Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
80cf3c3c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
80cf3c3c
编写于
4月 21, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
4月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine DataLoader support multi-processing (#23107)
* add DataLoader, Dataset, BatchSampler
上级
76d78c63
变更
21
展开全部
隐藏空白更改
内联
并排
Showing
21 changed file
with
1958 addition
and
190 deletion
+1958
-190
paddle/fluid/imperative/data_loader.cc
paddle/fluid/imperative/data_loader.cc
+75
-51
paddle/fluid/imperative/data_loader.h
paddle/fluid/imperative/data_loader.h
+3
-2
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+16
-4
python/paddle/distributed/utils.py
python/paddle/distributed/utils.py
+3
-1
python/paddle/fluid/core.py
python/paddle/fluid/core.py
+4
-4
python/paddle/fluid/dataloader/__init__.py
python/paddle/fluid/dataloader/__init__.py
+24
-0
python/paddle/fluid/dataloader/batch_sampler.py
python/paddle/fluid/dataloader/batch_sampler.py
+143
-0
python/paddle/fluid/dataloader/dataloader_iter.py
python/paddle/fluid/dataloader/dataloader_iter.py
+528
-0
python/paddle/fluid/dataloader/dataset.py
python/paddle/fluid/dataloader/dataset.py
+73
-0
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+2
-0
python/paddle/fluid/multiprocess_utils.py
python/paddle/fluid/multiprocess_utils.py
+139
-0
python/paddle/fluid/reader.py
python/paddle/fluid/reader.py
+268
-108
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+4
-0
python/paddle/fluid/tests/unittests/test_batch_sampler.py
python/paddle/fluid/tests/unittests/test_batch_sampler.py
+120
-0
python/paddle/fluid/tests/unittests/test_dataloader_dataset.py
...n/paddle/fluid/tests/unittests/test_dataloader_dataset.py
+41
-0
python/paddle/fluid/tests/unittests/test_imperative_data_loader_fds_clear.py
.../tests/unittests/test_imperative_data_loader_fds_clear.py
+29
-0
python/paddle/fluid/tests/unittests/test_imperative_signal_handler.py
...e/fluid/tests/unittests/test_imperative_signal_handler.py
+1
-1
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_base.py
...luid/tests/unittests/test_multiprocess_dataloader_base.py
+260
-0
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_exception.py
...tests/unittests/test_multiprocess_dataloader_exception.py
+199
-0
python/paddle/io/__init__.py
python/paddle/io/__init__.py
+24
-19
python/setup.py.in
python/setup.py.in
+2
-0
未找到文件。
paddle/fluid/imperative/data_loader.cc
浏览文件 @
80cf3c3c
...
...
@@ -22,21 +22,23 @@
#include <atomic>
#include <csignal>
#include <map>
#include <set>
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
imperative
{
static
std
::
map
<
int64_t
,
pid_t
>
load_process_pids
;
static
std
::
map
<
int64_t
,
std
::
set
<
pid_t
>
>
load_process_pids
;
void
SetLoadProcessPID
(
int64_t
key
,
pid_t
pid
)
{
VLOG
(
3
)
<<
"D
ygraph Data
Loader: set loader child process PID ("
<<
key
<<
",
"
<<
pid
<<
")"
;
load_process_pids
[
key
]
=
pid
;
void
SetLoadProcessPID
s
(
int64_t
key
,
std
::
set
<
pid_t
>
pids
)
{
VLOG
(
3
)
<<
"D
ata
Loader: set loader child process PID ("
<<
key
<<
",
pid number: "
<<
pids
.
size
()
<<
")"
;
load_process_pids
[
key
]
=
pid
s
;
}
void
EraseLoadProcessPID
(
int64_t
key
)
{
void
EraseLoadProcessPID
s
(
int64_t
key
)
{
auto
it
=
load_process_pids
.
find
(
key
);
// Note: Can not find key also possible
if
(
it
!=
load_process_pids
.
end
())
{
...
...
@@ -54,17 +56,21 @@ void EraseLoadProcessPID(int64_t key) {
// siginfo_t doc: https://www.mkssoftware.com/docs/man5/siginfo_t.5.asp
// waitid doc: https://linux.die.net/man/2/waitid
#define SIGNAL_HANDLE(SIGNAL) \
do { \
struct sigaction sa; \
sa.sa_handler = SIG_DFL; \
sa.sa_flags = 0; \
if (sigemptyset(&sa.sa_mask) != 0 || \
sigaction(SIGNAL, &sa, nullptr) != 0) { \
_exit(EXIT_FAILURE); \
} else { \
raise(SIGNAL); \
} \
// clear mmap fds on signal handler, make sure mmap clear will be called
// on signal handling and no need to register mmap clear up handler on
// python side. If shared memory is not used Clear() will do nothing.
#define SIGNAL_HANDLE(SIGNAL) \
do { \
memory::allocation::MemoryMapFdSet::Instance().Clear(); \
struct sigaction sa; \
sa.sa_handler = SIG_DFL; \
sa.sa_flags = 0; \
if (sigemptyset(&sa.sa_mask) != 0 || \
sigaction(SIGNAL, &sa, nullptr) != 0) { \
_exit(EXIT_FAILURE); \
} else { \
raise(SIGNAL); \
} \
} while (0)
#define REGISTER_SIGNAL_HANDLER(SIGNAL, HANDLER_NAME) \
...
...
@@ -106,44 +112,62 @@ void SetLoadProcessSignalHandler() {
void
ThrowErrorIfLoadProcessFailed
()
{
int
error
;
std
::
set
<
pid_t
>
*
pids_set
;
pid_t
process_pid
;
siginfo_t
infop
;
for
(
auto
&
w
:
load_process_pids
)
{
process_pid
=
w
.
second
;
// Use waitid rather than waitpid so that we can set NOWAIT, and that Python
// and other handlers can get whatever info they want about the child.
infop
.
si_pid
=
0
;
VLOG
(
3
)
<<
"Dygraph Data Loader: monitor loader child process "
<<
process_pid
;
error
=
waitid
(
P_PID
,
process_pid
,
&
infop
,
WEXITED
|
WNOHANG
|
WNOWAIT
);
// ignore errors and case with no waitable child
if
(
error
<
0
||
infop
.
si_pid
==
0
)
continue
;
if
(
infop
.
si_code
==
CLD_EXITED
&&
infop
.
si_status
!=
EXIT_SUCCESS
)
{
// exit with error
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"DataLoader process (pid %ld) exited unexpectedly with code %d. "
"Error detailed are lost due to multiprocessing. Rerunning with "
"DataLoader.from_generator(..., use_multiprocess=False) may give "
"better error trace."
,
process_pid
,
infop
.
si_status
));
}
else
if
(
infop
.
si_code
==
CLD_KILLED
||
infop
.
si_code
==
CLD_DUMPED
)
{
// killed by signal
if
(
infop
.
si_status
==
SIGBUS
)
{
for
(
auto
&
p
:
load_process_pids
)
{
pids_set
=
&
(
p
.
second
);
for
(
auto
pid_it
=
pids_set
->
begin
();
pid_it
!=
pids_set
->
end
();
++
pid_it
)
{
process_pid
=
*
pid_it
;
// Use waitid rather than waitpid so that we can set NOWAIT, and that
// Python and other handlers can get whatever info they want about the
// child.
infop
.
si_pid
=
0
;
VLOG
(
3
)
<<
"DataLoader: monitor loader child process "
<<
process_pid
;
error
=
waitid
(
P_PID
,
process_pid
,
&
infop
,
WEXITED
|
WNOHANG
|
WNOWAIT
);
// ignore errors and case with no waitable child
if
(
error
<
0
||
infop
.
si_pid
==
0
)
continue
;
if
(
infop
.
si_code
==
CLD_EXITED
&&
infop
.
si_status
!=
EXIT_SUCCESS
)
{
// exit with error
pids_set
->
clear
();
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"DataLoader process (pid %ld) exited is killed by signal: %s.
\n
"
" It may be caused by insufficient shared storage space. This "
"problem usually occurs when using docker as a development "
"environment.
\n
Please use command `df -h` to check the storage "
"space of `/dev/shm`. Shared storage space needs to be greater "
"than (DataLoader Num * DataLoader queue capacity * 1 batch data "
"size).
