imperative.cc 127.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif

23 24 25 26
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
27

28
#include <algorithm>
29
#include <memory>
30
#include <set>
J
Jiabin Yang 已提交
31
#include <string>
32
#include <unordered_map>
33
#include <unordered_set>
34
#include <utility>
J
Jiabin Yang 已提交
35
#include <vector>
36

J
Jiabin Yang 已提交
37
#include "paddle/fluid/eager/api/all.h"
38
#include "paddle/fluid/framework/convert_utils.h"
39
#include "paddle/fluid/framework/scope_guard.h"
40
#include "paddle/fluid/imperative/all_reduce.h"
41
#include "paddle/fluid/imperative/amp_auto_cast.h"
42
#include "paddle/fluid/imperative/basic_engine.h"
43
#include "paddle/fluid/imperative/bkcl_context.h"
44
#include "paddle/fluid/imperative/data_loader.h"
45
#include "paddle/fluid/imperative/gloo_context.h"
K
kuizhiqing 已提交
46
#include "paddle/fluid/imperative/heter_ccl_context.h"
47
#include "paddle/fluid/imperative/hooks.h"
48
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
49
#include "paddle/fluid/imperative/nccl_context.h"
50
#include "paddle/fluid/imperative/partial_grad_engine.h"
51
#include "paddle/fluid/imperative/profiler.h"
52
#include "paddle/fluid/imperative/reducer.h"
53
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
54
#include "paddle/fluid/imperative/type_defs.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
56
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/pybind/cuda_streams_py.h"
58
#include "paddle/fluid/pybind/eager_utils.h"
59
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
60
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
61
#include "paddle/fluid/pybind/tensor_py.h"
62
#include "paddle/fluid/pybind/uva_utils.h"
63
#include "paddle/phi/core/compat/arg_map_context.h"
64
#include "paddle/phi/core/type_defs.h"
65

66
PHI_DECLARE_bool(set_to_1d);
67 68 69
namespace paddle {
namespace pybind {

70
std::atomic<int> VarBaseUniqueNameID{0};
71 72
PyTypeObject *g_varbase_pytype = nullptr;

73 74
namespace py = ::pybind11;

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
108 109
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
127 128 129 130 131
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
132 133 134 135 136 137
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
138 139 140 141 142
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
143 144
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
145 146
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
147 148
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
149 150
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
151 152
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
153 154
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
155
        "Place should be one of "
张春乔 已提交
156
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/IPUPlace/"
张春乔 已提交
157
        "CustomPlace"));
L
Leo Chen 已提交
158 159 160
  }
}

L
Leo Chen 已提交
161
// only initialize varbase, but not its tensor.
162 163 164 165
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
166 167 168
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
169 170 171

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
172
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
173 174 175 176 177 178 179 180 181
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
182 183 184 185 186 187 188
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
189
  InitVarBaseOnly(self, name, persistable, stop_gradient);
190
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
L
Leo Chen 已提交
191
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
192
  if (platform::is_cpu_place(place)) {
193
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
194
  } else if (platform::is_xpu_place(place)) {
195
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
196
  } else if (platform::is_gpu_place(place)) {
197
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
198
  } else if (platform::is_cuda_pinned_place(place)) {
199 200
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
201 202
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
203
  } else if (platform::is_custom_place(place)) {
204 205
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
206
  } else {
L
Leo Chen 已提交
207
    PADDLE_THROW(platform::errors::InvalidArgument(
208
        "Place should be one of "
张春乔 已提交
209
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/IPUPlace/"));
J
Jiabin Yang 已提交
210
  }
211
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
212 213 214 215
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
216
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
217 218 219 220 221 222
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
223 224 225
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
226
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
227 228 229 230 231 232 233

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
234 235
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
236 237 238
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
239
}
240

241 242
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
243 244
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
245 246
                                        bool persistable = false,
                                        bool zero_copy = false,
247 248 249 250 251
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
252
  if (name == "") {
253 254
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
255
  }
256 257
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
258
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
259
  new (self) imperative::VarBase(name);
260
  self->SetPersistable(persistable);
261
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
262 263 264
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
265 266
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
267
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
268 269 270
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
271 272
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
273
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
274
  InitVarBaseAndTensor(self, array, place, "");
275
}
276

