imperative.cc 131.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
22

23
#include <algorithm>
24
#include <memory>
25
#include <set>
J
Jiabin Yang 已提交
26
#include <string>
27
#include <unordered_map>
28
#include <unordered_set>
29
#include <utility>
J
Jiabin Yang 已提交
30
#include <vector>
31

J
Jiabin Yang 已提交
32
#include "paddle/fluid/eager/api/all.h"
33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/scope_guard.h"
35
#include "paddle/fluid/imperative/all_reduce.h"
36
#include "paddle/fluid/imperative/amp_auto_cast.h"
37
#include "paddle/fluid/imperative/basic_engine.h"
38
#include "paddle/fluid/imperative/bkcl_context.h"
39
#include "paddle/fluid/imperative/cncl_context.h"
40
#include "paddle/fluid/imperative/data_loader.h"
41
#include "paddle/fluid/imperative/gloo_context.h"
42
#include "paddle/fluid/imperative/hccl_context.h"
K
kuizhiqing 已提交
43
#include "paddle/fluid/imperative/heter_ccl_context.h"
44
#include "paddle/fluid/imperative/hooks.h"
45
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
46
#include "paddle/fluid/imperative/nccl_context.h"
47
#include "paddle/fluid/imperative/partial_grad_engine.h"
48
#include "paddle/fluid/imperative/profiler.h"
49
#include "paddle/fluid/imperative/reducer.h"
50
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
51
#include "paddle/fluid/imperative/type_defs.h"
52
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
53
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
54
#include "paddle/fluid/pybind/cuda_streams_py.h"
55
#include "paddle/fluid/pybind/eager_utils.h"
56
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
59
#include "paddle/fluid/pybind/uva_utils.h"
60
#include "paddle/phi/core/compat/arg_map_context.h"
61
#include "paddle/phi/core/type_defs.h"
62

63 64 65
namespace paddle {
namespace pybind {

66
std::atomic<int> VarBaseUniqueNameID{0};
67 68
PyTypeObject *g_varbase_pytype = nullptr;

69 70
namespace py = ::pybind11;

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
104 105
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
123 124 125 126 127
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
128 129 130 131 132 133
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
134 135 136 137 138
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
139 140
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
141 142
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
143 144
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
145 146
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
147 148
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
F
fwenguang 已提交
149 150
  } else if (py::isinstance<platform::MLUPlace>(place_obj)) {
    return place_obj.cast<platform::MLUPlace>();
151 152
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
153 154
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
155
        "Place should be one of "
156 157
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace/CustomPlace"));
L
Leo Chen 已提交
158 159 160
  }
}

L
Leo Chen 已提交
161
// only initialize varbase, but not its tensor.
162 163 164 165
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
166 167 168
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
169 170 171

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
172
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
173 174 175 176 177 178 179 180 181
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
182 183 184 185 186 187 188
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
189
  InitVarBaseOnly(self, name, persistable, stop_gradient);
190
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
L
Leo Chen 已提交
191
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
192
  if (platform::is_cpu_place(place)) {
193
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
194
  } else if (platform::is_xpu_place(place)) {
195
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
196
  } else if (platform::is_gpu_place(place)) {
197
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
198
  } else if (platform::is_cuda_pinned_place(place)) {
199 200
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
201
  } else if (platform::is_npu_place(place)) {
202
    SetTensorFromPyArray<platform::NPUPlace>(tensor, array, place, zero_copy);
203 204
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
F
fwenguang 已提交
205
  } else if (platform::is_mlu_place(place)) {
206
    SetTensorFromPyArray<platform::MLUPlace>(tensor, array, place, zero_copy);
207
  } else if (platform::is_custom_place(place)) {
208 209
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
210
  } else {
L
Leo Chen 已提交
211
    PADDLE_THROW(platform::errors::InvalidArgument(
212
        "Place should be one of "
213 214
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace"));
J
Jiabin Yang 已提交
215
  }
216
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
217 218 219 220
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
221
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
222 223 224 225 226 227
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
228 229 230
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
231
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
232 233 234 235 236 237 238

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
239 240
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
241 242 243
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
244
}
245

246 247
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
248 249
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
250 251
                                        bool persistable = false,
                                        bool zero_copy = false,
252 253 254 255 256
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
257
  if (name == "") {
258 259
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
260
  }
261 262
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
263
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
264
  new (self) imperative::VarBase(name);
265
  self->SetPersistable(persistable);
266
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
267 268 269
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
270 271
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
272
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
273 274 275
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
276 277
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
278
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
279
  InitVarBaseAndTensor(self, array, place, "");
280
}
281