\n
You can solve this problem by increasing the shared "
"storage space or reducing the queue capacity appropriately."
,
process_pid
,
strsignal
(
infop
.
si_status
)));
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"DataLoader process (pid %ld) exited is killed by signal: %s."
,
process_pid
,
strsignal
(
infop
.
si_status
)));
"DataLoader process (pid %ld) exited unexpectedly with code %d. "
"Error detailed are lost due to multiprocessing. Rerunning with:
\n
"
" 1. If run DataLoader by DataLoader.from_generator(...), run "
"with "
"DataLoader.from_generator(..., use_multiprocess=False) may give "
"better error trace.
\n
"
" 2. If run DataLoader by DataLoader(dataset, ...), run with "
"DataLoader(dataset, ..., num_workers=0) may give better error "
"trace"
,
process_pid
,
infop
.
si_status
));
}
else
if
(
infop
.
si_code
==
CLD_KILLED
||
infop
.
si_code
==
CLD_DUMPED
)
{
// killed by signal
if
(
infop
.
si_status
==
SIGBUS
)
{
pids_set
->
clear
();
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"DataLoader process (pid %ld) exited is killed by signal: %s.
\n
"
" It may be caused by insufficient shared storage space. This "
"problem usually occurs when using docker as a development "
"environment.
\n
Please use command `df -h` to check the storage "
"space of `/dev/shm`. Shared storage space needs to be greater "
"than (DataLoader Num * DataLoader queue capacity * 1 batch data "
"size).
\n
You can solve this problem by increasing the shared "
"storage space or reducing the queue capacity appropriately.
\n
"
,
" 1. If run DataLoader by DataLoader.from_generator(...), queue "
"capacity is set by from_generator(..., capacity=xx, ...).
\n
"
" 2. If run DataLoader by DataLoader(dataset, ...), queue "
"capacity is set as 2 times of the max value of num_workers and "
"len(places).
\n
"
" 3. If run by DataLoader(dataset, ..., use_shared_memory=True),"
" set use_shared_memory=False for not using shared memory."
,
process_pid
,
strsignal
(
infop
.
si_status
)));
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"DataLoader process (pid %ld) exited is killed by signal: %s."
,
process_pid
,
strsignal
(
infop
.
si_status
)));
}
}
}
}
...
...
paddle/fluid/imperative/data_loader.h
浏览文件 @
80cf3c3c
...
...
@@ -18,12 +18,13 @@
#include <unistd.h>
#include <cstdint>
#include <set>
namespace
paddle
{
namespace
imperative
{
extern
void
SetLoadProcessPID
(
int64_t
key
,
pid_t
pid
);
extern
void
EraseLoadProcessPID
(
int64_t
key
);
extern
void
SetLoadProcessPID
s
(
int64_t
key
,
std
::
set
<
pid_t
>
pids
);
extern
void
EraseLoadProcessPID
s
(
int64_t
key
);
extern
void
SetLoadProcessSignalHandler
();
extern
void
ThrowErrorIfLoadProcessFailed
();
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
80cf3c3c
...
...
@@ -20,6 +20,7 @@ limitations under the License. */
#include <pybind11/functional.h>
#include <pybind11/stl.h>
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <utility>
...
...
@@ -290,11 +291,22 @@ void BindImperative(py::module *m_ptr) {
#ifndef _WIN32
// Dygraph DataLoader signal handler
m
.
def
(
"_set_process_pid"
,
[](
int64_t
key
,
pid_t
pid
)
{
imperative
::
SetLoadProcessPID
(
key
,
pid
);
m
.
def
(
"_set_process_pids"
,
[](
int64_t
key
,
py
::
object
&
obj
)
{
PADDLE_ENFORCE_EQ
(
py
::
isinstance
<
py
::
tuple
>
(
obj
)
||
py
::
isinstance
<
py
::
list
>
(
obj
),
true
,
platform
::
errors
::
InvalidArgument
(
"The subprocess ids set in DataLoader is illegal."
"Expected data type is tuple or list, but received %s"
,
obj
.
get_type
()));
py
::
list
pids
=
py
::
cast
<
py
::
list
>
(
obj
);
std
::
set
<
pid_t
>
pids_set
=
{};
for
(
size_t
i
=
0
;
i
<
pids
.
size
();
i
++
)
{
pids_set
.
insert
(
pids
[
i
].
cast
<
pid_t
>
());
}
imperative
::
SetLoadProcessPIDs
(
key
,
pids_set
);
});
m
.
def
(
"_erase_process_pid"
,
[](
int64_t
key
)
{
imperative
::
EraseLoadProcessPID
(
key
);
});
m
.
def
(
"_erase_process_pid
s
"
,
[](
int64_t
key
)
{
imperative
::
EraseLoadProcessPID
s
(
key
);
});
m
.
def
(
"_set_process_signal_handler"
,
[]()
{
imperative
::
SetLoadProcessSignalHandler
();
});
m
.
def
(
"_throw_error_if_process_failed"
,
...
...
python/paddle/distributed/utils.py
浏览文件 @
80cf3c3c
...
...
@@ -252,7 +252,9 @@ def get_cluster(node_ips, node_ip, paddle_ports, selected_gpus):
def
terminate_local_procs
(
procs
):
for
p
in
procs
:
if
p
.
proc
.
poll
()
is
None
:
p
.
proc
.
terminate
()
# subprocess need to release resource(e.g. shared memory)
# use join to wait subprocess releasing
p
.
proc
.
join
(
timeout
=
1
)
p
.
log_fn
.
close
()
logger
.
debug
(
"terminate process id:{}"
.
format
(
p
.
proc
.
pid
))
...
...
python/paddle/fluid/core.py
浏览文件 @
80cf3c3c
...
...
@@ -185,8 +185,8 @@ if avx_supported():
from
.core_avx
import
_load_dygraph_dict
from
.core_avx
import
_create_loaded_parameter
if
sys
.
platform
!=
'win32'
:
from
.core_avx
import
_set_process_pid
from
.core_avx
import
_erase_process_pid
from
.core_avx
import
_set_process_pid
s
from
.core_avx
import
_erase_process_pid
s
from
.core_avx
import
_set_process_signal_handler
from
.core_avx
import
_throw_error_if_process_failed
from
.core_avx
import
_convert_to_tensor_list
...
...
@@ -229,8 +229,8 @@ if load_noavx:
from
.core_noavx
import
_load_dygraph_dict
from
.core_noavx
import
_create_loaded_parameter
if
sys
.
platform
!=
'win32'
:
from
.core_noavx
import
_set_process_pid
from
.core_noavx
import
_erase_process_pid
from
.core_noavx
import
_set_process_pid
s
from
.core_noavx
import
_erase_process_pid
s
from
.core_noavx
import
_set_process_signal_handler
from
.core_noavx
import
_throw_error_if_process_failed
from
.core_noavx
import
_convert_to_tensor_list
...
...
python/paddle/fluid/dataloader/__init__.py
0 → 100644
浏览文件 @
80cf3c3c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
.
import
dataset
from
.dataset
import
*
from
.
import
batch_sampler
from
.batch_sampler
import
*
__all__
=
dataset
.
__all__
\
+
batch_sampler
.
__all__
python/paddle/fluid/dataloader/batch_sampler.py
0 → 100644
浏览文件 @
80cf3c3c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
__future__
import
division
import
numpy
as
np
from
.dataset
import
Dataset
__all__
=
[
"BatchSampler"
]
class
BatchSampler
(
object
):
"""
A base implement of batch sampler used by `paddle.io.DataLoader`
which yield mini-batch indices(a list/tuple with length as
mini-batch size and holds sample indices) iterably.
Batch sampler used by :code:`paddle.io.DataLoader` should be a subclass
of :code:`paddle.io.BatchSampler`, BatchSampler subclasses should
implement following methods:
:code:`__iter__`: return mini-batch indices iterably.
:code:`__len__`: get mini-batch number in an epoch.