B
Baibaifan 已提交
277
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
278
                                                const phi::DenseTensor &tensor,
B
Baibaifan 已提交
279
                                                const std::string &name) {
280 281
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
282 283 284
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
285
  new (self) imperative::VarBase(name_);
286 287
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
288
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
289
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
290 291 292 293 294 295 296 297 298 299
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

300 301
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
302
                                         const phi::DenseTensor &tensor,
B
Baibaifan 已提交
303 304
                                         const P &place,
                                         const std::string &name) {
305
  VLOG(4) << "Init VarBase";
306 307 308
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
309
  new (self) imperative::VarBase(name_);
310 311
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
312
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
313
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
314 315 316 317 318 319 320 321 322 323
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

324 325 326 327 328
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
329
  } else {
330
    return framework::ToTypeName(var.Var().Type());
331 332
  }
}
L
Leo Chen 已提交
333

J
Jiabin Yang 已提交
334 335 336 337 338 339
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
340
            .Get<phi::DenseTensor>());
J
Jiabin Yang 已提交
341 342
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
343
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
344 345 346 347
        "method, when you reach this means we got another type index."));
  }
}

348
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
349 350 351 352 353 354 355 356 357 358 359 360 361

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

362
  if (PyList_Check(py_obj)) {  // List of VarBase
363 364 365
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
366 367 368
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
369 370 371
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
372
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
373 374 375
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
376 377 378
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
379 380 381
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
382 383 384
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
385 386 387 388
  }

  return result;
}
389

J
Jiabin Yang 已提交
390 391 392
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
393 394 395 396 397 398
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
399

400
  PADDLE_ENFORCE_EQ(
401 402
      PyErr_Occurred(),
      nullptr,
403
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
404 405 406
  return result;
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
424 425
      PyErr_Occurred(),
      nullptr,
426 427 428 429
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

430
template <typename P>
431 432
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
433 434
                        const P &dst_device,
                        const bool blocking) {
435 436 437 438 439 440 441 442
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
443 444 445
      if (src->Var().IsType<phi::DenseTensor>()) {
        auto &src_tensor = src->Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
446 447 448 449 450 451 452 453 454
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
455 456
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
457
        auto *dst_selected_rows =
458
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
459 460
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
461 462
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

488
// Bind Methods
J
Jiabin Yang 已提交
489
void BindImperative(py::module *m_ptr) {
490 491
  auto &m = *m_ptr;

492 493
#ifndef _WIN32
  // Dygraph DataLoader signal handler
494 495
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
496 497
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
498 499 500 501 502 503 504 505 506 507
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
508
  });
509 510
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
532 533
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
534
              platform::errors::InvalidArgument(
535
                  "Failed to convert input data to a regular ndarray.\n  * "
536 537 538 539 540
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
541
          phi::DenseTensor t;
542 543
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
544
          // 3. allocate shared memory
545
          void *data_ptr = t.data();
546
          size_t data_size = t.numel() * phi::SizeOf(t.dtype());
547 548 549 550 551 552
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
553 554 555 556 557
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
558 559 560 561 562 563 564 565
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

566 567 568 569 570 571
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
572 573
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
574
            platform::errors::InvalidArgument(
575
                "Failed to convert input data to a regular ndarray.\n  * "
576 577 578 579 580
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
581
        phi::DenseTensor t;
582 583
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
584 585
        // 3. allocate shared memory
        void *data_ptr = t.data();
586
        size_t data_size = t.numel() * phi::SizeOf(t.dtype());
587 588 589 590 591 592
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
593 594 595 596 597
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
598 599 600 601 602
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
603

604 605
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
606
      auto t = tensor_list[i].cast<phi::DenseTensor>();
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
622 623 624 625 626

  m.def("_set_max_memory_map_allocation_pool_size", [](int32_t size) {
    memory::allocation::MemoryMapAllocationPool::Instance().SetMaxPoolSize(
        size);
  });
627 628
#endif