B
Baibaifan 已提交
282
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
283
                                                const phi::DenseTensor &tensor,
B
Baibaifan 已提交
284
                                                const std::string &name) {
285 286
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
287 288 289
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
290
  new (self) imperative::VarBase(name_);
291 292
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
293
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
294
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
295 296 297 298 299 300 301 302 303 304
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

305 306
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
307
                                         const phi::DenseTensor &tensor,
B
Baibaifan 已提交
308 309
                                         const P &place,
                                         const std::string &name) {
310
  VLOG(4) << "Init VarBase";
311 312 313
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
314
  new (self) imperative::VarBase(name_);
315 316
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
317
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
318
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
319 320 321 322 323 324 325 326 327 328
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

329 330 331 332 333
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
334
  } else {
335
    return framework::ToTypeName(var.Var().Type());
336 337
  }
}
L
Leo Chen 已提交
338

J
Jiabin Yang 已提交
339 340 341 342 343 344
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
345
            .Get<phi::DenseTensor>());
J
Jiabin Yang 已提交
346 347 348 349 350 351 352
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "We should only get paddle::experimental::Tensor or VarBase in this "
        "method, when you reach this means we got another type index."));
  }
}

353
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
354 355 356 357 358 359 360 361 362 363 364 365 366

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

367
  if (PyList_Check(py_obj)) {  // List of VarBase
368 369 370
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
371 372 373
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
374 375 376
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
377
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
378 379 380
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
381 382 383
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
384 385 386
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
387 388 389
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
390 391 392 393
  }

  return result;
}
394

J
Jiabin Yang 已提交
395 396 397
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
398 399 400 401 402 403
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
404

405
  PADDLE_ENFORCE_EQ(
406 407
      PyErr_Occurred(),
      nullptr,
408
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
409 410 411
  return result;
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
429 430
      PyErr_Occurred(),
      nullptr,
431 432 433 434
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

435
template <typename P>
436 437
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
438 439
                        const P &dst_device,
                        const bool blocking) {
440 441 442 443 444 445 446 447
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
448 449 450
      if (src->Var().IsType<phi::DenseTensor>()) {
        auto &src_tensor = src->Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
451 452 453 454 455 456 457 458 459
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
460 461
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
462
        auto *dst_selected_rows =
463
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
464 465
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
466 467
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

493
// Bind Methods
J
Jiabin Yang 已提交
494
void BindImperative(py::module *m_ptr) {
495 496
  auto &m = *m_ptr;

497 498
#ifndef _WIN32
  // Dygraph DataLoader signal handler
499 500
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
501 502
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
503 504 505 506 507 508 509 510 511 512
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
513
  });
514 515
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
537 538
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
539
              platform::errors::InvalidArgument(
540
                  "Failed to convert input data to a regular ndarray.\n  * "
541 542 543 544 545
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
546
          phi::DenseTensor t;
547 548
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
549
          // 3. allocate shared memory
550
          void *data_ptr = t.data();
551
          size_t data_size = t.numel() * phi::SizeOf(t.dtype());
552 553 554 555 556 557
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
558 559 560 561 562
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
563 564 565 566 567 568 569 570
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

571 572 573 574 575 576
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
577 578
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
579
            platform::errors::InvalidArgument(
580
                "Failed to convert input data to a regular ndarray.\n  * "
581 582 583 584 585
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
586
        phi::DenseTensor t;
587 588
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
589 590
        // 3. allocate shared memory
        void *data_ptr = t.data();
591
        size_t data_size = t.numel() * phi::SizeOf(t.dtype());
592 593 594 595 596 597
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
598 599 600 601 602
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
603 604 605 606 607
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
608

609 610
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
611
      auto t = tensor_list[i].cast<phi::DenseTensor>();
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
627 628 629 630 631

  m.def("_set_max_memory_map_allocation_pool_size", [](int32_t size) {
    memory::allocation::MemoryMapAllocationPool::Instance().SetMaxPoolSize(
        size);
  });
632 633
#endif

