imperative.cc 127.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif

23 24 25 26
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
27

28
#include <algorithm>
29
#include <memory>
30
#include <set>
J
Jiabin Yang 已提交
31
#include <string>
32
#include <unordered_map>
33
#include <unordered_set>
34
#include <utility>
J
Jiabin Yang 已提交
35
#include <vector>
36

J
Jiabin Yang 已提交
37
#include "paddle/fluid/eager/api/all.h"
38
#include "paddle/fluid/framework/convert_utils.h"
39
#include "paddle/fluid/framework/scope_guard.h"
40
#include "paddle/fluid/imperative/all_reduce.h"
41
#include "paddle/fluid/imperative/amp_auto_cast.h"
42
#include "paddle/fluid/imperative/basic_engine.h"
43
#include "paddle/fluid/imperative/bkcl_context.h"
44
#include "paddle/fluid/imperative/data_loader.h"
45
#include "paddle/fluid/imperative/gloo_context.h"
46
#include "paddle/fluid/imperative/hccl_context.h"
K
kuizhiqing 已提交
47
#include "paddle/fluid/imperative/heter_ccl_context.h"
48
#include "paddle/fluid/imperative/hooks.h"
49
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
50
#include "paddle/fluid/imperative/nccl_context.h"
51
#include "paddle/fluid/imperative/partial_grad_engine.h"
52
#include "paddle/fluid/imperative/profiler.h"
53
#include "paddle/fluid/imperative/reducer.h"
54
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
55
#include "paddle/fluid/imperative/type_defs.h"
56
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
57
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
58
#include "paddle/fluid/pybind/cuda_streams_py.h"
59
#include "paddle/fluid/pybind/eager_utils.h"
60
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
61
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
62
#include "paddle/fluid/pybind/tensor_py.h"
63
#include "paddle/fluid/pybind/uva_utils.h"
64
#include "paddle/phi/core/compat/arg_map_context.h"
65
#include "paddle/phi/core/type_defs.h"
66

67 68 69
namespace paddle {
namespace pybind {

70
std::atomic<int> VarBaseUniqueNameID{0};
71 72
PyTypeObject *g_varbase_pytype = nullptr;

73 74
namespace py = ::pybind11;

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
108 109
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
127 128 129 130 131
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
132 133 134 135 136 137
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
138 139 140 141 142
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
143 144
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
145 146
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
147 148
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
149 150
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
151 152
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
153 154
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
155 156
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
157
        "Place should be one of "
158 159
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace/CustomPlace"));
L
Leo Chen 已提交
160 161 162
  }
}

L
Leo Chen 已提交
163
// only initialize varbase, but not its tensor.
164 165 166 167
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
168 169 170
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
171 172 173

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
174
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
175 176 177 178 179 180 181 182 183
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
184 185 186 187 188 189 190
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
191
  InitVarBaseOnly(self, name, persistable, stop_gradient);
192
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
L
Leo Chen 已提交
193
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
194
  if (platform::is_cpu_place(place)) {
195
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
196
  } else if (platform::is_xpu_place(place)) {
197
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
198
  } else if (platform::is_gpu_place(place)) {
199
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
200
  } else if (platform::is_cuda_pinned_place(place)) {
201 202
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
203
  } else if (platform::is_npu_place(place)) {
204
    SetTensorFromPyArray<platform::NPUPlace>(tensor, array, place, zero_copy);
205 206
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
207
  } else if (platform::is_custom_place(place)) {
208 209
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
210
  } else {
L
Leo Chen 已提交
211
    PADDLE_THROW(platform::errors::InvalidArgument(
212
        "Place should be one of "
213 214
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
        "MLUPlace"));
J
Jiabin Yang 已提交
215
  }
216
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
217 218 219 220
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
221
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
222 223 224 225 226 227
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
228 229 230
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
231
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
232 233 234 235 236 237 238

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
239 240
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
241 242 243
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
244
}
245

246 247
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
248 249
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
250 251
                                        bool persistable = false,
                                        bool zero_copy = false,
252 253 254 255 256
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
257
  if (name == "") {
258 259
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
260
  }
261 262
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
263
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
264
  new (self) imperative::VarBase(name);
265
  self->SetPersistable(persistable);
266
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
267 268 269
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
270 271
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
272
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
273 274 275
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
276 277
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
278
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
279
  InitVarBaseAndTensor(self, array, place, "");
280
}
281