629 630
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
631 632 633 634
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
635 636
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
637 638 639
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
640 641
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
642
          egr::Controller::Instance().SetCurrentTracer(tracer);
643
          imperative::SetCurrentTracer(tracer);
644
        });
645 646 647 648
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
649 650 651 652 653 654 655
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
656
      .def("__init__",
657 658
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
659
              const std::vector<int64_t> &dims,
660 661 662
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
663
             VLOG(4) << "Init VarBase";
664 665 666
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
667
                   "generated_tensor");
668 669 670 671
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
672 673 674 675
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
676
               auto *tensor = self.MutableVar()->GetMutable<phi::DenseTensor>();
677
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
678 679
             }
           })
680 681 682 683 684 685 686
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
687
           py::arg("stop_gradient") = -1)
688 689 690 691 692 693 694
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
695
           py::arg("stop_gradient") = -1)
696 697 698 699 700 701 702
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
703
           py::arg("stop_gradient") = -1)
704 705 706 707 708 709 710
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
711
           py::arg("stop_gradient") = -1)
712 713 714 715 716 717 718
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
719
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
720
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
749
           py::arg("name") = "")
750
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
751 752
      .def(
          "__setitem_varbase__",
753 754
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
755 756 757 758
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
759
                self->MutableVar()->GetMutable<phi::DenseTensor>();
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

784 785 786 787 788
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
812 813 814 815 816 817 818 819 820 821
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
838 839
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
840 841 842 843 844 845
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

846
              if (py::isinstance<imperative::VarBase>(value_obj.ptr())) {
847 848 849
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
850 851 852 853 854 855

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
856 857 858 859 860 861 862
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
863
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
864 865 866 867
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
868
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
869 870 871 872
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
873 874
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
875 876 877 878
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
879 880
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
881 882 883 884
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
885
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
886
                  }
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX64) {
                  if (!py::isinstance<py::array_t<std::complex<float>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<float>>(
                            value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX128) {
                  if (!py::isinstance<py::array_t<std::complex<double>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<double>>(
                            value_obj);
                  }
903 904 905 906
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
907 908
                      "float32, float64, complex64, complex128, int32 or "
                      "int64, "
909 910 911
                      "please check the type of tensor."));
                }

912 913 914 915 916
                SetTensorFromPyArray(
                    value_tensor->MutableVar()->GetMutable<phi::DenseTensor>(),
                    value,
                    self->Place(),
                    false);
917 918 919 920 921 922
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
923 924
                    py::isinstance<py::bool_>(value_obj) ||
                    PyComplex_Check(value_obj.ptr())) {
925
                  if (self->DataType() == framework::proto::VarType::FP32) {
926 927
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
928 929
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
930 931
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<double>()};
932 933
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
934 935
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int32_t>()};
936 937
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
938 939
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int64_t>()};
940 941
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
942 943
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<bool>()};
944 945
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP16) {
946 947 948 949 950 951 952 953 954 955
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX64) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<float>>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX128) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<double>>()};
956 957 958 959
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
960 961
                        "float32, float64, complex64, complex128, int32, int64 "
                        "or float16, "
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
978 979 980 981
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
982 983 984 985 986 987 988 989 990 991
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
992
                    index_var->MutableVar()->GetMutable<phi::DenseTensor>();
993 994 995 996 997 998
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
999 1000
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1001 1002
            }
          })
1003
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1004
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1005
             VLOG(4) << "Call _getitem_index_not_tensor";
1006
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1007 1008 1009 1010
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
1011
             auto tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1023 1024 1025
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1026

Z
zyfncg 已提交
1027
             auto out = slice_axes.empty() && !list_select_flag
1028 1029 1030 1031
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1032

1033
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1034
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1053 1054

             bool set_to_1d = FLAGS_set_to_1d;
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

             if (set_to_1d) {
               // NOTE(zoooo0820): When all axes are decreased, the output
               // will be 1-D with FLAGS_set_to_1d=True. In this case, one
               // `None` should be pop out, otherwise the output shape will be
               // not correct.
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 VLOG(0) << "Warning: In Tensor '__getitem__', if the number "
                            "of scalar "
                            "elements "
                            "in the index is equal to the rank of the Tensor, "
                            "the output "
                            "should "
                            "be 0-D. In order to be consistent with the "
                            "behavior of previous "
                            "versions, it will be processed to 1-D. But it is "
                            "not correct and "
                            "will be "
                            "removed in release 2.6. "
                            "If 1-D is still wanted, please modify the index "
                            "element from "
                            "scalar to slice "
                            "(e.g. 'x[i]' => 'x[i:i+1]'). ";
                 if (!none_axes.empty()) {
1080 1081 1082
                   none_axes.pop_back();
                 }
               }
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
             }
             if (!none_axes.empty()) {
               // Deal with cases that decrease_axes is not empty
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
               for (auto &axis : none_axes) {
                 int len = 0;
                 for (int da : decrease_axis) {
                   if (da < axis) {
                     len++;
1094 1095
                   }
                 }
1096
                 axis -= len;
1097
               }
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

