows =
461
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
462 463
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
464 465
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

491
// Bind Methods
J
Jiabin Yang 已提交
492
void BindImperative(py::module *m_ptr) {
493 494
  auto &m = *m_ptr;

495 496
  BindOpFunctions(&m);

497 498
#ifndef _WIN32
  // Dygraph DataLoader signal handler
499 500
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
501 502
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
503 504 505 506 507 508 509 510 511 512
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
513
  });
514 515
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
537 538
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
539 540 541 542 543 544 545 546
              platform::errors::InvalidArgument(
                  "Faild to convert input data to a regular ndarray.\n  * "
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
          framework::LoDTensor t;
547 548
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
549
          // 3. allocate shared memory
550
          void *data_ptr = t.data();
551
          size_t data_size = t.numel() * framework::DataTypeSize(t.dtype());
552 553 554 555 556 557
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
558 559 560 561 562
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
563 564 565 566 567 568 569 570
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

571 572 573 574 575 576
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
577 578
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
579 580 581 582 583 584 585 586
            platform::errors::InvalidArgument(
                "Faild to convert input data to a regular ndarray.\n  * "
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
        framework::LoDTensor t;
587 588
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
589 590 591 592 593 594 595 596 597
        // 3. allocate shared memory
        void *data_ptr = t.data();
        size_t data_size = t.numel() * framework::DataTypeSize(t.dtype());
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
598 599 600 601 602
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
603 604 605 606 607
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
608

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
      auto t = tensor_list[i].cast<framework::LoDTensor>();
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
#endif

629 630
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
631 632 633 634
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
635 636
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
637 638 639
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
640 641
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
642
          egr::Controller::Instance().SetCurrentTracer(tracer);
643
          imperative::SetCurrentTracer(tracer);
644
        });
645 646 647 648
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
649 650 651 652 653 654 655
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
656
      .def("__init__",
657 658 659 660 661 662
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
              const std::vector<int> &dims,
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
663
             VLOG(4) << "Init VarBase";
664 665 666
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
667
                   "generated_tensor");
668 669 670 671
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
672 673 674 675 676 677
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
               auto *tensor =
                   self.MutableVar()->GetMutable<framework::LoDTensor>();
678
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
679 680
             }
           })
681 682 683 684 685 686 687
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
688
           py::arg("stop_gradient") = -1)
689 690 691 692 693 694 695
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
696
           py::arg("stop_gradient") = -1)
697 698 699 700 701 702 703
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
704
           py::arg("stop_gradient") = -1)
705 706 707 708 709 710 711
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
712
           py::arg("stop_gradient") = -1)
713 714 715 716 717 718 719
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
720
           py::arg("stop_gradient") = -1)
721 722 723 724 725 726 727
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::MLUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
F
fwenguang 已提交
728
           py::arg("stop_gradient") = -1)
729 730 731 732 733 734 735
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
736
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
737
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::MLUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
776
           py::arg("name") = "")
777
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
778 779
      .def(
          "__setitem_varbase__",
780 781
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
                self->MutableVar()->GetMutable<framework::LoDTensor>();
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

811 812 813 814 815
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
839 840 841 842 843 844 845 846 847 848
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
865 866
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
867 868 869 870 871 872 873 874 875 876
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

              if (PyCheckTensor(value_obj.ptr())) {
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
877 878 879 880 881 882

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
883 884 885 886 887 888 889
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
890
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
891 892 893 894
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
895
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
896 897 898 899
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
900 901
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
902 903 904 905
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
906 907
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
908 909 910 911
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
912
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
913 914 915 916 917 918 919 920 921 922 923
                  }
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
                      "float32, int32 or int64, "
                      "please check the type of tensor."));
                }