Args:
dataset(Dataset): this could be a :code:`paddle.io.Dataset`
implement or other python object which implemented
:code:`__len__` for BatchSampler to get indices as the
range of :attr:`dataset` length. Default None.
indices (list|tuple): a substitution parameter for
:attr:`dataset` either :attr:`dataset` or
:attr:`indices` should be set, give the whole
indices to sampler from directly. Default None.
shuffle(bool): whether to shuffle indices order before genrating
batch indices. Default False.
batch_size(int): sample indice number in a mini-batch indices.
drop_last(bool): whether drop the last incomplete batch dataset size
is not divisible by the batch size. Default False
Returns:
BatchSampler: an iterable object for indices iterating
Examples:
.. code-block:: python
from paddle.io import BatchSampler, Dataset
# init with indices
bs = BatchSampler(indices=list(range(100)),
shuffle=True,
batch_size=8,
drop_last=True)
for batch_indices in bs:
print(batch_indices)
# init with dataset
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([784]).astype('float32')
label = np.random.randint(0, 9, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
bs = BatchSampler(dataset=RandomDataset(100),
shuffle=False,
batch_size=16,
drop_last=False)
for batch_indices in bs:
print(batch_indices)
see `paddle.io.DataLoader`
"""
def
__init__
(
self
,
dataset
=
None
,
indices
=
None
,
shuffle
=
False
,
batch_size
=
1
,
drop_last
=
False
):
if
dataset
is
None
:
assert
indices
is
not
None
,
\
"either dataset or indices should be set"
assert
isinstance
(
indices
,
list
)
or
isinstance
(
indices
,
tuple
),
\
"indices should be a list or tuple, but got {}"
.
format
(
type
(
indices
))
self
.
indices
=
indices
else
:
assert
isinstance
(
dataset
,
Dataset
),
\
"dataset should be an instance of paddle.io.Dataset"
assert
indices
is
None
,
\
"should not set both dataset and indices"
self
.
indices
=
list
(
range
(
len
(
dataset
)))
assert
isinstance
(
batch_size
,
int
)
and
batch_size
>
0
,
\
"batch_size should be a positive integer, but got {}"
.
format
(
batch_size
)
self
.
batch_size
=
batch_size
assert
isinstance
(
shuffle
,
bool
),
\
"shuffle should be a boolean value, but got {}"
.
format
(
type
(
shuffle
))
self
.
shuffle
=
shuffle
assert
isinstance
(
drop_last
,
bool
),
\
"drop_last should be a boolean value, but got {}"
.
format
(
type
(
drop_last
))
self
.
drop_last
=
drop_last
def
__iter__
(
self
):
if
self
.
shuffle
:
np
.
random
.
shuffle
(
self
.
indices
)
_iter
=
iter
(
self
.
indices
)
batch_indices
=
[]
for
idx
in
_iter
:
batch_indices
.
append
(
idx
)
if
len
(
batch_indices
)
==
self
.
batch_size
:
yield
batch_indices
batch_indices
=
[]
if
not
self
.
drop_last
and
len
(
batch_indices
)
>
0
:
yield
batch_indices
def
__len__
(
self
):
num_samples
=
len
(
self
.
indices
)
num_samples
+=
int
(
not
self
.
drop_last
)
*
(
self
.
batch_size
-
1
)
return
num_samples
//
self
.
batch_size
python/paddle/fluid/dataloader/dataloader_iter.py
0 → 100644
浏览文件 @
80cf3c3c
此差异已折叠。
点击以展开。
python/paddle/fluid/dataloader/dataset.py
0 → 100644
浏览文件 @
80cf3c3c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle.dataset.common
__all__
=
[
"Dataset"
]
class
Dataset
(
object
):
"""
An abstract class to encapsulates methods and behaviors of datasets.
All datasets in map-style(dataset samples can be get by a given key)
should be a subclass of `paddle.io.Dataset`. All subclasses should
implement following methods:
:code:`__getitem__`: get sample from dataset with a given index. This
method is required by reading dataset sample in :code:`paddle.io.DataLoader`.
:code:`__len__`: return dataset sample number. This method is required
by some implements of :code:`paddle.io.BatchSampler`
see :code:`paddle.io.DataLoader`.
Examples:
.. code-block:: python
import numpy as np
from paddle.io import Dataset
# define a random dataset
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([784]).astype('float32')
label = np.random.randint(0, 9, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
dataset = RandomDataset(10)
for i in range(len(dataset)):
print(dataset[i])
"""
def
__init__
(
self
):
pass
def
__getitem__
(
self
,
idx
):
raise
NotImplementedError
(
"'{}' not implement in class "
\
"{}"
.
format
(
'__getitem__'
,
self
.
__class__
.
__name__
))
def
__len__
(
self
):
raise
NotImplementedError
(
"'{}' not implement in class "
\
"{}"
.
format
(
'__len__'
,
self
.
__class__
.
__name__
))
python/paddle/fluid/io.py
浏览文件 @
80cf3c3c
...
...
@@ -37,6 +37,8 @@ from paddle.fluid.compiler import CompiledProgram
from
paddle.fluid.log_helper
import
get_logger
from
.
import
reader
from
.reader
import
*
from
.
import
dataloader
from
.dataloader
import
*
from
.
import
core
from
..
import
compat
as
cpt
...
...
python/paddle/fluid/multiprocess_utils.py
0 → 100644
浏览文件 @
80cf3c3c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
six
import
sys
import
signal
import
atexit
from
.
import
core
# NOTE: queue has a different name in python2 and python3
if
six
.
PY2
:
import
Queue
as
queue
else
:
import
queue
# NOTE: [ mmap files clear ] If there is still data in the multiprocess queue when the main process finishes reading,
# the data in the queue needs to be popped. Then the LoDTensor read by the main process
# from the child process will automatically clear the memory-mapped file.
multiprocess_queue_set
=
set
()
def
_clear_multiprocess_queue_set
():
global
multiprocess_queue_set
for
data_queue
in
multiprocess_queue_set
:
while
True
:
try
:
data_queue
.
get_nowait
()
except
queue
.
Empty
:
break
# NOTE: main process clear function at exit
def
_cleanup
():
# NOTE: inter-process Queue shared memory objects clear function
_clear_multiprocess_queue_set
()
# NOTE: main process memory map files clear funciton
core
.
_cleanup_mmap_fds
()
# NOTE: for child process clear function at exit
def
_cleanup_mmap
():
# clear memory map files in child process
core
.
_cleanup_mmap_fds
()
# NOTE used for register a function to be executed at interpreter exit.
class
CleanupFuncRegistrar
():
# Record the cleanup functions that have been executed
_executed_func_set
=
set
()
# Record the cleanup functions that have been registered
_registered_func_set
=
set
()
@
classmethod
def
register
(
cls
,
function
,
signals
=
[]):
def
_func_exectuor
():
if
function
not
in
cls
.
_executed_func_set
:
try
:
function
()
finally
:
cls
.
_executed_func_set
.
add
(
function
)
def
_func_register
(
function
):
if
not
callable
(
function
):
raise
TypeError
(
"%s is not callable object."
%
(
function
))
# check function object whether hash-able
set
([
function
])
if
function
not
in
cls
.
_registered_func_set
:
atexit
.
register
(
_func_exectuor
)
cls
.
_registered_func_set
.
add
(
function
)
def
_signal_handler
(
signum
=
None
,
frame
=
None
):
_func_exectuor
()
if
signum
is
not
None
:
if
signum
==
signal
.
SIGINT
:
raise
KeyboardInterrupt
sys
.
exit
(
signum
)
def
_signal_register
(
signals
):
signals
=
set
(
signals
)
for
sig
in
signals
:
orig_handler
=
signal
.
signal
(
sig
,
_signal_handler
)
if
orig_handler
not
in
(
signal
.
SIG_DFL
,
signal
.
SIG_IGN
):
if
(
sig
==
signal
.
SIGINT
and
orig_handler
is
signal
.
default_int_handler
):
continue
if
orig_handler
not
in
cls
.
_registered_func_set
:
atexit
.
register
(
orig_handler
)
cls
.