               imperative::NameVarBaseMap ins = {{"X", {out}}};
               framework::AttributeMap attrs = {{"axes", none_axes}};
               auto new_out = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               auto out_xshape = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
               imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                  {"XShape", {out_xshape}}};
               tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

               return new_out;
1110 1111
             }

Z
zyfncg 已提交
1112 1113 1114 1115
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
1116 1117
               auto *idx_tensor =
                   select_index->MutableVar()->GetMutable<phi::DenseTensor>();
Z
zyfncg 已提交
1118 1119
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1120 1121
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1122 1123 1124 1125 1126 1127 1128

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1129
             return out;
1130
           })
1131 1132 1133
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
1134
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1135
            PADDLE_ENFORCE_EQ(
1136 1137
                tensor.IsInitialized(),
                true,
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1156 1157
                  numel,
                  1,
1158 1159 1160 1161 1162 1163
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1164 1165
                  offset,
                  numel,
1166 1167 1168
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1169 1170
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1171 1172 1173 1174 1175 1176
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1177 1178
                    index,
                    dims[i],
1179 1180
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1181 1182 1183
                        index,
                        i,
                        dims[i]));
1184 1185 1186 1187
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1188
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1189 1190
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1191 1192
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1193 1194 1195 1196 1197
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1198
                "Unsupported tensor data type: %s", tensor.dtype()));
1199 1200
          },
          py::return_value_policy::copy)
1201 1202 1203 1204
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1205 1206
                 var->IsInitialized(),
                 true,
1207 1208 1209 1210 1211
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1212 1213 1214 1215 1216 1217 1218 1219
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1220 1221 1222 1223 1224
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1225 1226
      .def(
          "numpy",
1227

1228
          [](imperative::VarBase &self) -> py::array {
1229
            const auto &tensor = self.MutableVar()->Get<phi::DenseTensor>();
1230
            PADDLE_ENFORCE_EQ(
1231 1232
                tensor.IsInitialized(),
                true,
1233 1234 1235 1236 1237 1238
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1239
        Returns a numpy array shows the value of current Tensor.
1240

1241
        Returns:
Z
Zhou Wei 已提交
1242
            ndarray: The numpy value of current Tensor.
1243 1244

        Returns type:
Z
Zhou Wei 已提交
1245
            ndarray: dtype is same as current Tensor
1246 1247 1248 1249

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1250
                import paddle
1251 1252
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1253 1254 1255 1256
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1257
       )DOC")
1258 1259 1260 1261 1262
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1263 1264
                self.Var().IsInitialized(),
                true,
1265 1266
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1267

1268
            PADDLE_ENFORCE_EQ(
1269
                self.Var().IsType<phi::DenseTensor>() ||
1270 1271 1272 1273 1274
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1275

1276 1277
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1278

1279 1280 1281
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1282

1283 1284
            if (self.Var().IsType<phi::DenseTensor>()) {
              const auto &origin_tensor = self.Var().Get<phi::DenseTensor>();
1285
              PADDLE_ENFORCE_EQ(
1286 1287
                  origin_tensor.IsInitialized(),
                  true,
1288 1289 1290 1291
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
1292
                  detach_var->MutableVar()->GetMutable<phi::DenseTensor>();
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1303 1304
                  origin_selected_rows.value().IsInitialized(),
                  true,
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1322 1323
          py::return_value_policy::take_ownership,
          R"DOC(
1324

1325
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1326 1327
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1328

1329
        Returns: The detached Tensor.
1330 1331 1332 1333

        Examples:
            .. code-block:: python

1334
                import paddle
Z
Zhou Wei 已提交
1335

1336
                x = paddle.to_tensor([1.0], stop_gradient=False)
Z
Zhou Wei 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
1356
                y.backward()
Z
Zhou Wei 已提交
1357 1358
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
1359

1360
       )DOC")
1361 1362 1363 1364
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1365