                SetTensorFromPyArray(value_tensor->MutableVar()
                                         ->GetMutable<framework::LoDTensor>(),
924 925 926
                                     value,
                                     self->Place(),
                                     false);
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
                    py::isinstance<py::bool_>(value_obj)) {
                  if (self->DataType() == framework::proto::VarType::FP32) {
                    attrs["fp32_values"] =
                        std::vector<float>{value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
                    attrs["fp64_values"] =
                        std::vector<double>{value_obj.cast<double>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
                    attrs["int32_values"] =
                        std::vector<int32_t>{value_obj.cast<int32_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
                    attrs["int64_values"] =
                        std::vector<int64_t>{value_obj.cast<int64_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
                    attrs["bool_values"] =
                        std::vector<int>{value_obj.cast<bool>()};
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
                        "float32, int32 or int64, "
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
974 975 976 977
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
                    index_var->MutableVar()->GetMutable<framework::LoDTensor>();
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
995 996
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
997 998
            }
          })
999
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1000
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1001
             VLOG(4) << "Call _getitem_index_not_tensor";
1002
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1003 1004 1005 1006
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
S
songyouwei 已提交
1007 1008
             auto tensor =
                 self->MutableVar()->GetMutable<framework::LoDTensor>();
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1020 1021 1022
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1023

Z
zyfncg 已提交
1024
             auto out = slice_axes.empty() && !list_select_flag
1025 1026 1027 1028
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1029

1030
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1031
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
             if (!none_axes.empty()) {
               // Deal with cases when all axes are decreased.
               // After slice, the shape of out is [1], which should have been
               // [], but Paddle doesn't support scalar.
               // In order to ensure the correctness of the final shape of out,
               // one dimension of out needs to be decreased.
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 1, 1, None] # out.shape : (1)
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 none_axes.pop_back();
               }
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1092 1093 1094 1095 1096 1097 1098 1099
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               auto *idx_tensor = select_index->MutableVar()
                                      ->GetMutable<framework::LoDTensor>();
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1100 1101
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1102 1103 1104 1105 1106 1107 1108

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1109
             return out;
1110
           })
1111 1112 1113 1114 1115
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
            const auto &tensor = self->Var().Get<framework::LoDTensor>();
            PADDLE_ENFORCE_EQ(
1116 1117
                tensor.IsInitialized(),
                true,
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1136 1137
                  numel,
                  1,
1138 1139 1140 1141 1142 1143
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1144 1145
                  offset,
                  numel,
1146 1147 1148
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1149 1150
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1151 1152 1153 1154 1155 1156
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1157 1158
                    index,
                    dims[i],
1159 1160
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1161 1162 1163
                        index,
                        i,
                        dims[i]));
1164 1165 1166 1167
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1168
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1169 1170
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1171 1172
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1173 1174 1175 1176 1177
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1178
                "Unsupported tensor data type: %s", tensor.dtype()));
1179 1180
          },
          py::return_value_policy::copy)
1181 1182 1183 1184
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1185 1186
                 var->IsInitialized(),
                 true,
1187 1188 1189 1190 1191
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1192 1193 1194 1195 1196 1197 1198 1199
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1200 1201 1202 1203 1204
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1205 1206
      .def(
          "numpy",
1207

1208 1209 1210
          [](imperative::VarBase &self) -> py::array {
            const auto &tensor = self.MutableVar()->Get<framework::LoDTensor>();
            PADDLE_ENFORCE_EQ(
1211 1212
                tensor.IsInitialized(),
                true,
1213 1214 1215 1216 1217 1218
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1219 1220
        Returns a numpy array shows the value of current Tensor.
        
1221
        Returns:
Z
Zhou Wei 已提交
1222
            ndarray: The numpy value of current Tensor.
1223 1224

        Returns type:
Z
Zhou Wei 已提交
1225
            ndarray: dtype is same as current Tensor
1226 1227 1228 1229

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1230
                import paddle
1231 1232
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1233 1234 1235 1236
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1237
       )DOC")
1238 1239 1240 1241 1242
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1243 1244
                self.Var().IsInitialized(),
                true,
1245 1246
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1247

1248 1249 1250 1251 1252 1253 1254
            PADDLE_ENFORCE_EQ(
                self.Var().IsType<framework::LoDTensor>() ||
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1255