_registered_func_set
.
add
(
orig_handler
)
# deal with signals
_signal_register
(
signals
)
# deal with function
_func_register
(
function
)
# NOTE: [ mmap files clear ] When the main process exits unexpectedly, the remaining
# shared memory objects in the inter-process Queue and the main process (mostly in the
# BlockingQueue) may not be completely released, resulting in the corresponding
# memory-mapped file remaining on the disk (/dev/shm), so register this function
# to clean up shared memory objects in these two queues before the python interpreter exits.
# NOTE: Currently multi-process DataLoader only supports Linux platform
if
not
(
sys
.
platform
==
'darwin'
or
sys
.
platform
==
'win32'
):
CleanupFuncRegistrar
.
register
(
_cleanup
)
# ------------ SIGCHLD handler setting --------------
_SIGCHLD_handler_set
=
False
def
_set_SIGCHLD_handler
():
global
_SIGCHLD_handler_set
if
_SIGCHLD_handler_set
:
return
current_handler
=
signal
.
getsignal
(
signal
.
SIGCHLD
)
if
not
callable
(
current_handler
):
current_handler
=
None
def
__handler__
(
signum
,
frame
):
# NOTE: Here the signum is SIGCHLD, when the child process exits,
# this handler will be called whenever the child process exits
# normally or abnormally.
core
.
_throw_error_if_process_failed
()
if
current_handler
is
not
None
:
current_handler
(
signum
,
frame
)
signal
.
signal
(
signal
.
SIGCHLD
,
__handler__
)
_SIGCHLD_handler_set
=
True
python/paddle/fluid/reader.py
浏览文件 @
80cf3c3c
...
...
@@ -21,29 +21,28 @@ import paddle
from
.framework
import
Program
,
Variable
,
program_guard
,
default_main_program
,
default_startup_program
,
in_dygraph_mode
,
cpu_places
from
.executor
import
global_scope
from
.data_feeder
import
DataFeeder
,
BatchedTensorProvider
from
.multiprocess_utils
import
multiprocess_queue_set
,
CleanupFuncRegistrar
,
_cleanup_mmap
,
_cleanup
,
_set_SIGCHLD_handler
from
.dataloader
import
BatchSampler
,
Dataset
from
.dataloader.dataloader_iter
import
_DataLoaderIterSingleProcess
,
_DataLoaderIterMultiProcess
from
.layers.io
import
monkey_patch_reader_methods
,
_copy_reader_var_
,
double_buffer
from
.unique_name
import
UniqueNameGenerator
import
logging
from
.dataset
import
DatasetBase
,
InMemoryDataset
### Dygraph DataLoader configs ###
import
atexit
import
os
import
multiprocessing
import
signal
# NOTE: queue has a different name in python2 and python3
if
s
ys
.
version_info
[
0
]
==
2
:
if
s
ix
.
PY
2
:
import
Queue
as
queue
else
:
import
queue
# NOTE: [ avoid hanging & failed quickly ] These value is used in getting data from another process
QUEUE_GET_TIMEOUT
=
60
# NOTE: [ mmap files clear ] If there is still data in the multiprocess queue when the main process finishes reading,
# the data in the queue needs to be popped. Then the LoDTensor read by the main process
# from the child process will automatically clear the memory-mapped file.
multiprocess_queue_set
=
set
()
__all__
=
[
'PyReader'
,
'DataLoader'
]
data_loader_unique_name_generator
=
UniqueNameGenerator
()
...
...
@@ -75,84 +74,6 @@ def _convert_places(places):
return
ret
def
_clear_multiprocess_queue_set
():
global
multiprocess_queue_set
for
data_queue
in
multiprocess_queue_set
:
while
True
:
try
:
data_queue
.
get_nowait
()
except
queue
.
Empty
:
break
# NOTE: main process clear function at exit
def
_cleanup
():
# NOTE: inter-process Queue shared memory objects clear function
_clear_multiprocess_queue_set
()
# NOTE: main process memory map files clear funciton
core
.
_cleanup_mmap_fds
()
# NOTE used for register a function to be executed at interpreter exit.
class
CleanupFuncRegistrar
():
# Record the cleanup functions that have been executed
_executed_func_set
=
set
()
# Record the cleanup functions that have been registered
_registered_func_set
=
set
()
@
classmethod
def
register
(
cls
,
function
,
signals
=
[
signal
.
SIGTERM
]):
def
_func_exectuor
():
if
function
not
in
cls
.
_executed_func_set
:
try
:
function
()
finally
:
cls
.
_executed_func_set
.
add
(
function
)
def
_func_register
(
function
):
if
not
callable
(
function
):
raise
TypeError
(
"%s is not callable object."
%
(
function
))
# check function object whether hash-able
set
([
function
])
if
function
not
in
cls
.
_registered_func_set
:
atexit
.
register
(
_func_exectuor
)
cls
.
_registered_func_set
.
add
(
function
)
def
_signal_handler
(
signum
=
None
,
frame
=
None
):
_func_exectuor
()
if
signum
is
not
None
:
if
signum
==
signal
.
SIGINT
:
raise
KeyboardInterrupt
sys
.
exit
(
signum
)
def
_signal_register
(
signals
):
signals
=
set
(
signals
)
for
sig
in
signals
:
orig_handler
=
signal
.
signal
(
sig
,
_signal_handler
)
if
orig_handler
not
in
(
signal
.
SIG_DFL
,
signal
.
SIG_IGN
):
if
(
sig
==
signal
.
SIGINT
and
orig_handler
is
signal
.
default_int_handler
):
continue
if
orig_handler
not
in
cls
.
_registered_func_set
:
atexit
.
register
(
orig_handler
)
cls
.
_registered_func_set
.
add
(
orig_handler
)
# deal with signals
_signal_register
(
signals
)
# deal with function
_func_register
(
function
)
# NOTE: [ mmap files clear ] When the main process exits unexpectedly, the remaining
# shared memory objects in the inter-process Queue and the main process (mostly in the
# BlockingQueue) may not be completely released, resulting in the corresponding
# memory-mapped file remaining on the disk (/dev/shm), so register this function
# to clean up shared memory objects in these two queues before the python interpreter exits.
# NOTE: Currently multi-process DataLoader only supports Linux platform
if
not
(
sys
.
platform
==
'darwin'
or
sys
.
platform
==
'win32'
):
CleanupFuncRegistrar
.
register
(
_cleanup
)
class
DataLoaderBase
(
object
):
def
__init__
(
self
):
self
.
_places
=
None
...
...
@@ -177,6 +98,264 @@ class DataLoaderBase(object):
class
DataLoader
(
object
):
"""
DataLoader prodives an iterator which iterates given dataset
once by the batch_sampler.
DataLoader supports single-process and multi-prcess data loading,
multi-process workers will be used to load data asynchronously if
:attr:`num_workers` is set as a positive number.
DataLoader only supports map-style dataset(can get a sample from
dataset with a given index) currently, for a map-style dataset,
please see :code:`paddle.io.Dataset`.
batch_sampler please see :code:`paddle.io.BatchSampler`
Args:
dataset(Dataset): the dataset to load data from, should be an
instance of subclass of :code:`paddle.io.Dataset`.
feed_list (list(Variable)|tuple(Variable)): feed variable list.
The variables should be created by :code:`fluid.data()`.
:attr:`feed_list` must be set if :attr:`return_list` is
False. Default None.
places(list(Place)|tuple(Place)): a list of Place, to put data
onto, :attr:`places` must be set in both static graph and
dynamic graph mode, in dynamic graph mode, place number must
be 1. Default None.
return_list (bool): whether the return value on each device is
presented as a list. If :attr:`return_list=False`, the return
value on each device would be a dict of str -> LoDTensor, where
the key of the dict is the name of each fed variables. If
:attr:`return_list=True`, the return value on each device would
be a list(LoDTensor). :attr:`return_list` can only be True
in dynamic graph mode. Default False.
batch_sampler(BatchSampler): an instance of `paddle.io.BatchSampler`
to generate batch indices to draw samples from :attr:`dataset`
and combine a batch. Default None.
batch_size(int): sample number in a mini-batch, a substitution
parameter for :attr:`batch_sampler`, if :attr:`batch_sampler`
is not set, a default `paddle.io.BatchSampler` will be used
and initialize by :attr:`batch_size`, :attr:`shuffle` and
:attr:`drop_last`. Default 1.
shuffle(bool): whther to shuffle indices order before genrate
batch indices, a substitution parameter for :attr:`batch_sampler`
see :attr:`batch_size`. Default False.
drop_last(bool): whether drop the last incomplete batch dataset size
is not divisible by the batch size, a substitution parameter
for :attr:`batch_sampler`, see :attr:`batch_size`. Default False
collate_fn(callable): function to generate mini-batch data by merging
the sample list, None for only stack each fields of sample in axis
0(same as :attr::`np.stack(..., axis=0)`). Default None
num_workers(int): the number of subprocess to load data, 0 for no
subprocess used and loading data in main process. Default 0
use_buffer_reader (bool): whether to use bufferred reader.