1366
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1367

1368
        The Gradient of current Tensor will be set to ``0`` .
1369 1370 1371 1372 1373 1374

        Returns:  None

        Examples:
             .. code-block:: python

1375
                import paddle
Z
Zhou Wei 已提交
1376 1377 1378 1379 1380 1381 1382
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1383
      )DOC")
1384 1385
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1386 1387
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1388 1389 1390
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
1391
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1392 1393
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1405 1406
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1438
      .def("_grad_name", &imperative::VarBase::GradVarName)
1439 1440 1441
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
1442
            return self.MutableGradVar()->Get<phi::DenseTensor>();
1443 1444
          },
          py::return_value_policy::reference)
1445 1446 1447 1448
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1449
      .def("_reset_grad_inplace_version",
1450
           [](imperative::VarBase &self, bool set_to_zero) {
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1462 1463
             py::gil_scoped_release release;

1464 1465 1466
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1467 1468 1469
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1470 1471
             }
           })
1472 1473 1474 1475 1476 1477 1478
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
1479 1480
                  grad_var->MutableVar()->IsType<phi::DenseTensor>()
                      ? grad_var->MutableVar()->GetMutable<phi::DenseTensor>()
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1492 1493 1494 1495
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1496 1497
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1498
             return self.Var().IsType<phi::SelectedRows>();
1499
           })
1500 1501 1502 1503 1504
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1505
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1506
#if NCCL_VERSION_CODE >= 2212
1507
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1508
#else
1509
               if (!self.Var().IsType<phi::SelectedRows>()) {
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1523
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1524 1525 1526
            }
          },
          py::call_guard<py::gil_scoped_release>())
1527 1528 1529
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1530 1531
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1532
                 platform::errors::InvalidArgument(
1533 1534 1535
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1536 1537 1538 1539 1540
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1541 1542
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1543
                 platform::errors::InvalidArgument(
1544 1545 1546
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1547
           })
1548 1549 1550
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1551 1552
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1564 1565 1566 1567
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1568 1569
                self.IsLeaf(),
                true,
1570 1571 1572
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1573 1574
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1575 1576 1577 1578 1579 1580 1581 1582
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
1625

1626 1627 1628 1629
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1630 1631 1632
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1633
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1634 1635 1636 1637
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1638
#endif
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1664 1665 1666
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1667 1668
             py::handle &handle,
             bool blocking) {
1669
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1670 1671 1672
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1673
#else
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1708
#endif
1709
          },
1710 1711 1712
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1713 1714
        Returns a copy of this Tensor in GPU memory.

1715
        If this Tensor is already in GPU memory and device_id is default,
1716
        then no copy is performed and the original Tensor is returned.
1717

1718
        Args:
1719
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1720
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be
1721 1722 1723 1724 1725
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1726
              # required: gpu
1727 1728
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1729
              print(x.place)        # Place(cpu)
1730 1731

              y = x.cuda()
1732
              print(y.place)        # Place(gpu:0)
1733

1734
              y = x.cuda(None)
1735
              print(y.place)        # Place(gpu:0)
1736

1737 1738 1739
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1740
       )DOC")
1741 1742 1743
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1744
#ifndef _WIN32
1745
            PADDLE_ENFORCE_EQ(
1746 1747
                platform::is_cpu_place(self->Place()),
                true,
1748 1749 1750
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
1751
            auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1764 1765 1766 1767 1768
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1769 1770
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1771 1772 1773 1774
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1775 1776
          },
          py::return_value_policy::reference)
1777
#if defined(PADDLE_WITH_CUDA)
1778 1779 1780
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1781 1782
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1783 1784 1785 1786
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
1787
                self->MutableVar()->GetMutable<phi::DenseTensor>();
1788 1789
            tensor_uva(self_tensor, device_id);
          },
1790 1791 1792
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1808
      .def("copy_", &imperative::VarBase::CopyFrom)
1809 1810 1811
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1812 1813
             const platform::CPUPlace &place,
             bool blocking) {
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1832 1833
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1844 1845
             const platform::XPUPlace &place,
             bool blocking) {
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1856 1857
             const platform::CUDAPlace &place,
             bool blocking) {
1858 1859 1860 1861 1862 1863 1864
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1877 1878 1879
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1880 1881
             const platform::CustomPlace &place,
             bool blocking) {
1882 1883 1884 1885 1886 1887 1888
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1889 1890 1891
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1892 1893
             const platform::Place &place,
             bool blocking) {
1894 1895 1896 1897 1898 1899 1900 1901
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1902 1903
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1904
          py::return_value_policy::reference)
1905 1906
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1907
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1908
             PADDLE_ENFORCE_EQ(
1909 1910
                 t->IsInitialized(),
                 true,
1911 1912
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1913 1914 1915 1916
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1917
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1918
             PADDLE_ENFORCE_EQ(
1919 1920
                 t->IsInitialized(),
                 true,
1921 1922
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1923 1924
             return t->offset();
           })
1925
      .def("_share_buffer_to",
1926
           [](const std::shared_ptr<imperative::VarBase> &self,
1927
              std::shared_ptr<imperative::VarBase> &dst) {
1928 1929
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1930
             PADDLE_ENFORCE_EQ(
1931 1932
                 src->IsInitialized(),
                 true,
1933 1934 1935
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1936
             dst_->ShareDataTypeWith(*src);
1937 1938 1939
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1940
              std::shared_ptr<imperative::VarBase> &dst) {
1941 1942
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1943 1944 1945 1946
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1947
           })
1948 1949 1950
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1951 1952
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1953
             PADDLE_ENFORCE_EQ(
1954 1955
                 src->IsInitialized(),
                 true,
1956 1957 1958 1959 1960 1961 1962 1963 1964
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1965 1966
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1967 1968 1969 1970 1971
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1972 1973
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1974 1975
              int64_t begin_idx,
              int64_t end_idx) {
1976
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1977
             PADDLE_ENFORCE_EQ(
1978 1979
                 t->IsInitialized(),
                 true,
1980 1981
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1982 1983 1984 1985 1986 1987 1988
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
1989
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1990 1991
             return t->numel();
           })
1992 1993
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
1994