1256 1257
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1258

1259 1260 1261
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1262

1263 1264 1265 1266
            if (self.Var().IsType<framework::LoDTensor>()) {
              const auto &origin_tensor =
                  self.Var().Get<framework::LoDTensor>();
              PADDLE_ENFORCE_EQ(
1267 1268
                  origin_tensor.IsInitialized(),
                  true,
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
                  detach_var->MutableVar()->GetMutable<framework::LoDTensor>();
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1284 1285
                  origin_selected_rows.value().IsInitialized(),
                  true,
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1303 1304
          py::return_value_policy::take_ownership,
          R"DOC(
1305

1306
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1307 1308
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1309

1310
        Returns: The detached Tensor.
1311 1312 1313 1314

        Examples:
            .. code-block:: python

1315
                import paddle
Z
Zhou Wei 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
                y.backward() 
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
             
1341
       )DOC")
1342 1343 1344 1345
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1346

1347
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1348

1349
        The Gradient of current Tensor will be set to ``0`` .
1350 1351 1352 1353 1354 1355

        Returns:  None

        Examples:
             .. code-block:: python

1356
                import paddle
Z
Zhou Wei 已提交
1357 1358 1359 1360 1361 1362 1363
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1364
      )DOC")
1365 1366
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1367 1368
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1369 1370 1371 1372
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
            const auto &tensor = self->Var().Get<framework::LoDTensor>();
1373 1374
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1386 1387
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1419
      .def("_grad_name", &imperative::VarBase::GradVarName)
1420 1421 1422 1423 1424 1425
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
            return self.MutableGradVar()->Get<framework::LoDTensor>();
          },
          py::return_value_policy::reference)
1426 1427 1428 1429
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1430
      .def("_reset_grad_inplace_version",
1431
           [](imperative::VarBase &self, bool set_to_zero) {
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1443 1444
             py::gil_scoped_release release;

1445 1446 1447
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1448 1449 1450
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1451 1452
             }
           })
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
                  grad_var->MutableVar()->IsType<framework::LoDTensor>()
                      ? grad_var->MutableVar()
                            ->GetMutable<framework::LoDTensor>()
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1474 1475 1476 1477
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1478 1479
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1480
             return self.Var().IsType<phi::SelectedRows>();
1481
           })
1482 1483 1484 1485 1486
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1487
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1488
#if NCCL_VERSION_CODE >= 2212
1489
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1490
#else
1491
               if (!self.Var().IsType<phi::SelectedRows>()) {
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1505
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1506 1507 1508
            }
          },
          py::call_guard<py::gil_scoped_release>())
1509 1510 1511
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1512 1513
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1514
                 platform::errors::InvalidArgument(
1515 1516 1517
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1518 1519 1520 1521 1522
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1523 1524
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1525
                 platform::errors::InvalidArgument(
1526 1527 1528
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1529
           })
1530 1531 1532
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1533 1534
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1546 1547 1548 1549
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1550 1551
                self.IsLeaf(),
                true,
1552 1553 1554
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1555 1556
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1557 1558 1559 1560 1561 1562 1563 1564
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
              
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1612 1613 1614
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1615
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1616 1617 1618 1619
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1620
#endif
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1646 1647 1648
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1649 1650
             py::handle &handle,
             bool blocking) {
1651
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1652 1653 1654
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1655
#else
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1690
#endif
1691
          },
1692 1693 1694
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1695 1696 1697 1698 1699 1700
        Returns a copy of this Tensor in GPU memory.

        If this Tensor is already in GPU memory and device_id is default, 
        then no copy is performed and the original Tensor is returned.
        