If use_buffer_reader=True, the DataLoader would prefetch next
batch data asynchronously, so it would speed up data feeding
and occupies a little more CPU or GPU memory, i.e., the memory
of one batch input data. Default True.
use_shared_memory (bool): whether to use shared memory to speed up
putting data into inter-process queue, set :attr:`use_shared_memory`
as True only when the shared memory space on your machine(e.g.
space of '/dev/shm' on Linux operating sysytem) is large enough.
Shared memory will only be enabled in multi-process mode(num_workers
> 0). Default True.
timeout(int): the timeout value for getting data form output queue
of subprocesses. Default 0.
worker_init_fn(callable): init function which will be called with
worker id on each subproces starting if not set as None. Default
None.
Returns:
DataLoader: an iterable object for data iterating
Examples:
.. code-block:: python
import numpy as np
import paddle.fluid as fluid
from paddle.io import Dataset, BatchSampler, DataLoader
BATCH_NUM = 20
BATCH_SIZE = 16
EPOCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 10
USE_GPU = False # whether use GPU to run model
# define a random dataset
class RandomDataset(Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
# get places
places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
# -------------------- static graph ---------------------
def simple_net(image, label):
fc_tmp = fluid.layers.fc(image, size=CLASS_NUM, act='softmax')
cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
loss = fluid.layers.reduce_mean(cross_entropy)
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(loss)
return loss
image = fluid.data(name='image', shape=[None, IMAGE_SIZE], dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
loss = simple_net(image, label)
exe = fluid.Executor(places[0])
exe.run(fluid.default_startup_program())
prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = DataLoader(dataset,
feed_list=[image, label],
places=places,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
for e in range(EPOCH_NUM):
for i, data in enumerate(loader()):
l = exe.run(prog, feed=data, fetch_list=[loss], return_numpy=True)
print("Epoch {} batch {}: loss = {}".format(e, i, l[0][0]))
# -------------------------------------------------------
# --------------------- dygraph mode --------------------
class SimpleNet(fluid.dygraph.Layer):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc = fluid.dygraph.nn.Linear(IMAGE_SIZE, CLASS_NUM, act='softmax')
def forward(self, image, label=None):
return self.fc(image)
with fluid.dygraph.guard(places[0]):
simple_net = SimpleNet()
opt = fluid.optimizer.SGD(learning_rate=1e-3,
parameter_list=simple_net.parameters())
loader = DataLoader(dataset,
places=places[0],
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
for e in range(EPOCH_NUM):
for i, (image, label) in enumerate(loader()):
out = simple_net(image)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.reduce_mean(loss)
avg_loss.backward()
opt.minimize(avg_loss)
simple_net.clear_gradients()
print("Epoch {} batch {}: loss = {}".format(e, i, np.mean(loss.numpy())))
# -------------------------------------------------------
"""
def
__init__
(
self
,
dataset
,
feed_list
=
None
,
places
=
None
,
return_list
=
False
,
batch_sampler
=
None
,
batch_size
=
1
,
shuffle
=
False
,
drop_last
=
False
,
collate_fn
=
None
,
num_workers
=
0
,
use_buffer_reader
=
True
,
use_shared_memory
=
True
,
timeout
=
0
,
worker_init_fn
=
None
):
self
.
return_list
=
return_list
self
.
collate_fn
=
collate_fn
self
.
use_buffer_reader
=
use_buffer_reader
self
.
worker_init_fn
=
worker_init_fn
assert
isinstance
(
dataset
,
Dataset
),
\
"dataset should be subclass instance of paddle.io.Dataset"
self
.
dataset
=
dataset
if
not
return_list
and
not
in_dygraph_mode
():
assert
feed_list
is
not
None
,
\
"feed_list should be set when return_list=False"
self
.
feed_list
=
feed_list
assert
places
is
not
None
,
"places cannot be None"
self
.
places
=
_convert_places
(
places
)
if
in_dygraph_mode
():
assert
len
(
self
.
places
)
==
1
,
\
"Number of places must be 1 in dygraph mode"
assert
num_workers
>=
0
,
"num_workers should be a non-negative value"
if
num_workers
>
0
and
(
sys
.
platform
==
'darwin'
or
sys
.
platform
==
'win32'
):
logging
.
warning
(
"multi-process mode not support MacOs and Windows currently."
\
" use signle-process with num_workers = 0 instead"
)
num_workers
=
0
self
.
num_workers
=
num_workers
self
.
use_shared_memory
=
use_shared_memory
if
use_shared_memory
and
num_workers
==
0
:
self
.
use_shared_memory
=
False
assert
timeout
>=
0
,
"timeout should be a non-negative value"
self
.
timeout
=
timeout
if
batch_sampler
is
not
None
:
assert
isinstance
(
batch_sampler
,
BatchSampler
),
\
"batch_sampler should be None or subclass instance "
\
"of paddle.io.BatchSampler"
assert
batch_size
==
1
and
not
shuffle
and
not
drop_last
,
\
"batch_size/shuffle/drop_last should not be set when "
\
"batch_sampler is given"
self
.
batch_sampler
=
batch_sampler
else
:
assert
batch_size
is
not
None
and
batch_size
>
0
,
\
"batch_size should be a positive value when "
\
"batch_sampler is not given"
self
.
batch_sampler
=
BatchSampler
(
dataset
=
dataset
,
batch_size
=
batch_size
,
shuffle
=
shuffle
,
drop_last
=
drop_last
)
def
__len__
(
self
):
return
len
(
self
.
batch_sampler
)
def
__iter__
(
self
):
if
self
.
num_workers
==
0
:
return
_DataLoaderIterSingleProcess
(
self
)
else
:
return
_DataLoaderIterMultiProcess
(
self
)
def
__call__
(
self
):
return
self
.
__iter__
()
@
staticmethod
def
from_generator
(
feed_list
=
None
,
capacity
=
None
,
...
...
@@ -553,22 +732,7 @@ class DygraphGeneratorLoader(DataLoaderBase):
if
process
is
not
None
:
process
.
join
()
# erase process id
core
.
_erase_process_pid
(
id
(
self
))
def
_set_child_signal_handler
(
self
):
core
.
_set_process_pid
(
id
(
self
),
self
.
_process
.
pid
)
current_handler
=
signal
.
getsignal
(
signal
.
SIGCHLD
)
if
not
callable
(
current_handler
):
current_handler
=
None
def
__handler__
(
signum
,
frame
):
# NOTE: Here the signum is SIGDHLD, when the child process exits, this handler
# will be called whenever the child process exits normally or abnormally.
core
.
_throw_error_if_process_failed
()
if
current_handler
is
not
None
:
current_handler
(
signum
,
frame
)
signal
.
signal
(
signal
.
SIGCHLD
,
__handler__
)
core
.
_erase_process_pids
(
id
(
self
))
def
_init_iterable
(
self
):
self
.
_wait_thread_ends
()
...
...
@@ -605,7 +769,8 @@ class DygraphGeneratorLoader(DataLoaderBase):
# with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
# process, it shuts the all its daemonic children down with a SIGTERM (instead of
# joining them without a timeout), so here nedd to deal with SIGTERM.
self
.
_set_child_signal_handler
()
core
.
_set_process_pids
(
id
(
self
),
[
self
.
_process
.
pid
])
_set_SIGCHLD_handler
()
# Set reader_thread
self
.
_thread_done_event
=
threading
.
Event
()
...
...
@@ -666,16 +831,11 @@ class DygraphGeneratorLoader(DataLoaderBase):
# set signal handler
core
.
_set_process_signal_handler
()
# child process clear function at exit
def
_cleanup
():
# clear memory map files in child process
core
.