B
Baibaifan 已提交
282
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
283
                                                const phi::DenseTensor &tensor,
B
Baibaifan 已提交
284
                                                const std::string &name) {
285 286
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
287 288 289
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
290
  new (self) imperative::VarBase(name_);
291 292
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
293
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
294
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
295 296 297 298 299 300 301 302 303 304
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

305 306
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
307
                                         const phi::DenseTensor &tensor,
B
Baibaifan 已提交
308 309
                                         const P &place,
                                         const std::string &name) {
310
  VLOG(4) << "Init VarBase";
311 312 313
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
314
  new (self) imperative::VarBase(name_);
315 316
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
317
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
318
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
319 320 321 322 323 324 325 326 327 328
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

329 330 331 332 333
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
334
  } else {
335
    return framework::ToTypeName(var.Var().Type());
336 337
  }
}
L
Leo Chen 已提交
338

J
Jiabin Yang 已提交
339 340 341 342 343 344
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
345
            .Get<phi::DenseTensor>());
J
Jiabin Yang 已提交
346 347
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
348
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
349 350 351 352
        "method, when you reach this means we got another type index."));
  }
}

353
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
354 355 356 357 358 359 360 361 362 363 364 365 366

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

367
  if (PyList_Check(py_obj)) {  // List of VarBase
368 369 370
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
371 372 373
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
374 375 376
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
377
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
378 379 380
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
381 382 383
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
384 385 386
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
387 388 389
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
390 391 392 393
  }

  return result;
}
394

J
Jiabin Yang 已提交
395 396 397
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
398 399 400 401 402 403
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
404

405
  PADDLE_ENFORCE_EQ(
406 407
      PyErr_Occurred(),
      nullptr,
408
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
409 410 411
  return result;
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
429 430
      PyErr_Occurred(),
      nullptr,
431 432 433 434
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

435
template <typename P>
436 437
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
438 439
                        const P &dst_device,
                        const bool blocking) {
440 441 442 443 444 445 446 447
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
448 449 450
      if (src->Var().IsType<phi::DenseTensor>()) {
        auto &src_tensor = src->Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
451 452 453 454 455 456 457 458 459
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
460 461
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
462
        auto *dst_selected_rows =
463
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
464 465
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
466 467
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

493
// Bind Methods
J
Jiabin Yang 已提交
494
void BindImperative(py::module *m_ptr) {
495 496
  auto &m = *m_ptr;

497 498
#ifndef _WIN32
  // Dygraph DataLoader signal handler
499 500
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
501 502
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
503 504 505 506 507 508 509 510 511 512
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
513
  });
514 515
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
537 538
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
539
              platform::errors::InvalidArgument(
540
                  "Failed to convert input data to a regular ndarray.\n  * "
541 542 543 544 545
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
546
          phi::DenseTensor t;
547 548
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
549
          // 3. allocate shared memory
550
          void *data_ptr = t.data();
551
          size_t data_size = t.numel() * phi::SizeOf(t.dtype());
552 553 554 555 556 557
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
558 559 560 561 562
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
563 564 565 566 567 568 569 570
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

571 572 573 574 575 576
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
577 578
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
579
            platform::errors::InvalidArgument(
580
                "Failed to convert input data to a regular ndarray.\n  * "
581 582 583 584 585
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
586
        phi::DenseTensor t;
587 588
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
589 590
        // 3. allocate shared memory
        void *data_ptr = t.data();
591
        size_t data_size = t.numel() * phi::SizeOf(t.dtype());
592 593 594 595 596 597
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
598 599 600 601 602
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
603 604 605 606 607
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
608

609 610
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
611
      auto t = tensor_list[i].cast<phi::DenseTensor>();
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
627 628 629 630 631

  m.def("_set_max_memory_map_allocation_pool_size", [](int32_t size) {
    memory::allocation::MemoryMapAllocationPool::Instance().SetMaxPoolSize(
        size);
  });
632 633
#endif