634 635
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
636 637 638 639
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
640 641
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
642 643 644
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
645 646
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
647
          egr::Controller::Instance().SetCurrentTracer(tracer);
648
          imperative::SetCurrentTracer(tracer);
649
        });
650 651 652 653
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
654 655 656 657 658 659 660
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
661
      .def("__init__",
662 663
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
664
              const std::vector<int64_t> &dims,
665 666 667
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
668
             VLOG(4) << "Init VarBase";
669 670 671
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
672
                   "generated_tensor");
673 674 675 676
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
677 678 679 680
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
681
               auto *tensor = self.MutableVar()->GetMutable<phi::DenseTensor>();
682
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
683 684
             }
           })
685 686 687 688 689 690 691
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
692
           py::arg("stop_gradient") = -1)
693 694 695 696 697 698 699
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
700
           py::arg("stop_gradient") = -1)
701 702 703 704 705 706 707
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
708
           py::arg("stop_gradient") = -1)
709 710 711 712 713 714 715
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
716
           py::arg("stop_gradient") = -1)
717 718 719 720 721 722 723
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
724
           py::arg("stop_gradient") = -1)
725 726 727 728 729 730 731
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::MLUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
F
fwenguang 已提交
732
           py::arg("stop_gradient") = -1)
733 734 735 736 737 738 739
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
740
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
741
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::MLUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
780
           py::arg("name") = "")
781
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
782 783
      .def(
          "__setitem_varbase__",
784 785
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
786 787 788 789
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
790
                self->MutableVar()->GetMutable<phi::DenseTensor>();
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

815 816 817 818 819
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
843 844 845 846 847 848 849 850 851 852
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
869 870
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
871 872 873 874 875 876
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

877
              if (py::isinstance<imperative::VarBase>(value_obj.ptr())) {
878 879 880
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
881 882 883 884 885 886

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
887 888 889 890 891 892 893
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
894
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
895 896 897 898
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
899
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
900 901 902 903
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
904 905
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
906 907 908 909
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
910 911
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
912 913 914 915
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
916
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
917 918 919 920 921 922 923 924 925
                  }
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
                      "float32, int32 or int64, "
                      "please check the type of tensor."));
                }

926 927 928 929 930
                SetTensorFromPyArray(
                    value_tensor->MutableVar()->GetMutable<phi::DenseTensor>(),
                    value,
                    self->Place(),
                    false);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
                    py::isinstance<py::bool_>(value_obj)) {
                  if (self->DataType() == framework::proto::VarType::FP32) {
                    attrs["fp32_values"] =
                        std::vector<float>{value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
                    attrs["fp64_values"] =
                        std::vector<double>{value_obj.cast<double>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
                    attrs["int32_values"] =
                        std::vector<int32_t>{value_obj.cast<int32_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
                    attrs["int64_values"] =
                        std::vector<int64_t>{value_obj.cast<int64_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
                    attrs["bool_values"] =
                        std::vector<int>{value_obj.cast<bool>()};
957 958 959 960
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP16) {
                    attrs["fp16_values"] =
                        std::vector<float>{value_obj.cast<float>()};
961 962 963 964
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
965
                        "float32, int32, int64 or float16, "
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
982 983 984 985
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
986 987 988 989 990 991 992 993 994 995
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
996
                    index_var->MutableVar()->GetMutable<phi::DenseTensor>();
997 998 999 1000 1001 1002
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
1003 1004
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1005 1006
            }
          })
1007
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1008
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1009
             VLOG(4) << "Call _getitem_index_not_tensor";
1010
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1011 1012 1013 1014
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
1015
             auto tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1027 1028 1029
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1030

Z
zyfncg 已提交
1031
             auto out = slice_axes.empty() && !list_select_flag
1032 1033 1034 1035
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1036

1037
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1038
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
             if (!none_axes.empty()) {
               // Deal with cases when all axes are decreased.
               // After slice, the shape of out is [1], which should have been
               // [], but Paddle doesn't support scalar.
               // In order to ensure the correctness of the final shape of out,
               // one dimension of out needs to be decreased.
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 1, 1, None] # out.shape : (1)
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 none_axes.pop_back();
               }
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1099 1100 1101 1102
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
1103 1104
               auto *idx_tensor =
                   select_index->MutableVar()->GetMutable<phi::DenseTensor>();
Z
zyfncg 已提交
1105 1106
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1107 1108
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1109 1110 1111 1112 1113 1114 1115

