- ``--job_id``: The job unique id, it affects the log files' name. e.g., ``--job_id=job1``. Default ``--job_id=default``.
- ``--devices``: The selected accelerate devices on nodes, can be gpu/xpu/npu/mlu etc.. e.g., ``--devices=0,1,2,3`` will launch four training processes each bound to one device.
- ``--devices``: The selected accelerate devices on nodes, can be gpu/xpu/npu etc.. e.g., ``--devices=0,1,2,3`` will launch four training processes each bound to one device.
- ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``training.py``
Profiler context manager, user interface to manage profiling process to start, stop, export profiling data and print summary table.
Args:
targets (list, optional): specify target devices to profile, and all existing and supported devices will be chosen by default. Currently supported values, :ref:`ProfilerTarget.CPU <api_paddle_profiler_ProfilerTarget>` , :ref:`ProfilerTarget.GPU <api_paddle_profiler_ProfilerTarget>` and :ref:`ProfilerTarget.MLU <api_paddle_profiler_ProfilerTarget>` .
targets (list, optional): specify target devices to profile, and all existing and supported devices will be chosen by default. Currently supported values, :ref:`ProfilerTarget.CPU <api_paddle_profiler_ProfilerTarget>` and :ref:`ProfilerTarget.GPU <api_paddle_profiler_ProfilerTarget>` .
scheduler (Callable|tuple, optional): If it is a callable object, it takes a step number as parameter and return the corresponding :ref:`ProfilerState <api_paddle_profiler_ProfilerState>`. This callable object can be generated by :ref:`make_scheduler <api_paddle_profiler_make_scheduler>` function.
If not provided (None), the default scheduler will keep tracing until the profiler exits. If it is a tuple, it has two values start_batch and end_batch,
which means profiling range [start_batch, end_batch).