634 635
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
636 637 638 639
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
640 641
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
642 643 644
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
645 646
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
647
          egr::Controller::Instance().SetCurrentTracer(tracer);
648
          imperative::SetCurrentTracer(tracer);
649
        });
650 651 652 653
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
654 655 656 657 658 659 660
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
661
      .def("__init__",
662 663
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
664
              const std::vector<int64_t> &dims,
665 666 667
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
668
             VLOG(4) << "Init VarBase";
669 670 671
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
672
                   "generated_tensor");
673 674 675 676
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
677 678 679 680
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
681
               auto *tensor = self.MutableVar()->GetMutable<phi::DenseTensor>();
682
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
683 684
             }
           })
685 686 687 688 689 690 691
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
692
           py::arg("stop_gradient") = -1)
693 694 695 696 697 698 699
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
700
           py::arg("stop_gradient") = -1)
701 702 703 704 705 706 707
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
708
           py::arg("stop_gradient") = -1)
709 710 711 712 713 714 715
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
716
           py::arg("stop_gradient") = -1)
717 718 719 720 721 722 723
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
724
           py::arg("stop_gradient") = -1)
725 726 727 728 729 730 731
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
732
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
733
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
767
           py::arg("name") = "")
768
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
769 770
      .def(
          "__setitem_varbase__",
771 772
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
773 774 775 776
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
777
                self->MutableVar()->GetMutable<phi::DenseTensor>();
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

802 803 804 805 806
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
830 831 832 833 834 835 836 837 838 839
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
856 857
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
858 859 860 861 862 863
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

864
              if (py::isinstance<imperative::VarBase>(value_obj.ptr())) {
865 866 867
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
868 869 870 871 872 873

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
874 875 876 877 878 879 880
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
881
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
882 883 884 885
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
886
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
887 888 889 890
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
891 892
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
893 894 895 896
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
897 898
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
899 900 901 902
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
903
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
904 905 906 907 908 909 910 911 912
                  }
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
                      "float32, int32 or int64, "
                      "please check the type of tensor."));
                }

913 914 915 916 917
                SetTensorFromPyArray(
                    value_tensor->MutableVar()->GetMutable<phi::DenseTensor>(),
                    value,
                    self->Place(),
                    false);
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
                    py::isinstance<py::bool_>(value_obj)) {
                  if (self->DataType() == framework::proto::VarType::FP32) {
                    attrs["fp32_values"] =
                        std::vector<float>{value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
                    attrs["fp64_values"] =
                        std::vector<double>{value_obj.cast<double>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
                    attrs["int32_values"] =
                        std::vector<int32_t>{value_obj.cast<int32_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
                    attrs["int64_values"] =
                        std::vector<int64_t>{value_obj.cast<int64_t>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
                    attrs["bool_values"] =
                        std::vector<int>{value_obj.cast<bool>()};
944 945 946 947
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP16) {
                    attrs["fp16_values"] =
                        std::vector<float>{value_obj.cast<float>()};
948 949 950 951
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
952
                        "float32, int32, int64 or float16, "
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
969 970 971 972
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
973 974 975 976 977 978 979 980 981 982
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
983
                    index_var->MutableVar()->GetMutable<phi::DenseTensor>();
984 985 986 987 988 989
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
990 991
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
992 993
            }
          })
994
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
995
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
996
             VLOG(4) << "Call _getitem_index_not_tensor";
997
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
998 999 1000 1001
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
1002
             auto tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1014 1015 1016
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1017

Z
zyfncg 已提交
1018
             auto out = slice_axes.empty() && !list_select_flag
1019 1020 1021 1022
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1023

1024
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1025
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
             if (!none_axes.empty()) {
               // Deal with cases when all axes are decreased.
               // After slice, the shape of out is [1], which should have been
               // [], but Paddle doesn't support scalar.
               // In order to ensure the correctness of the final shape of out,
               // one dimension of out needs to be decreased.
               // For example:
               // # x.shape: (2,3,4)
               // out = x[0, 1, 1, None] # out.shape : (1)
               if (static_cast<int>(decrease_axis.size()) ==
                   tensor->dims().size()) {
                 none_axes.pop_back();
               }
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1086 1087 1088 1089
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
1090 1091
               auto *idx_tensor =
                   select_index->MutableVar()->GetMutable<phi::DenseTensor>();
Z
zyfncg 已提交
1092 1093
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1094 1095
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1096 1097 1098 1099 1100 1101 1102