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1116
             return out;
1117
           })
1118 1119 1120
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
1121
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1122
            PADDLE_ENFORCE_EQ(
1123 1124
                tensor.IsInitialized(),
                true,
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1143 1144
                  numel,
                  1,
1145 1146 1147 1148 1149 1150
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1151 1152
                  offset,
                  numel,
1153 1154 1155
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1156 1157
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1158 1159 1160 1161 1162 1163
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1164 1165
                    index,
                    dims[i],
1166 1167
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1168 1169 1170
                        index,
                        i,
                        dims[i]));
1171 1172 1173 1174
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1175
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1176 1177
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1178 1179
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1180 1181 1182 1183 1184
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1185
                "Unsupported tensor data type: %s", tensor.dtype()));
1186 1187
          },
          py::return_value_policy::copy)
1188 1189 1190 1191
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1192 1193
                 var->IsInitialized(),
                 true,
1194 1195 1196 1197 1198
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1199 1200 1201 1202 1203 1204 1205 1206
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1207 1208 1209 1210 1211
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1212 1213
      .def(
          "numpy",
1214

1215
          [](imperative::VarBase &self) -> py::array {
1216
            const auto &tensor = self.MutableVar()->Get<phi::DenseTensor>();
1217
            PADDLE_ENFORCE_EQ(
1218 1219
                tensor.IsInitialized(),
                true,
1220 1221 1222 1223 1224 1225
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1226
        Returns a numpy array shows the value of current Tensor.
1227

1228
        Returns:
Z
Zhou Wei 已提交
1229
            ndarray: The numpy value of current Tensor.
1230 1231

        Returns type:
Z
Zhou Wei 已提交
1232
            ndarray: dtype is same as current Tensor
1233 1234 1235 1236

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1237
                import paddle
1238 1239
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1240 1241 1242 1243
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1244
       )DOC")
1245 1246 1247 1248 1249
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1250 1251
                self.Var().IsInitialized(),
                true,
1252 1253
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1254

1255
            PADDLE_ENFORCE_EQ(
1256
                self.Var().IsType<phi::DenseTensor>() ||
1257 1258 1259 1260 1261
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1262

1263 1264
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1265

1266 1267 1268
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1269

1270 1271
            if (self.Var().IsType<phi::DenseTensor>()) {
              const auto &origin_tensor = self.Var().Get<phi::DenseTensor>();
1272
              PADDLE_ENFORCE_EQ(
1273 1274
                  origin_tensor.IsInitialized(),
                  true,
1275 1276 1277 1278
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
1279
                  detach_var->MutableVar()->GetMutable<phi::DenseTensor>();
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1290 1291
                  origin_selected_rows.value().IsInitialized(),
                  true,
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1309 1310
          py::return_value_policy::take_ownership,
          R"DOC(
1311

1312
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1313 1314
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1315

1316
        Returns: The detached Tensor.
1317 1318 1319 1320

        Examples:
            .. code-block:: python

1321
                import paddle
Z
Zhou Wei 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
1343
                y.backward()
Z
Zhou Wei 已提交
1344 1345
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
1346

1347
       )DOC")
1348 1349 1350 1351
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1352

1353
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1354

1355
        The Gradient of current Tensor will be set to ``0`` .
1356 1357 1358 1359 1360 1361

        Returns:  None

        Examples:
             .. code-block:: python

1362
                import paddle
Z
Zhou Wei 已提交
1363 1364 1365 1366 1367 1368 1369
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1370
      )DOC")
1371 1372
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1373 1374
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1375 1376 1377
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
1378
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1379 1380
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1392 1393
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1425
      .def("_grad_name", &imperative::VarBase::GradVarName)
1426 1427 1428
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
1429
            return self.MutableGradVar()->Get<phi::DenseTensor>();
1430 1431
          },
          py::return_value_policy::reference)
1432 1433 1434 1435
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1436
      .def("_reset_grad_inplace_version",
1437
           [](imperative::VarBase &self, bool set_to_zero) {
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1449 1450
             py::gil_scoped_release release;

1451 1452 1453
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1454 1455 1456
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1457 1458
             }
           })
1459 1460 1461 1462 1463 1464 1465
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
1466 1467
                  grad_var->MutableVar()->IsType<phi::DenseTensor>()
                      ? grad_var->MutableVar()->GetMutable<phi::DenseTensor>()
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1479 1480 1481 1482
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1483 1484
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1485
             return self.Var().IsType<phi::SelectedRows>();
1486
           })
1487 1488 1489 1490 1491
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1492
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1493
#if NCCL_VERSION_CODE >= 2212
1494
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1495
#else
1496
               if (!self.Var().IsType<phi::SelectedRows>()) {
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1510
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1511 1512 1513
            }
          },
          py::call_guard<py::gil_scoped_release>())
1514 1515 1516
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1517 1518
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1519
                 platform::errors::InvalidArgument(
1520 1521 1522
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1523 1524 1525 1526 1527
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1528 1529
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1530
                 platform::errors::InvalidArgument(
1531 1532 1533
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1534
           })
1535 1536 1537
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1538 1539
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1551 1552 1553 1554
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1555 1556
                self.IsLeaf(),
                true,
1557 1558 1559
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1560 1561
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1562 1563 1564 1565 1566 1567 1568 1569
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
1612