_cleanup_mmap_fds
()
# NOTE: [ mmap files clear ] When the child process exits unexpectedly,
# some shared memory objects may have been applied for but have not yet
# been put into the inter-process Queue. This part of the object needs
# to be cleaned up when the process ends.
CleanupFuncRegistrar
.
register
(
_cleanup
)
CleanupFuncRegistrar
.
register
(
_cleanup
_mmap
)
for
batch
in
self
.
_batch_reader
():
tensor_list
=
core
.
_convert_to_tensor_list
(
batch
)
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
80cf3c3c
...
...
@@ -211,6 +211,8 @@ if (APPLE OR WIN32)
list
(
REMOVE_ITEM TEST_OPS test_imperative_data_loader_fds_clear
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_data_loader_exit_func
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_signal_handler
)
list
(
REMOVE_ITEM TEST_OPS test_multiprocess_dataloader_base
)
list
(
REMOVE_ITEM TEST_OPS test_multiprocess_dataloader_exception
)
endif
()
if
(
NOT WITH_GPU OR WIN32 OR APPLE
)
...
...
@@ -381,4 +383,6 @@ if(NOT WIN32 AND NOT APPLE)
set_tests_properties
(
test_imperative_data_loader_base PROPERTIES LABELS
"RUN_TYPE=EXCLUSIVE"
RUN_SERIAL TRUE
)
set_tests_properties
(
test_imperative_data_loader_fds_clear PROPERTIES LABELS
"RUN_TYPE=EXCLUSIVE"
RUN_SERIAL TRUE
)
# set_tests_properties(test_imperative_data_loader_exception PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE" RUN_SERIAL TRUE)
set_tests_properties
(
test_multiprocess_dataloader_base PROPERTIES LABELS
"RUN_TYPE=EXCLUSIVE"
RUN_SERIAL TRUE
)
set_tests_properties
(
test_multiprocess_dataloader_exception PROPERTIES LABELS
"RUN_TYPE=EXCLUSIVE"
RUN_SERIAL TRUE
)
endif
()
python/paddle/fluid/tests/unittests/test_batch_sampler.py
0 → 100644
浏览文件 @
80cf3c3c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
unittest
import
paddle.fluid
as
fluid
from
paddle.io
import
BatchSampler
,
Dataset
class
RandomDataset
(
Dataset
):
def
__init__
(
self
,
sample_num
,
class_num
):
self
.
sample_num
=
sample_num
self
.
class_num
=
class_num
def
__getitem__
(
self
,
idx
):
np
.
random
.
seed
(
idx
)
image
=
np
.
random
.
random
([
IMAGE_SIZE
]).
astype
(
'float32'
)
label
=
np
.
random
.
randint
(
0
,
CLASS_NUM
-
1
,
(
1
,
)).
astype
(
'int64'
)
return
image
,
label
def
__len__
(
self
):
return
self
.
sample_num
class
TestBatchSampler
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
num_samples
=
1000
self
.
num_classes
=
10
self
.
batch_size
=
32
self
.
shuffle
=
False
self
.
drop_last
=
False
def
init_batch_sampler
(
self
):
dataset
=
RandomDataset
(
self
.
num_samples
,
self
.
num_classes
)
bs
=
BatchSampler
(
dataset
=
dataset
,
batch_size
=
self
.
batch_size
,
shuffle
=
self
.
shuffle
,
drop_last
=
self
.
drop_last
)
return
bs
def
test_main
(
self
):
bs
=
self
.
init_batch_sampler
()
# length check
bs_len
=
(
self
.
num_samples
+
int
(
not
self
.
drop_last
)
\
*
(
self
.
batch_size
-
1
))
//
self
.
batch_size
self
.
assertTrue
(
bs_len
==
len
(
bs
))
# output indices check
if
not
self
.
shuffle
:
index
=
0
for
indices
in
bs
:
for
idx
in
indices
:
self
.
assertTrue
(
index
==
idx
)
index
+=
1
class
TestBatchSamplerDropLast
(
TestBatchSampler
):
def
setUp
(
self
):
self
.
num_samples
=
1000
self
.
num_classes
=
10
self
.
batch_size
=
32
self
.
shuffle
=
False
self
.
drop_last
=
True
class
TestBatchSamplerShuffle
(
TestBatchSampler
):
def
setUp
(
self
):
self
.
num_samples
=
1000
self
.
num_classes
=
10
self
.
batch_size
=
32
self
.
shuffle
=
True
self
.
drop_last
=
True
class
TestBatchSamplerWithIndices
(
TestBatchSampler
):
def
init_batch_sampler
(
self
):
bs
=
BatchSampler
(
indices
=
list
(
range
(
self
.
num_samples
)),
batch_size
=
self
.
batch_size
,
drop_last
=
self
.
drop_last
)
return
bs
class
TestBatchSamplerWithIndicesAndDataSource
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
num_samples
=
1000
self
.
num_classes
=
10
self
.
batch_size
=
32
self
.
shuffle
=
False
self
.
drop_last
=
True
def
test_main
(
self
):
try
:
dataset
=
RandomDataset
(
self
.
num_samples
,
self
.
num_classes
)
bs
=
BatchSampler
(
dataset
=
dataset
,
indices
=
list
(
range
(
self
.
num_samples
)),
batch_size
=
self
.
batch_size
,
drop_last
=
self
.
drop_last
)
self
.
assertTrue
(
False
)
except
AssertionError
:
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dataloader_dataset.py
0 → 100644
浏览文件 @
80cf3c3c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.io
import
*
class
TestDatasetAbstract
(
unittest
.
TestCase
):
def
test_main
(
self
):
dataset
=
Dataset
()
try
:
d
=
dataset
[
0
]
self
.
assertTrue
(
False
)
except
NotImplementedError
:
pass
try
:
l
=
len
(
dataset
)
self
.
assertTrue
(
False
)
except
NotImplementedError
:
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative_data_loader_fds_clear.py
浏览文件 @
80cf3c3c
...
...
@@ -17,6 +17,7 @@ import unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.io
import
Dataset
,
DataLoader
def
get_random_images_and_labels
(
image_shape
,
label_shape
):
...
...
@@ -35,6 +36,20 @@ def batch_generator_creator(batch_size, batch_num):
return
__reader__
class
RandomDataset
(
Dataset
):
def
__init__
(
self
,
sample_num
):
self
.
sample_num
=
sample_num
def
__getitem__
(
self
,
idx
):
np
.
random
.
seed
(
idx
)
image
=
np
.
random
.
random
([
784
]).
astype
(
'float32'
)
label
=
np
.
random
.
randint
(
0
,
9
,
(
1
,
)).
astype
(
'int64'
)
return
image
,
label
def
__len__
(
self
):
return
self
.
sample_num
class
TestDygraphDataLoaderMmapFdsClear
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
batch_size
=
8
...
...
@@ -74,5 +89,19 @@ class TestDygraphDataLoaderMmapFdsClear(unittest.TestCase):
self
.
run_one_epoch_with_break
(
loader
)
class
TestMultiProcessDataLoaderMmapFdsClear
(
TestDygraphDataLoaderMmapFdsClear
):
def
prepare_data_loader
(
self
):
place
=
fluid
.
CPUPlace
()
with
fluid
.
dygraph
.
guard
(
place
):
dataset
=
RandomDataset
(
self
.
batch_size
*
self
.
batch_num
)
loader
=
DataLoader
(
dataset
,
places
=
place
,
batch_size
=
self
.
batch_size
,
drop_last
=
True
,
num_workers
=
2
)
return
loader
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative_signal_handler.py
浏览文件 @
80cf3c3c
...
...
@@ -24,7 +24,7 @@ from paddle.fluid import core
def
set_child_signal_handler
(
self
,
child_pid
):
core
.
_set_process_pid
(
id
(
self
),
child_pid
)
core
.
_set_process_pid
s
(
id
(
self
),
tuple
([
child_pid
])
)
current_handler
=
signal
.
getsignal
(
signal
.
SIGCHLD
)
if
not
callable
(
current_handler
):
current_handler
=
None
...
...