        Args:
1701
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1702 1703 1704 1705 1706 1707
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be 
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1708
              # required: gpu
1709 1710
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1711
              print(x.place)        # Place(cpu)
1712 1713

              y = x.cuda()
1714
              print(y.place)        # Place(gpu:0)
1715 1716
            
              y = x.cuda(None)
1717
              print(y.place)        # Place(gpu:0)
1718

1719 1720 1721
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1722
       )DOC")
1723 1724 1725
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1726
#ifndef _WIN32
1727
            PADDLE_ENFORCE_EQ(
1728 1729
                platform::is_cpu_place(self->Place()),
                true,
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
            auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1746 1747 1748 1749 1750
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1751 1752
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1753 1754 1755 1756
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1757 1758
          },
          py::return_value_policy::reference)
1759
#if defined(PADDLE_WITH_CUDA)
1760 1761 1762
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1763 1764
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1765 1766 1767 1768 1769 1770 1771
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
                self->MutableVar()->GetMutable<framework::LoDTensor>();
            tensor_uva(self_tensor, device_id);
          },
1772 1773 1774
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1790
      .def("copy_", &imperative::VarBase::CopyFrom)
1791 1792 1793
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1794 1795
             const platform::CPUPlace &place,
             bool blocking) {
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1814 1815
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1826 1827
             const platform::XPUPlace &place,
             bool blocking) {
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1838 1839
             const platform::CUDAPlace &place,
             bool blocking) {
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1850 1851
             const platform::NPUPlace &place,
             bool blocking) {
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1862 1863
             const platform::MLUPlace &place,
             bool blocking) {
1864 1865 1866 1867 1868 1869 1870
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1871 1872 1873
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1874 1875
             const platform::CustomPlace &place,
             bool blocking) {
1876 1877 1878 1879 1880 1881 1882
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1883 1884 1885
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1886 1887
             const platform::Place &place,
             bool blocking) {
1888 1889 1890 1891 1892 1893 1894 1895
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1896 1897
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1898
          py::return_value_policy::reference)
1899 1900 1901
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1902
             PADDLE_ENFORCE_EQ(
1903 1904
                 t->IsInitialized(),
                 true,
1905 1906
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1907 1908 1909 1910 1911
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1912
             PADDLE_ENFORCE_EQ(
1913 1914
                 t->IsInitialized(),
                 true,
1915 1916
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1917 1918
             return t->offset();
           })
1919
      .def("_share_buffer_to",
1920
           [](const std::shared_ptr<imperative::VarBase> &self,
1921 1922 1923 1924
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
1925 1926
                 src->IsInitialized(),
                 true,
1927 1928 1929
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1930
             dst_->ShareDataTypeWith(*src);
1931 1932 1933
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1934 1935 1936 1937 1938 1939 1940
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1941
           })
1942 1943 1944 1945 1946 1947
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             PADDLE_ENFORCE_EQ(
1948 1949
                 src->IsInitialized(),
                 true,
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
             auto *src = self->MutableVar()->GetMutable<framework::LoDTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<framework::LoDTensor>();
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1966 1967
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1968 1969
              int64_t begin_idx,
              int64_t end_idx) {
1970
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
1971
             PADDLE_ENFORCE_EQ(
1972 1973
                 t->IsInitialized(),
                 true,
1974 1975
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
             auto *t = self->MutableVar()->GetMutable<framework::LoDTensor>();
             return t->numel();
           })
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2009 2010
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2011 2012 2013
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2014 2015
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2016
                    &imperative::VarBase::SetPersistable)
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
            if (self.Var().IsType<framework::LoDTensor>()) {
              return phi::vectorize<int>(
                  self.Var().Get<framework::LoDTensor>().dims());
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2039 2040
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
                             R"DOC(
      Whether a Tensor is leaf Tensor.

      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor. 
      