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1103
             return out;
1104
           })
1105 1106 1107
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
1108
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1109
            PADDLE_ENFORCE_EQ(
1110 1111
                tensor.IsInitialized(),
                true,
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1130 1131
                  numel,
                  1,
1132 1133 1134 1135 1136 1137
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1138 1139
                  offset,
                  numel,
1140 1141 1142
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1143 1144
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1145 1146 1147 1148 1149 1150
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1151 1152
                    index,
                    dims[i],
1153 1154
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1155 1156 1157
                        index,
                        i,
                        dims[i]));
1158 1159 1160 1161
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1162
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1163 1164
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1165 1166
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1167 1168 1169 1170 1171
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1172
                "Unsupported tensor data type: %s", tensor.dtype()));
1173 1174
          },
          py::return_value_policy::copy)
1175 1176 1177 1178
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1179 1180
                 var->IsInitialized(),
                 true,
1181 1182 1183 1184 1185
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1186 1187 1188 1189 1190 1191 1192 1193
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1194 1195 1196 1197 1198
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1199 1200
      .def(
          "numpy",
1201

1202
          [](imperative::VarBase &self) -> py::array {
1203
            const auto &tensor = self.MutableVar()->Get<phi::DenseTensor>();
1204
            PADDLE_ENFORCE_EQ(
1205 1206
                tensor.IsInitialized(),
                true,
1207 1208 1209 1210 1211 1212
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1213
        Returns a numpy array shows the value of current Tensor.
1214

1215
        Returns:
Z
Zhou Wei 已提交
1216
            ndarray: The numpy value of current Tensor.
1217 1218

        Returns type:
Z
Zhou Wei 已提交
1219
            ndarray: dtype is same as current Tensor
1220 1221 1222 1223

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1224
                import paddle
1225 1226
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1227 1228 1229 1230
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1231
       )DOC")
1232 1233 1234 1235 1236
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1237 1238
                self.Var().IsInitialized(),
                true,
1239 1240
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1241

1242
            PADDLE_ENFORCE_EQ(
1243
                self.Var().IsType<phi::DenseTensor>() ||
1244 1245 1246 1247 1248
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1249

1250 1251
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1252

1253 1254 1255
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1256

1257 1258
            if (self.Var().IsType<phi::DenseTensor>()) {
              const auto &origin_tensor = self.Var().Get<phi::DenseTensor>();
1259
              PADDLE_ENFORCE_EQ(
1260 1261
                  origin_tensor.IsInitialized(),
                  true,
1262 1263 1264 1265
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
1266
                  detach_var->MutableVar()->GetMutable<phi::DenseTensor>();
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1277 1278
                  origin_selected_rows.value().IsInitialized(),
                  true,
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1296 1297
          py::return_value_policy::take_ownership,
          R"DOC(
1298

1299
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1300 1301
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1302

1303
        Returns: The detached Tensor.
1304 1305 1306 1307

        Examples:
            .. code-block:: python

1308
                import paddle
Z
Zhou Wei 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

                x = paddle.to_tensor(1.0, stop_gradient=False)
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
1330
                y.backward()
Z
Zhou Wei 已提交
1331 1332
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
1333

1334
       )DOC")
1335 1336 1337 1338
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1339

1340
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1341

1342
        The Gradient of current Tensor will be set to ``0`` .
1343 1344 1345 1346 1347 1348

        Returns:  None

        Examples:
             .. code-block:: python

1349
                import paddle
Z
Zhou Wei 已提交
1350 1351 1352 1353 1354 1355 1356
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1357
      )DOC")
1358 1359
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1360 1361
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1362 1363 1364
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
1365
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1366 1367
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1379 1380
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1412
      .def("_grad_name", &imperative::VarBase::GradVarName)
1413 1414 1415
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
1416
            return self.MutableGradVar()->Get<phi::DenseTensor>();
1417 1418
          },
          py::return_value_policy::reference)
1419 1420 1421 1422
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1423
      .def("_reset_grad_inplace_version",
1424
           [](imperative::VarBase &self, bool set_to_zero) {
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1436 1437
             py::gil_scoped_release release;