1613 1614 1615 1616
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1617 1618 1619
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1620
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1621 1622 1623 1624
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1625
#endif
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1651 1652 1653
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1654 1655
             py::handle &handle,
             bool blocking) {
1656
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1657 1658 1659
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1660
#else
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1695
#endif
1696
          },
1697 1698 1699
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1700 1701
        Returns a copy of this Tensor in GPU memory.

1702
        If this Tensor is already in GPU memory and device_id is default,
1703
        then no copy is performed and the original Tensor is returned.
1704

1705
        Args:
1706
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1707
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be
1708 1709 1710 1711 1712
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1713
              # required: gpu
1714 1715
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1716
              print(x.place)        # Place(cpu)
1717 1718

              y = x.cuda()
1719
              print(y.place)        # Place(gpu:0)
1720

1721
              y = x.cuda(None)
1722
              print(y.place)        # Place(gpu:0)
1723

1724 1725 1726
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1727
       )DOC")
1728 1729 1730
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1731
#ifndef _WIN32
1732
            PADDLE_ENFORCE_EQ(
1733 1734
                platform::is_cpu_place(self->Place()),
                true,
1735 1736 1737
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
1738
            auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1751 1752 1753 1754 1755
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1756 1757
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1758 1759 1760 1761
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1762 1763
          },
          py::return_value_policy::reference)
1764
#if defined(PADDLE_WITH_CUDA)
1765 1766 1767
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1768 1769
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1770 1771 1772 1773
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
1774
                self->MutableVar()->GetMutable<phi::DenseTensor>();
1775 1776
            tensor_uva(self_tensor, device_id);
          },
1777 1778 1779
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1795
      .def("copy_", &imperative::VarBase::CopyFrom)
1796 1797 1798
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1799 1800
             const platform::CPUPlace &place,
             bool blocking) {
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1819 1820
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1831 1832
             const platform::XPUPlace &place,
             bool blocking) {
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1843 1844
             const platform::CUDAPlace &place,
             bool blocking) {
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1855 1856
             const platform::NPUPlace &place,
             bool blocking) {
1857 1858 1859 1860 1861 1862 1863
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1876 1877 1878
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1879 1880
             const platform::MLUPlace &place,
             bool blocking) {
1881 1882 1883 1884 1885 1886 1887
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1888 1889 1890
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1891 1892
             const platform::CustomPlace &place,
             bool blocking) {
1893 1894 1895 1896 1897 1898 1899
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1900 1901 1902
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1903 1904
             const platform::Place &place,
             bool blocking) {
1905 1906 1907 1908 1909 1910 1911 1912
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1913 1914
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1915
          py::return_value_policy::reference)
1916 1917
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1918
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1919
             PADDLE_ENFORCE_EQ(
1920 1921
                 t->IsInitialized(),
                 true,
1922 1923
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1924 1925 1926 1927
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1928
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1929
             PADDLE_ENFORCE_EQ(
1930 1931
                 t->IsInitialized(),
                 true,
1932 1933
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1934 1935
             return t->offset();
           })
1936
      .def("_share_buffer_to",
1937
           [](const std::shared_ptr<imperative::VarBase> &self,
1938
              std::shared_ptr<imperative::VarBase> &dst) {
1939 1940
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1941
             PADDLE_ENFORCE_EQ(
1942 1943
                 src->IsInitialized(),
                 true,
1944 1945 1946
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1947
             dst_->ShareDataTypeWith(*src);
1948 1949 1950
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1951
              std::shared_ptr<imperative::VarBase> &dst) {
1952 1953
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1954 1955 1956 1957
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1958
           })
1959 1960 1961
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1962 1963
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1964
             PADDLE_ENFORCE_EQ(
1965 1966
                 src->IsInitialized(),
                 true,
1967 1968 1969 1970 1971 1972 1973 1974 1975
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1976 1977
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1978 1979 1980 1981 1982
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1983 1984
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1985 1986
              int64_t begin_idx,
              int64_t end_idx) {
1987
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1988
             PADDLE_ENFORCE_EQ(
1989 1990
                 t->IsInitialized(),
                 true,
1991 1992
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1993 1994 1995 1996 1997 1998 1999
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
2000
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
2001 2002
             return t->numel();
           })
2003 2004
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
2005