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_base.py
0 → 100644
浏览文件 @
80cf3c3c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
os
import
sys
import
six
import
time
import
unittest
import
multiprocessing
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.io
import
Dataset
,
BatchSampler
,
DataLoader
from
paddle.fluid.dygraph.nn
import
Linear
from
paddle.fluid.dygraph.base
import
to_variable
EPOCH_NUM
=
5
BATCH_SIZE
=
16
IMAGE_SIZE
=
784
SAMPLE_NUM
=
400
CLASS_NUM
=
10
class
RandomDataset
(
Dataset
):
def
__init__
(
self
,
sample_num
,
class_num
):
self
.
sample_num
=
sample_num
self
.
class_num
=
class_num
def
__getitem__
(
self
,
idx
):
np
.
random
.
seed
(
idx
)
image
=
np
.
random
.
random
([
IMAGE_SIZE
]).
astype
(
'float32'
)
label
=
np
.
random
.
randint
(
0
,
self
.
class_num
-
1
,
(
1
,
)).
astype
(
'int64'
)
return
image
,
label
def
__len__
(
self
):
return
self
.
sample_num
def
simple_fc_net_static
():
startup_prog
=
fluid
.
Program
()
main_prog
=
fluid
.
Program
()
startup_prog
.
random_seed
=
1
main_prog
.
random_seed
=
1
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
image
=
fluid
.
data
(
name
=
'image'
,
shape
=
[
None
,
IMAGE_SIZE
],
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
hidden
=
image
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.8
))
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.5
))
for
hidden_size
in
[
10
,
20
,
30
]:
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
hidden_size
,
act
=
'tanh'
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
predict_label
=
fluid
.
layers
.
fc
(
hidden
,
size
=
CLASS_NUM
,
act
=
'softmax'
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
)
loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
cross_entropy
(
input
=
predict_label
,
label
=
label
))
optimizer
=
fluid
.
optimizer
.
Adam
()
optimizer
.
minimize
(
loss
)
return
startup_prog
,
main_prog
,
image
,
label
,
loss
class
SimpleFCNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
):
super
(
SimpleFCNet
,
self
).
__init__
()
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.8
))
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.5
))
self
.
_fcs
=
[]
in_channel
=
IMAGE_SIZE
for
hidden_size
in
[
10
,
20
,
30
]:
self
.
_fcs
.
append
(
Linear
(
in_channel
,
hidden_size
,
act
=
'tanh'
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
))
in_channel
=
hidden_size
self
.
_fcs
.
append
(
Linear
(
in_channel
,
CLASS_NUM
,
act
=
'softmax'
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
))
def
forward
(
self
,
image
):
out
=
image
for
fc
in
self
.
_fcs
:
out
=
fc
(
out
)
return
out
class
TestStaticDataLoader
(
unittest
.
TestCase
):
def
run_main
(
self
,
num_workers
,
places
,
with_data_parallel
):
scope
=
fluid
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
startup_prog
,
main_prog
,
image
,
label
,
loss
=
simple_fc_net_static
()
dataset
=
RandomDataset
(
SAMPLE_NUM
,
CLASS_NUM
)
dataloader
=
DataLoader
(
dataset
,
feed_list
=
[
image
,
label
],
places
=
places
,
num_workers
=
num_workers
,
batch_size
=
BATCH_SIZE
,
drop_last
=
True
)
assert
len
(
dataloader
)
==
int
(
SAMPLE_NUM
/
BATCH_SIZE
)
exe
=
fluid
.
Executor
(
place
=
places
[
0
])
exe
.
run
(
startup_prog
)
prog
=
fluid
.
CompiledProgram
(
main_prog
)
if
with_data_parallel
:
prog
=
prog
.
with_data_parallel
(
loss_name
=
loss
.
name
,
places
=
places
)
step_list
=
[]
loss_list
=
[]
start_t
=
time
.
time
()
for
_
in
six
.
moves
.
range
(
EPOCH_NUM
):
step
=
0
for
d
in
dataloader
:
assert
len
(
d
)
==
len
(
places
),
"{} != {}"
.
format
(
len
(
d
),
len
(
places
))
for
i
,
item
in
enumerate
(
d
):
image
=
item
[
'image'
]
label
=
item
[
'label'
]
assert
image
.
shape
()
==
[
BATCH_SIZE
,
IMAGE_SIZE
]
assert
label
.
shape
()
==
[
BATCH_SIZE
,
1
]
assert
image
.
_place
().
_equals
(
places
[
i
])
assert
label
.
_place
().
_equals
(
places
[
i
])
L
,
=
exe
.
run
(
program
=
prog
,
feed
=
d
,
fetch_list
=
[
loss
],
use_program_cache
=
True
)
loss_list
.
append
(
np
.
mean
(
L
))
step
+=
1
step_list
.
append
(
step
)
end_t
=
time
.
time
()
ret
=
{
"time"
:
end_t
-
start_t
,
"step"
:
step_list
,
"loss"
:
np
.
array
(
loss_list
)
}
print
(
"time cost"
,
ret
[
'time'
],
'step_list'
,
ret
[
'step'
])
return
ret
def
prepare_places
(
self
,
with_data_parallel
,
with_cpu
=
True
,
with_gpu
=
True
):
places
=
[]
# FIXME: PR_CI_Py35 may hang on Multi-CPUs with multiprocess, but it
# works fine locally, this should be fixed. OTOH, multiprocessing
# is not recommended when running on CPU generally
if
with_cpu
and
not
sys
.
version
.
startswith
(
'3.5'
):
places
.
append
([
fluid
.
CPUPlace
()])
if
with_data_parallel
:
places
.
append
([
fluid
.
CPUPlace
()]
*
2
)
if
with_gpu
and
fluid
.
core
.
is_compiled_with_cuda
():
tmp
=
fluid
.
cuda_places
()[:
2
]
assert
len
(
tmp
)
>
0
,
"no gpu detected"
if
with_data_parallel
:
places
.
append
(
tmp
)
places
.
append
([
tmp
[
0
]])
return
places
def
test_main
(
self
):
for
with_data_parallel
in
[
False
]
if
self
.
__class__
.
__name__
\
==
"TestDygraphDataLoader"
else
[
True
,
False
]:
for
p
in
self
.
prepare_places
(
with_data_parallel
):
results
=
[]
for
num_workers
in
[
0
,
2
]:
print
(
self
.
__class__
.
__name__
,
p
,
num_workers
)
ret
=
self
.
run_main
(
num_workers
=
num_workers
,
places
=
p
,
with_data_parallel
=
with_data_parallel
)
results
.
append
(
ret
)
diff
=
np
.
max
(
np
.
abs
(
results
[
0
][
'loss'
]
-
results
[
1
][
'loss'
])
/
np
.
abs
(
results
[
0
][
'loss'
]))
self
.
assertLess
(
diff
,
1e-2
)
class
TestDygraphDataLoader
(
TestStaticDataLoader
):
def
run_main
(
self
,
num_workers
,
places
,
with_data_parallel
):
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
with
fluid
.
dygraph
.
guard
(
places
[
0
]):
fc_net
=
SimpleFCNet
()
optimizer
=
fluid
.
optimizer
.
Adam
(
parameter_list
=
fc_net
.
parameters
())
dataset
=
RandomDataset
(
SAMPLE_NUM
,
CLASS_NUM
)
dataloader
=
DataLoader
(
dataset
,
places
=
places
,
num_workers
=
num_workers
,
batch_size
=
BATCH_SIZE
,
drop_last
=
True
)
assert
len
(
dataloader
)
==
int
(
SAMPLE_NUM
/
BATCH_SIZE
)
step_list
=
[]
loss_list
=
[]
start_t
=
time
.
time
()
for
_
in
six
.
moves
.
range
(
EPOCH_NUM
):
step
=
0
for
image
,
label
in
dataloader
():
out
=
fc_net
(
image
)
loss
=
fluid
.
layers
.
cross_entropy
(
out
,
label
)
avg_loss
=
fluid
.
layers
.
reduce_mean
(
loss
)
avg_loss
.
backward
()
optimizer
.
minimize
(
avg_loss
)
fc_net
.
clear_gradients
()
loss_list
.
append
(
np
.
mean
(
avg_loss
.
numpy
()))
step
+=
1
step_list
.
append
(
step
)
end_t
=
time
.
time
()
ret
=
{
"time"
:
end_t
-
start_t
,
"step"
:
step_list
,
"loss"
:
np
.
array
(
loss_list
)
}
print
(
"time cost"
,
ret
[
'time'
],
'step_list'
,
ret
[
'step'
])
return
ret
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_multiprocess_dataloader_exception.py
0 → 100644
浏览文件 @
80cf3c3c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
os
import
sys
import
six
import
time
import
unittest
import
multiprocessing
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.io
import
Dataset
,
BatchSampler
,
DataLoader
from
paddle.fluid.dygraph.nn
import
Linear
from
paddle.fluid.dygraph.base
import
to_variable
class
RandomDataset
(
Dataset
):
def
__init__
(
self
,
sample_num
):
self
.
sample_num
=
sample_num
def
__getitem__
(
self
,
idx
):
np
.
random
.
seed
(
idx
)
image
=
np
.
random
.
random
([
784
]).
astype
(
'float32'
)
label
=
np
.
random
.
randint
(
0
,
9
,
(
1
,
)).
astype
(
'int64'
)
return
image
,
label
def
__len__
(
self
):
return
self
.
sample_num
class
TestDataLoaderAssert
(
unittest
.