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2015 2016
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2017 2018 2019
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2020 2021
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2022
                    &imperative::VarBase::SetPersistable)
2023 2024 2025
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
2026
            if (self.Var().IsType<phi::DenseTensor>()) {
2027
              auto value = phi::vectorize<int>(
2028 2029
                  self.Var().Get<phi::DenseTensor>().dims());
              auto tensor = self.Var().Get<phi::DenseTensor>();
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

2046 2047
              if (change_dim &&
                  phi::DataLayoutToString(desired_layout) == "NCHW") {
2048 2049 2050 2051 2052 2053 2054 2055 2056
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
2057 2058
              } else if (change_dim &&
                         phi::DataLayoutToString(desired_layout) == "NHWC") {
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2086 2087 2088
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
2089 2090
            if (self.Var().IsType<phi::DenseTensor>()) {
              auto layout = self.Var().Get<phi::DenseTensor>().layout();
2091
              return phi::DataLayoutToString(layout);
2092 2093 2094
            }
            return std::string("");
          })
2095 2096
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2097 2098 2099
                             R"DOC(
      Whether a Tensor is leaf Tensor.

2100 2101
      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor.

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2125
      .def_property_readonly(
2126 2127
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2128
          py::return_value_policy::copy)
2129 2130 2131 2132 2133 2134
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2135
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2136
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2137

2138 2139 2140 2141 2142
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2143 2144
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
2145
      .value("OD", paddle::imperative::AmpLevel::OD)
L
Leo Chen 已提交
2146 2147 2148 2149 2150
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2151
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2152
      m, "Tracer", R"DOC()DOC")
2153
      .def("__init__",
J
Jiabin Yang 已提交
2154
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2155 2156 2157
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2158 2159
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2160
                    &imperative::Tracer::SetAmpLevel)
2161 2162
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2163
                    &imperative::Tracer::SetAmpDtype)
2164 2165
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2166
                    &imperative::Tracer::SetHasGrad)
2167 2168 2169 2170 2171 2172 2173 2174
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2175
              self.SetExpectedPlace(*p);
2176 2177
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2178 2179
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2180 2181 2182
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2183 2184
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2185 2186
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2187
              self.SetExpectedPlace(*p);
2188 2189
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2190 2191
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2192
              self.SetExpectedPlace(*p);
2193 2194
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2195 2196 2197 2198 2199
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2200 2201 2202 2203 2204
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2205 2206 2207 2208 2209
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2210
            } else {
L
Leo Chen 已提交
2211
              PADDLE_THROW(platform::errors::InvalidArgument(
2212
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
张春乔 已提交
2213
                  "CPUPlace, IPUPlace"
L
Leo Chen 已提交
2214 2215
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2216 2217
            }
          })
2218 2219 2220
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2221 2222
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2223
           py::arg("key") = "dygraph_tmp")
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2240
             VLOG(5) << "AMP operators changed, "
2241 2242
                     << imperative::AmpOperators::Instance();
           })
2243 2244 2245
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2246 2247
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2248
           })
C
Chen Weihang 已提交
2249
      .def("_get_kernel_signature",
2250 2251 2252 2253
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2271 2272
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2273 2274 2275
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2276 2277
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2278 2279
             }
           })
2280
      .def("trace",
2281 2282 2283 2284 2285 2286
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2287 2288 2289 2290 2291 2292
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2293 2294 2295 2296 2297 2298 2299
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2300 2301
             }
           })
2302
      .def("trace",
2303 2304 2305 2306 2307 2308
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2309 2310
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2311 2312 2313 2314
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2315 2316 2317 2318 2319 2320 2321
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2322 2323
             }
           })
M
minqiyang 已提交
2324
      .def("trace",
2325 2326 2327 2328 2329 2330
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2331 2332
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2333 2334
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2335 2336
             {
               py::gil_scoped_release release;
2337 2338 2339 2340 2341 2342 2343
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2344
             }
M
minqiyang 已提交
2345
           })
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2356 2357 2358
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2359 2360 2361 2362 2363 2364 2365
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2366 2367
             }
           })
J
Jiabin Yang 已提交
2368
      .def("trace",
2369 2370 2371 2372 2373 2374
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2375 2376
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2377 2378 2379 2380
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2381 2382 2383 2384 2385 2386 2387
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2388 2389
             }
           });
2390 2391