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2026 2027
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2028 2029 2030
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2031 2032
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2033
                    &imperative::VarBase::SetPersistable)
2034 2035 2036
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
2037
            if (self.Var().IsType<phi::DenseTensor>()) {
2038
              auto value = phi::vectorize<int>(
2039 2040
                  self.Var().Get<phi::DenseTensor>().dims());
              auto tensor = self.Var().Get<phi::DenseTensor>();
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

2057 2058
              if (change_dim &&
                  phi::DataLayoutToString(desired_layout) == "NCHW") {
2059 2060 2061 2062 2063 2064 2065 2066 2067
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
2068 2069
              } else if (change_dim &&
                         phi::DataLayoutToString(desired_layout) == "NHWC") {
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2097 2098 2099
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
2100 2101
            if (self.Var().IsType<phi::DenseTensor>()) {
              auto layout = self.Var().Get<phi::DenseTensor>().layout();
2102
              return phi::DataLayoutToString(layout);
2103 2104 2105
            }
            return std::string("");
          })
2106 2107
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2108 2109 2110
                             R"DOC(
      Whether a Tensor is leaf Tensor.

2111 2112
      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor.

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2136
      .def_property_readonly(
2137 2138
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2139
          py::return_value_policy::copy)
2140 2141 2142 2143 2144 2145
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2146
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2147
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2148

2149 2150 2151 2152 2153
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2154 2155 2156 2157 2158 2159 2160
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2161
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2162
      m, "Tracer", R"DOC()DOC")
2163
      .def("__init__",
J
Jiabin Yang 已提交
2164
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2165 2166 2167
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2168 2169
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2170
                    &imperative::Tracer::SetAmpLevel)
2171 2172
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2173
                    &imperative::Tracer::SetAmpDtype)
2174 2175
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2176
                    &imperative::Tracer::SetHasGrad)
2177 2178 2179 2180 2181 2182 2183 2184
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2185
              self.SetExpectedPlace(*p);
2186 2187
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2188 2189
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2190 2191 2192
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2193 2194
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2195 2196
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2197
              self.SetExpectedPlace(*p);
2198 2199
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2200 2201
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2202
              self.SetExpectedPlace(*p);
2203 2204
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2205 2206 2207 2208 2209
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2210 2211 2212 2213 2214
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
F
fwenguang 已提交
2215 2216 2217 2218 2219
            } else if (py::isinstance<platform::MLUPlace>(obj)) {
              auto p = obj.cast<platform::MLUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2220 2221 2222 2223 2224
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2225 2226 2227 2228 2229
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2230
            } else {
L
Leo Chen 已提交
2231
              PADDLE_THROW(platform::errors::InvalidArgument(
2232
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
2233
                  "CPUPlace, NPUPlace, IPUPlace, MLUPlace"
L
Leo Chen 已提交
2234 2235
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2236 2237
            }
          })
2238 2239 2240
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2241 2242
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2243
           py::arg("key") = "dygraph_tmp")
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2260
             VLOG(5) << "AMP operators changed, "
2261 2262
                     << imperative::AmpOperators::Instance();
           })
2263 2264 2265
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2266 2267
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2268
           })
C
Chen Weihang 已提交
2269
      .def("_get_kernel_signature",
2270 2271 2272 2273
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2291 2292
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2293 2294 2295
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2296 2297
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2298 2299
             }
           })
2300
      .def("trace",
2301 2302 2303 2304 2305 2306
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2307 2308 2309 2310 2311 2312
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2313 2314 2315 2316 2317 2318 2319
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2320 2321
             }
           })
2322
      .def("trace",
2323 2324 2325 2326 2327 2328
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2329 2330
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2331 2332 2333 2334
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2335 2336 2337 2338 2339 2340 2341
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2342 2343
             }
           })
M
minqiyang 已提交
2344
      .def("trace",
2345 2346 2347 2348 2349 2350
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2351 2352
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2353 2354
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2355 2356
             {
               py::gil_scoped_release release;
2357 2358 2359 2360 2361 2362 2363
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2364
             }
M
minqiyang 已提交
2365
           })
2366
      .def("trace",
2367 2368 2369 2370 2371 2372
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::NPUPlace &place,
Z
zyfncg 已提交
2373 2374
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2375
             auto ins_map = ConvertToNameVarBaseMap(ins);
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
             }
           })
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2398 2399 2400
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2401 2402 2403 2404 2405 2406 2407
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2408 2409
             }
           })
F
fwenguang 已提交
2410
      .def("trace",
2411 2412 2413 2414 2415 2416
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::MLUPlace &place,
Z
zyfncg 已提交
2417 2418
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
F
fwenguang 已提交
2419 2420 2421 2422
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2423 2424 2425 2426 2427 2428 2429
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
F
fwenguang 已提交
2430 2431
             }
           })
J
Jiabin Yang 已提交
2432
      .def("trace",
2433 2434 2435 2436 2437 2438
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2439 2440
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2441 2442 2443 2444
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2445 2446 2447 2448 2449 2450 2451
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2452 2453
             }
           });
2454 2455