TestCase
):
def
test_main
(
self
):
place
=
fluid
.
cpu_places
()[
0
]
with
fluid
.
dygraph
.
guard
(
place
):
dataset
=
RandomDataset
(
100
)
batch_sampler
=
BatchSampler
(
dataset
=
dataset
,
batch_size
=
4
)
# dataset is not instance of Dataset
try
:
loader
=
DataLoader
(
dataset
=
batch_sampler
,
places
=
place
)
self
.
assertTrue
(
False
)
except
AssertionError
:
pass
# places is None
try
:
loader
=
DataLoader
(
dataset
=
dataset
,
places
=
None
)
self
.
assertTrue
(
False
)
except
AssertionError
:
pass
# num_workers < 0
try
:
loader
=
DataLoader
(
dataset
=
dataset
,
places
=
place
,
num_workers
=-
1
)
self
.
assertTrue
(
False
)
except
AssertionError
:
pass
# timeout < 0
try
:
loader
=
DataLoader
(
dataset
=
dataset
,
places
=
place
,
timeout
=-
1
)
self
.
assertTrue
(
False
)
except
AssertionError
:
pass
# batch_sampler is not instance of BatchSampler
try
:
loader
=
DataLoader
(
dataset
=
dataset
,
places
=
place
,
batch_sampler
=
dataset
)
self
.
assertTrue
(
False
)
except
AssertionError
:
pass
# set batch_sampler and shuffle/batch_size/drop_last
try
:
loader
=
DataLoader
(
dataset
=
dataset
,
places
=
place
,
batch_sampler
=
batch_sampler
,
shuffle
=
True
,
drop_last
=
True
)
self
.
assertTrue
(
False
)
except
AssertionError
:
pass
# set batch_sampler correctly
try
:
loader
=
DataLoader
(
dataset
=
dataset
,
places
=
place
,
batch_sampler
=
batch_sampler
)
self
.
assertTrue
(
True
)
except
AssertionError
:
self
.
assertTrue
(
False
)
# CI Converage cannot record stub in subprocess,
# HACK a _worker_loop in main process call here
class
TestDataLoaderWorkerLoop
(
unittest
.
TestCase
):
def
run_without_worker_done
(
self
,
use_shared_memory
=
True
):
try
:
place
=
fluid
.
cpu_places
()[
0
]
with
fluid
.
dygraph
.
guard
(
place
):
dataset
=
RandomDataset
(
800
)
# test init_fn
def
_init_fn
(
worker_id
):
pass
# test collate_fn
def
_collate_fn
(
sample_list
):
return
[
np
.
stack
(
s
,
axis
=
0
)
for
s
in
list
(
zip
(
*
sample_list
))
]
loader
=
DataLoader
(
dataset
,
num_workers
=
1
,
places
=
place
,
use_shared_memory
=
use_shared_memory
)
assert
loader
.
num_workers
>
0
,
\
"go to AssertionError and pass in Mac and Windows"
loader
=
iter
(
loader
)
print
(
"loader length"
,
len
(
loader
))
indices_queue
=
multiprocessing
.
Queue
()
for
i
in
range
(
10
):
indices_queue
.
put
([
i
,
i
+
10
])
indices_queue
.
put
(
None
)
loader
.
_worker_loop
(
loader
.
_dataset
,
indices_queue
,
loader
.
_data_queue
,
loader
.
_workers_done_event
,
_collate_fn
,
_init_fn
,
0
)
self
.
assertTrue
(
False
)
except
AssertionError
:
pass
except
Exception
:
self
.
assertTrue
(
False
)
def
run_with_worker_done
(
self
,
use_shared_memory
=
True
):
try
:
place
=
fluid
.
cpu_places
()[
0
]
with
fluid
.
dygraph
.
guard
(
place
):
dataset
=
RandomDataset
(
800
)
# test init_fn
def
_init_fn
(
worker_id
):
pass
# test collate_fn
def
_collate_fn
(
sample_list
):
return
[
np
.
stack
(
s
,
axis
=
0
)
for
s
in
list
(
zip
(
*
sample_list
))
]
loader
=
DataLoader
(
dataset
,
num_workers
=
1
,
places
=
place
,
use_shared_memory
=
use_shared_memory
)
assert
loader
.
num_workers
>
0
,
\
"go to AssertionError and pass in Mac and Windows"
loader
=
iter
(
loader
)
print
(
"loader length"
,
len
(
loader
))
indices_queue
=
multiprocessing
.
Queue
()
for
i
in
range
(
10
):
indices_queue
.
put
([
i
,
i
+
10
])
indices_queue
.
put
(
None
)
loader
.
_workers_done_event
.
set
()
loader
.
_worker_loop
(
loader
.
_dataset
,
indices_queue
,
loader
.
_data_queue
,
loader
.
_workers_done_event
,
_collate_fn
,
_init_fn
,
0
)
self
.
assertTrue
(
True
)
except
AssertionError
:
pass
except
Exception
:
self
.
assertTrue
(
False
)
def
test_main
(
self
):
for
use_shared_memory
in
[
True
,
False
]:
self
.
run_without_worker_done
(
use_shared_memory
)
self
.
run_with_worker_done
(
use_shared_memory
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/io/__init__.py
浏览文件 @
80cf3c3c
...
...
@@ -13,22 +13,27 @@
# limitations under the License.
# TODO: define all functions about input & output in this directory
# __all__ = ['Dataset',
# 'Sampler',
# 'Transform',
# 'DataLoader',
# 'load',
# 'save',
# 'load_program_state',
# 'set_program_state',
# 'load_inference_model',
# 'save_inference_model',
# 'batch',
# 'shuffle',
# 'buffered',
# 'cache',
# 'chain',
# 'firstn',
# 'compose',
# 'map_readers',
# 'xmap_readers']
__all__
=
[
'Dataset'
,
'BatchSampler'
,
# 'Transform',
'DataLoader'
,
# 'load',
# 'save',
# 'load_program_state',
# 'set_program_state',
# 'load_inference_model',
# 'save_inference_model',
# 'batch',
# 'shuffle',
# 'buffered',
# 'cache',
# 'chain',
# 'firstn',
# 'compose',
# 'map_readers',
# 'xmap_readers'
]
from
..fluid.io
import
DataLoader
from
..fluid.dataloader
import
Dataset
,
BatchSampler
python/setup.py.in
浏览文件 @
80cf3c3c
...
...
@@ -149,6 +149,7 @@ packages=['paddle',
'paddle.fluid.proto.profiler',
'paddle.fluid.distributed',
'paddle.fluid.layers',
'paddle.fluid.dataloader',
'paddle.fluid.contrib',
'paddle.fluid.contrib.decoder',
'paddle.fluid.contrib.quantize',
...
...
@@ -176,6 +177,7 @@ packages=['paddle',
'paddle.fluid.incubate.fleet.parameter_server.pslib',
'paddle.fluid.incubate.fleet.collective',
'paddle.fluid.incubate.fleet.utils',
'paddle.io',
'paddle.nn',
'paddle.nn.functional',
'paddle.nn.layer',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录