  // define parallel context
2392 2393 2394
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2395 2396
      .def_property(
          "nranks",
2397 2398
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2399 2400
            self.nranks_ = nranks;
          })
2401 2402 2403 2404 2405 2406 2407 2408
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2409 2410
      .def_property(
          "trainer_endpoints",
2411
          [](const imperative::ParallelStrategy &self) {
2412 2413
            return self.trainer_endpoints_;
          },
2414
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2415 2416
            self.trainer_endpoints_ = eps;
          })
2417 2418 2419 2420 2421 2422 2423 2424
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2425 2426 2427 2428 2429 2430
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2431

2432 2433 2434 2435
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2436
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
R
ronnywang 已提交
2437
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
2438

2439 2440 2441 2442 2443 2444 2445
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2460 2461 2462 2463 2464
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2465 2466 2467 2468
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2469 2470
         bool retain_graph,
         const imperative::Tracer &tracer) {
2471 2472 2473 2474 2475 2476 2477 2478
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

K
Kim Yann 已提交
2479 2480
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
2481 2482 2483 2484 2485 2486
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2487 2488 2489 2490
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2501 2502
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2503
        py::arg("tensor_indices") = std::vector<int64_t>{},
2504
        py::call_guard<py::gil_scoped_release>());
2505
#endif
2506

2507
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2508 2509
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2510 2511 2512 2513
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2514 2515 2516 2517
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2518 2519 2520
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2521 2522
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2523 2524 2525 2526
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2527 2528 2529 2530
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2531
#endif
2532 2533 2534

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2535 2536
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2537 2538 2539 2540 2541 2542 2543
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2544 2545 2546
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2547
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
张春乔 已提交
2548
    defined(PADDLE_WITH_XPU_BKCL)
2549 2550
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2551 2552 2553 2554 2555 2556
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

S
Siming Dai 已提交
2557
#if defined(PADDLE_WITH_CUDA)
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2579 2580
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2594 2595 2596 2597
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

2609
      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and
S
Siming Dai 已提交
2610 2611 2612 2613 2614 2615 2616 2617
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
2618

S
Siming Dai 已提交
2619 2620 2621 2622 2623 2624 2625
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2626 2627 2628
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2629 2630 2631 2632
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2633
        PADDLE_ENFORCE_EQ(
2634 2635
            platform::is_gpu_place(src.Place()),
            true,
2636 2637 2638 2639
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2640 2641
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2642 2643 2644 2645 2646
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2647 2648
            platform::is_cpu_place(offset.Place()),
            true,
2649 2650 2651 2652
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2653 2654
            platform::is_cpu_place(count.Place()),
            true,
2655 2656 2657 2658 2659 2660
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
2661 2662 2663 2664
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2665 2666
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2667 2668
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2669 2670
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2671 2672
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2673 2674
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2675 2676
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2677 2678 2679
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2680 2681
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2682 2683 2684 2685 2686
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2687 2688
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2689 2690 2691 2692 2693
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2694 2695
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2696 2697 2698 2699 2700 2701 2702 2703 2704