  // define parallel context
2456 2457 2458
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2459 2460
      .def_property(
          "nranks",
2461 2462
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2463 2464
            self.nranks_ = nranks;
          })
2465 2466 2467 2468 2469 2470 2471 2472
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2473 2474
      .def_property(
          "trainer_endpoints",
2475
          [](const imperative::ParallelStrategy &self) {
2476 2477
            return self.trainer_endpoints_;
          },
2478
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2479 2480
            self.trainer_endpoints_ = eps;
          })
2481 2482 2483 2484 2485 2486 2487 2488
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2489 2490 2491 2492 2493 2494
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2495

2496 2497 2498 2499
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2500
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2501
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
R
ronnywang 已提交
2502
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
F
fwenguang 已提交
2503
  m.def("varbase_copy", &VarBaseCopy<platform::MLUPlace>);
2504

2505 2506 2507 2508 2509 2510 2511
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2526 2527 2528 2529 2530
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2531 2532 2533 2534
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2535 2536
         bool retain_graph,
         const imperative::Tracer &tracer) {
2537 2538 2539 2540 2541 2542 2543 2544
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

2545 2546 2547
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) ||          \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL) || \
    defined(PADDLE_WITH_GLOO) || defined(PADDLE_WITH_CNCL)
2548 2549 2550 2551 2552 2553
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2554 2555 2556 2557
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2568 2569
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2570
        py::arg("tensor_indices") = std::vector<int64_t>{},
2571
        py::call_guard<py::gil_scoped_release>());
2572
#endif
2573

2574
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2575 2576
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2577 2578 2579 2580
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2581 2582 2583 2584
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2585 2586 2587
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2588 2589
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2590 2591 2592 2593
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2594 2595 2596 2597
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2598
#endif
2599 2600 2601

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2602 2603
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2604 2605 2606 2607 2608 2609 2610
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2611 2612 2613 2614
           py::arg("ring_id"));
#endif

#if defined(PADDLE_WITH_ASCEND_CL)
2615 2616
  py::class_<imperative::HCCLParallelContext,
             imperative::ParallelContext,
2617 2618 2619 2620 2621 2622 2623
             std::shared_ptr<imperative::HCCLParallelContext>>(
      m, "HCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::NPUPlace &>())
      .def("init", [](imperative::HCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::HCCLParallelContext::InitWithRingID,
2624 2625 2626
           py::arg("ring_id"));
#endif

2627
#if defined(PADDLE_WITH_CNCL)
2628 2629
  py::class_<imperative::CNCLParallelContext,
             imperative::ParallelContext,
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
             std::shared_ptr<imperative::CNCLParallelContext>>(
      m, "CNCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::MLUPlace &>())
      .def("init", [](imperative::CNCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::CNCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2640 2641
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_ASCEND_CL)
2642 2643
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2644 2645 2646 2647 2648 2649
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

S
Siming Dai 已提交
2650
#if defined(PADDLE_WITH_CUDA)
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2672 2673
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2687 2688 2689 2690
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

2702
      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and
S
Siming Dai 已提交
2703 2704 2705 2706 2707 2708 2709 2710
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
2711

S
Siming Dai 已提交
2712 2713 2714 2715 2716 2717 2718
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2719 2720 2721
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2722 2723 2724 2725
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2726
        PADDLE_ENFORCE_EQ(
2727 2728
            platform::is_gpu_place(src.Place()),
            true,
2729 2730 2731 2732
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2733 2734
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2735 2736 2737 2738 2739
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2740 2741
            platform::is_cpu_place(offset.Place()),
            true,
2742 2743 2744 2745
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2746 2747
            platform::is_cpu_place(count.Place()),
            true,
2748 2749 2750 2751 2752 2753
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
2754 2755 2756 2757
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2758 2759
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2760 2761
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2762 2763
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2764 2765
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2766 2767
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2768 2769
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2770 2771 2772
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2773 2774
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2775 2776 2777 2778 2779
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2780 2781
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2782 2783 2784 2785 2786
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2787 2788
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2789 2790 2791 2792 2793 2794 2795 2796 2797