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2069
      .def_property_readonly(
2070 2071
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2072
          py::return_value_policy::copy)
2073 2074 2075 2076 2077 2078
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2079
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2080
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2081

2082 2083 2084 2085 2086
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2087 2088 2089 2090 2091 2092 2093
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2094
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2095
      m, "Tracer", R"DOC()DOC")
2096
      .def("__init__",
J
Jiabin Yang 已提交
2097
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2098 2099 2100
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2101 2102
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2103
                    &imperative::Tracer::SetAmpLevel)
2104 2105
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2106
                    &imperative::Tracer::SetAmpDtype)
2107 2108
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2109
                    &imperative::Tracer::SetHasGrad)
2110 2111 2112 2113 2114 2115 2116 2117
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2118
              self.SetExpectedPlace(*p);
2119 2120
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2121 2122
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2123 2124 2125
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2126 2127
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2128 2129
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2130
              self.SetExpectedPlace(*p);
2131 2132
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2133 2134
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2135
              self.SetExpectedPlace(*p);
2136 2137
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2138 2139 2140 2141 2142
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
F
fwenguang 已提交
2143 2144 2145 2146 2147
            } else if (py::isinstance<platform::MLUPlace>(obj)) {
              auto p = obj.cast<platform::MLUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2148 2149 2150 2151 2152
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2153 2154 2155 2156 2157
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2158
            } else {
L
Leo Chen 已提交
2159
              PADDLE_THROW(platform::errors::InvalidArgument(
2160
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
F
fwenguang 已提交
2161
                  "CPUPlace, NPUPlace, MLUPlace"
L
Leo Chen 已提交
2162 2163
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2164 2165
            }
          })
2166 2167 2168
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2169 2170
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2171
           py::arg("key") = "dygraph_tmp")
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2188
             VLOG(5) << "AMP operators changed, "
2189 2190
                     << imperative::AmpOperators::Instance();
           })
2191 2192 2193
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2194 2195
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2196
           })
C
Chen Weihang 已提交
2197
      .def("_get_kernel_signature",
2198 2199 2200 2201
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2219 2220
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2221 2222 2223
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2224 2225
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2226 2227
             }
           })
2228
      .def("trace",
2229 2230 2231 2232 2233 2234
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2235 2236 2237 2238 2239 2240
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2241 2242 2243 2244 2245 2246 2247
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2248 2249
             }
           })
2250
      .def("trace",
2251 2252 2253 2254 2255 2256
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2257 2258
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2259 2260 2261 2262
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2263 2264 2265 2266 2267 2268 2269
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2270 2271
             }
           })
M
minqiyang 已提交
2272
      .def("trace",
2273 2274 2275 2276 2277 2278
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2279 2280
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2281 2282
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2283 2284
             {
               py::gil_scoped_release release;
2285 2286 2287 2288 2289 2290 2291
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2292
             }
M
minqiyang 已提交
2293
           })
2294
      .def("trace",
2295 2296 2297 2298 2299 2300
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::NPUPlace &place,
Z
zyfncg 已提交
2301 2302
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2303 2304 2305 2306
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2307 2308 2309 2310 2311 2312 2313
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2314 2315
             }
           })
F
fwenguang 已提交
2316
      .def("trace",
2317 2318 2319 2320 2321 2322
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::MLUPlace &place,
Z
zyfncg 已提交
2323 2324
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
F
fwenguang 已提交
2325 2326 2327 2328
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2329 2330 2331 2332 2333 2334 2335
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
F
fwenguang 已提交
2336 2337
             }
           })
J
Jiabin Yang 已提交
2338
      .def("trace",
2339 2340 2341 2342 2343 2344
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2345 2346
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2347 2348 2349 2350
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2351 2352 2353 2354 2355 2356 2357
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2358 2359
             }
           });
2360 2361

  // define parallel context
2362 2363 2364
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2365 2366
      .def_property(
          "nranks",
2367 2368
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2369 2370
            self.nranks_ = nranks;
          })
2371 2372 2373 2374 2375 2376 2377 2378
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2379 2380
      .def_property(
          "trainer_endpoints",
2381
          [](const imperative::ParallelStrategy &self) {
2382 2383
            return self.trainer_endpoints_;
          },
2384
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2385 2386
            self.trainer_endpoints_ = eps;
          })
2387 2388 2389 2390 2391 2392 2393 2394
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2395 2396 2397 2398 2399 2400
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2401

2402 2403 2404 2405
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2406
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2407
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
R
ronnywang 已提交
2408
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
F
fwenguang 已提交
2409
  m.def("varbase_copy", &VarBaseCopy<platform::MLUPlace>);
2410