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2705 2706
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2707 2708
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2709 2710
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2711 2712
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2713 2714 2715 2716 2717
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2718 2719 2720 2721
          src_offset += c;
        }
      },
      R"DOC(
2722 2723 2724 2725 2726
  This api provides a way to write pieces of source tensor to destination tensor
  inplacely and asynchronously. In which, we use `offset` and `count` to determine
  where to copy. `offset` means the begin points of the copy pieces of `src`, and
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process
  will run asynchronously from cuda to pin memory. We can simply remember this as
2727
  "gpu async_write to pin_memory".
2728

2729
  Arguments:
2730 2731

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2732 2733
                  Besides, `src` should be placed on CUDAPlace.

2734 2735 2736
    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst`
                  should be the same with `src` except for the first dimension.
2737

2738 2739 2740 2741 2742 2743 2744
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
                    should be one-dimensinal.
2745 2746 2747 2748 2749 2750

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
2751
          from paddle.fluid import core
2752
          from paddle.device import cuda
2753

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2774 2775 2776 2777 2778 2779 2780 2781
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2782 2783 2784 2785 2786
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2787 2788
            platform::is_gpu_place(dst.Place()),
            true,
2789 2790 2791 2792
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2793 2794
            platform::is_cpu_place(index.Place()),
            true,
2795 2796 2797 2798
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2799 2800
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2801 2802 2803 2804 2805
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2806 2807
            platform::is_cpu_place(offset.Place()),
            true,
2808 2809 2810 2811
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2812 2813
            platform::is_cpu_place(count.Place()),
            true,
2814 2815 2816 2817
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

2818 2819 2820
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &index_tensor = index.Var().Get<phi::DenseTensor>();
2821
        auto *buffer_tensor =
2822 2823 2824
            buffer.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2825 2826 2827
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2828 2829
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2830 2831 2832 2833
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2834 2835
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2836 2837 2838 2839 2840
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2841 2842
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2843 2844 2845 2846
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2847 2848
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2849 2850 2851 2852
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2853 2854
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2855 2856 2857
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
2858 2859
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2860 2861 2862 2863 2864 2865

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2866 2867
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2868 2869
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2870 2871
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2872 2873
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2874 2875
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2887 2888
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2889 2890 2891 2892 2893 2894 2895
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2896 2897
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2898 2899
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2900 2901
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2902 2903
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2904 2905 2906 2907 2908
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
2909 2910 2911
            dst_offset += c;
          }
        } else {
2912 2913
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
2914 2915 2916 2917 2918
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
2919 2920 2921
        auto index_select = [](const phi::DenseTensor &src_tensor,
                               const phi::DenseTensor &index_tensor,
                               phi::DenseTensor *buffer_tensor) {
2922 2923 2924 2925 2926 2927 2928 2929 2930
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
2931 2932
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
2933 2934 2935 2936 2937 2938
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
2939 2940
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
2941
                        index_tensor.numel() * size * sizeof(float),
2942 2943
                        cudaMemcpyHostToDevice,
                        stream);
2944 2945
      },
      R"DOC(
2946 2947 2948 2949 2950
  This api provides a way to read from pieces of source tensor to destination tensor
  asynchronously. In which, we use `index`, `offset` and `count` to determine where
  to read. `index` means the index position of src tensor we want to read. `offset`
  and count means the begin points and length of pieces of src tensor we want to read.
  To be noted, the copy process will run asynchronously from pin memory to cuda place.
2951 2952 2953
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
2954 2955

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2956
                  Besides, `src` should be placed on CUDAPinnedPlace.
2957 2958 2959

    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should
2960 2961
                  be the same with `src` except for the first dimension.

2962 2963
    index (Tensor): The index tensor, and the data type should be `int64` currently.
                    Besides, `index` should be on CPUplace. The shape of `index` should
2964 2965
                    be one-dimensional.

2966 2967
    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily.
                     The data type should be `float32` currently, and should be placed
2968 2969
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

2970 2971
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
2972 2973
                     should be one-dimensional.

2974 2975
    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
2976
                    should be one-dimensinal.
2977

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
2996

2997 2998 2999
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
3000

3001 3002
)DOC");
#endif
3003 3004 3005 3006
}

}  // namespace pybind
}  // namespace paddle