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2798 2799
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2800 2801
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2802 2803
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2804 2805
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2806 2807 2808 2809 2810
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2811 2812 2813 2814
          src_offset += c;
        }
      },
      R"DOC(
2815 2816 2817 2818 2819
  This api provides a way to write pieces of source tensor to destination tensor
  inplacely and asynchronously. In which, we use `offset` and `count` to determine
  where to copy. `offset` means the begin points of the copy pieces of `src`, and
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process
  will run asynchronously from cuda to pin memory. We can simply remember this as
2820
  "gpu async_write to pin_memory".
2821

2822
  Arguments:
2823 2824

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2825 2826
                  Besides, `src` should be placed on CUDAPlace.

2827 2828 2829
    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst`
                  should be the same with `src` except for the first dimension.
2830

2831 2832 2833 2834 2835 2836 2837
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
                    should be one-dimensinal.
2838 2839 2840 2841 2842 2843

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
2844
          from paddle.fluid import core
2845
          from paddle.device import cuda
2846

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2867 2868 2869 2870 2871 2872 2873 2874
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2875 2876 2877 2878 2879
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2880 2881
            platform::is_gpu_place(dst.Place()),
            true,
2882 2883 2884 2885
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2886 2887
            platform::is_cpu_place(index.Place()),
            true,
2888 2889 2890 2891
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2892 2893
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2894 2895 2896 2897 2898
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2899 2900
            platform::is_cpu_place(offset.Place()),
            true,
2901 2902 2903 2904
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2905 2906
            platform::is_cpu_place(count.Place()),
            true,
2907 2908 2909 2910
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

2911 2912 2913
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &index_tensor = index.Var().Get<phi::DenseTensor>();
2914
        auto *buffer_tensor =
2915 2916 2917
            buffer.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2918 2919 2920
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2921 2922
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2923 2924 2925 2926
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2927 2928
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2929 2930 2931 2932 2933
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2934 2935
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2936 2937 2938 2939
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2940 2941
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2942 2943 2944 2945
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2946 2947
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2948 2949 2950
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
2951 2952
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2953 2954 2955 2956 2957 2958

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2959 2960
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2961 2962
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2963 2964
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2965 2966
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2967 2968
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2980 2981
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2982 2983 2984 2985 2986 2987 2988
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2989 2990
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2991 2992
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2993 2994
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2995 2996
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2997 2998 2999 3000 3001
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
3002 3003 3004
            dst_offset += c;
          }
        } else {
3005 3006
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
3007 3008 3009 3010 3011
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
3012 3013 3014
        auto index_select = [](const phi::DenseTensor &src_tensor,
                               const phi::DenseTensor &index_tensor,
                               phi::DenseTensor *buffer_tensor) {
3015 3016 3017 3018 3019 3020 3021 3022 3023
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
3024 3025
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
3026 3027 3028 3029 3030 3031
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
3032 3033
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
3034
                        index_tensor.numel() * size * sizeof(float),
3035 3036
                        cudaMemcpyHostToDevice,
                        stream);
3037 3038
      },
      R"DOC(
3039 3040 3041 3042 3043
  This api provides a way to read from pieces of source tensor to destination tensor
  asynchronously. In which, we use `index`, `offset` and `count` to determine where
  to read. `index` means the index position of src tensor we want to read. `offset`
  and count means the begin points and length of pieces of src tensor we want to read.
  To be noted, the copy process will run asynchronously from pin memory to cuda place.
3044 3045 3046
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
3047 3048

    src (Tensor): The source tensor, and the data type should be `float32` currently.
3049
                  Besides, `src` should be placed on CUDAPinnedPlace.
3050 3051 3052

    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should
3053 3054
                  be the same with `src` except for the first dimension.

3055 3056
    index (Tensor): The index tensor, and the data type should be `int64` currently.
                    Besides, `index` should be on CPUplace. The shape of `index` should
3057 3058
                    be one-dimensional.

3059 3060
    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily.
                     The data type should be `float32` currently, and should be placed
3061 3062
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

3063 3064
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
3065 3066
                     should be one-dimensional.

3067 3068
    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
3069
                    should be one-dimensinal.
3070

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
3089

3090 3091 3092
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
3093

3094 3095
)DOC");
#endif
3096 3097 3098 3099
}

}  // namespace pybind
}  // namespace paddle