2411 2412 2413 2414 2415 2416 2417
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2432 2433 2434 2435 2436
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2437 2438 2439 2440
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2441 2442
         bool retain_graph,
         const imperative::Tracer &tracer) {
2443 2444 2445 2446 2447 2448 2449 2450
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2451 2452 2453
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||          \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL) || \
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_CNCL)
2454 2455 2456 2457 2458 2459
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2460 2461 2462 2463
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2474 2475
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2476
        py::arg("tensor_indices") = std::vector<int64_t>{},
2477
        py::call_guard<py::gil_scoped_release>());
2478
#endif
2479

2480
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2481 2482
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2483 2484 2485 2486
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2487 2488 2489 2490
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2491 2492 2493
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2494 2495
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2496 2497 2498 2499
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2500 2501 2502 2503
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2504
#endif
2505 2506 2507

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2508 2509
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2510 2511 2512 2513 2514 2515 2516
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2517 2518 2519 2520
           py::arg("ring_id"));
#endif

#if defined(PADDLE_WITH_ASCEND_CL)
2521 2522
  py::class_<imperative::HCCLParallelContext,
             imperative::ParallelContext,
2523 2524 2525 2526 2527 2528 2529
             std::shared_ptr<imperative::HCCLParallelContext>>(
      m, "HCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::NPUPlace &>())
      .def("init", [](imperative::HCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::HCCLParallelContext::InitWithRingID,
2530 2531 2532
           py::arg("ring_id"));
#endif

2533
#if defined(PADDLE_WITH_CNCL)
2534 2535
  py::class_<imperative::CNCLParallelContext,
             imperative::ParallelContext,
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
             std::shared_ptr<imperative::CNCLParallelContext>>(
      m, "CNCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::MLUPlace &>())
      .def("init", [](imperative::CNCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::CNCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2546 2547
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL)
2548 2549
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2550 2551 2552 2553 2554 2555
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

2556
  m.def("pylayer_apply",
2557 2558 2559 2560
        [](const platform::CPUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2561 2562 2563 2564
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
2565 2566 2567 2568
        [](const platform::CUDAPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2569 2570 2571 2572
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
2573 2574 2575 2576
        [](const platform::XPUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2577 2578 2579 2580
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });

  m.def("pylayer_apply",
2581 2582 2583 2584
        [](const platform::CUDAPinnedPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2585 2586
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2587 2588

  m.def("pylayer_apply",
2589 2590 2591 2592
        [](const platform::NPUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
2593 2594
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
F
fwenguang 已提交
2595
  m.def("pylayer_apply",
2596 2597 2598 2599
        [](const platform::MLUPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
F
fwenguang 已提交
2600 2601
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
R
ronnywang 已提交
2602
  m.def("pylayer_apply",
2603 2604 2605 2606
        [](const platform::CustomPlace &place,
           const py::object &cls,
           const py::args args,
           const py::kwargs kwargs) {
R
ronnywang 已提交
2607 2608
          return imperative::PyLayerApply(place, cls, args, kwargs);
        });
2609

S
Siming Dai 已提交
2610
#if defined(PADDLE_WITH_CUDA)
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2632 2633
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2647 2648 2649 2650
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and 
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
        
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2679 2680 2681
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2682 2683 2684 2685
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2686
        PADDLE_ENFORCE_EQ(
2687 2688
            platform::is_gpu_place(src.Place()),
            true,
2689 2690 2691 2692
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2693 2694
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2695 2696 2697 2698 2699
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2700 2701
            platform::is_cpu_place(offset.Place()),
            true,
2702 2703 2704 2705
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2706 2707
            platform::is_cpu_place(count.Place()),
            true,
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2720 2721
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2722 2723
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2724 2725
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2726 2727
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2728 2729
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2730 2731 2732
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2733 2734
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2735 2736 2737 2738 2739
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2740 2741
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

        auto stream = paddle::platform::stream::get_current_stream(deviceId)
                          ->raw_stream();

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2758 2759
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2760 2761
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2762 2763
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2764 2765
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2766 2767 2768 2769 2770
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
          src_offset += c;
        }
      },
      R"DOC(
  This api provides a way to write pieces of source tensor to destination tensor 
  inplacely and asynchronously. In which, we use `offset` and `count` to determine 
  where to copy. `offset` means the begin points of the copy pieces of `src`, and 
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process 
  will run asynchronously from cuda to pin memory. We can simply remember this as 
  "gpu async_write to pin_memory".
  
  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPlace.

    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst` 
                  should be the same with `src` except for the first dimension. 

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional. 
    
    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal. 

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core  
          from paddle.device import cuda
          
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2827 2828 2829 2830 2831 2832 2833 2834
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2835 2836 2837 2838 2839
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2840 2841
            platform::is_gpu_place(dst.Place()),
            true,
2842 2843 2844 2845
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2846 2847
            platform::is_cpu_place(index.Place()),
            true,
2848 2849 2850 2851
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2852 2853
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2854 2855 2856 2857 2858
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2859 2860
            platform::is_cpu_place(offset.Place()),
            true,
2861 2862 2863 2864
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2865 2866
            platform::is_cpu_place(count.Place()),
            true,
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

        auto &src_tensor = src.Var().Get<framework::LoDTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &index_tensor = index.Var().Get<framework::LoDTensor>();
        auto *buffer_tensor =
            buffer.MutableVar()->GetMutable<framework::LoDTensor>();
        auto &offset_tensor = offset.Var().Get<framework::LoDTensor>();
        auto &count_tensor = count.Var().Get<framework::LoDTensor>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2881 2882
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2883 2884 2885 2886
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2887 2888
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2889 2890 2891 2892 2893
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2894 2895
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2896 2897 2898 2899
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2900 2901
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2902 2903 2904 2905
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2906 2907
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

        auto stream = paddle::platform::stream::get_current_stream(deviceId)
                          ->raw_stream();

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2919 2920
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2921 2922
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2923 2924
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2925 2926
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2927 2928
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2940 2941
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2942 2943 2944 2945 2946 2947 2948
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2949 2950
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2951 2952
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2953 2954
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2955 2956
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2957 2958 2959 2960 2961
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
2962 2963 2964
            dst_offset += c;
          }
        } else {
2965 2966
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
        auto index_select = [](const framework::Tensor &src_tensor,
                               const framework::Tensor &index_tensor,
                               framework::Tensor *buffer_tensor) {
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
2984 2985
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
2986 2987 2988 2989 2990 2991
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
2992 2993
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
2994
                        index_tensor.numel() * size * sizeof(float),
2995 2996
                        cudaMemcpyHostToDevice,
                        stream);
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
      },
      R"DOC(
  This api provides a way to read from pieces of source tensor to destination tensor 
  asynchronously. In which, we use `index`, `offset` and `count` to determine where 
  to read. `index` means the index position of src tensor we want to read. `offset` 
  and count means the begin points and length of pieces of src tensor we want to read. 
  To be noted, the copy process will run asynchronously from pin memory to cuda place. 
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
  
    src (Tensor): The source tensor, and the data type should be `float32` currently. 
                  Besides, `src` should be placed on CUDAPinnedPlace.
  
    dst (Tensor): The destination tensor, and the data type should be `float32` currently. 
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should 
                  be the same with `src` except for the first dimension.

    index (Tensor): The index tensor, and the data type should be `int64` currently. 
                    Besides, `index` should be on CPUplace. The shape of `index` should 
                    be one-dimensional.

    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily. 
                     The data type should be `float32` currently, and should be placed 
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

    offset (Tensor): The offset tensor, and the data type should be `int64` currently. 
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset` 
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently. 
                    Besides, `count` should be placed on CPUPlace. The shape of `count` 
                    should be one-dimensinal.
    
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
          
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
 
)DOC");
#endif
3056 3057 3058 3059
}

}  // namespace pybind
}  // namespace paddle