1438 1439 1440
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1441 1442 1443
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1444 1445
             }
           })
1446 1447 1448 1449 1450 1451 1452
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
1453 1454
                  grad_var->MutableVar()->IsType<phi::DenseTensor>()
                      ? grad_var->MutableVar()->GetMutable<phi::DenseTensor>()
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1466 1467 1468 1469
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1470 1471
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1472
             return self.Var().IsType<phi::SelectedRows>();
1473
           })
1474 1475 1476 1477 1478
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1479
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1480
#if NCCL_VERSION_CODE >= 2212
1481
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1482
#else
1483
               if (!self.Var().IsType<phi::SelectedRows>()) {
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1497
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1498 1499 1500
            }
          },
          py::call_guard<py::gil_scoped_release>())
1501 1502 1503
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1504 1505
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1506
                 platform::errors::InvalidArgument(
1507 1508 1509
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1510 1511 1512 1513 1514
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1515 1516
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1517
                 platform::errors::InvalidArgument(
1518 1519 1520
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1521
           })
1522 1523 1524
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1525 1526
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1538 1539 1540 1541
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1542 1543
                self.IsLeaf(),
                true,
1544 1545 1546
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1547 1548
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1549 1550 1551 1552 1553 1554 1555 1556
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
1599

1600 1601 1602 1603
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1604 1605 1606
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1607
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1608 1609 1610 1611
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1612
#endif
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1638 1639 1640
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1641 1642
             py::handle &handle,
             bool blocking) {
1643
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1644 1645 1646
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1647
#else
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1682
#endif
1683
          },
1684 1685 1686
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1687 1688
        Returns a copy of this Tensor in GPU memory.

1689
        If this Tensor is already in GPU memory and device_id is default,
1690
        then no copy is performed and the original Tensor is returned.
1691

1692
        Args:
1693
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1694
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be
1695 1696 1697 1698 1699
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1700
              # required: gpu
1701 1702
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1703
              print(x.place)        # Place(cpu)
1704 1705

              y = x.cuda()
1706
              print(y.place)        # Place(gpu:0)
1707

1708
              y = x.cuda(None)
1709
              print(y.place)        # Place(gpu:0)
1710

1711 1712 1713
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1714
       )DOC")
1715 1716 1717
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1718
#ifndef _WIN32
1719
            PADDLE_ENFORCE_EQ(
1720 1721
                platform::is_cpu_place(self->Place()),
                true,
1722 1723 1724
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
1725
            auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1738 1739 1740 1741 1742
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1743 1744
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1745 1746 1747 1748
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1749 1750
          },
          py::return_value_policy::reference)
1751
#if defined(PADDLE_WITH_CUDA)
1752 1753 1754
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1755 1756
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1757 1758 1759 1760
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
1761
                self->MutableVar()->GetMutable<phi::DenseTensor>();
1762 1763
            tensor_uva(self_tensor, device_id);
          },
1764 1765 1766
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1782
      .def("copy_", &imperative::VarBase::CopyFrom)
1783 1784 1785
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1786 1787
             const platform::CPUPlace &place,
             bool blocking) {
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1806 1807
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1818 1819
             const platform::XPUPlace &place,
             bool blocking) {
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1830 1831
             const platform::CUDAPlace &place,
             bool blocking) {
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1842 1843
             const platform::NPUPlace &place,
             bool blocking) {
1844 1845 1846 1847 1848 1849 1850
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1863 1864 1865
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1866 1867
             const platform::CustomPlace &place,
             bool blocking) {
1868 1869 1870 1871 1872 1873 1874
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1875 1876 1877
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1878 1879
             const platform::Place &place,
             bool blocking) {
1880 1881 1882 1883 1884 1885 1886 1887
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1888 1889
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1890
          py::return_value_policy::reference)
1891 1892
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1893
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1894
             PADDLE_ENFORCE_EQ(
1895 1896
                 t->IsInitialized(),
                 true,
1897 1898
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1899 1900 1901 1902
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1903
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1904
             PADDLE_ENFORCE_EQ(
1905 1906
                 t->IsInitialized(),
                 true,
1907 1908
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1909 1910
             return t->offset();
           })
1911
      .def("_share_buffer_to",
1912
           [](const std::shared_ptr<imperative::VarBase> &self,
1913
              std::shared_ptr<imperative::VarBase> &dst) {
1914 1915
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1916
             PADDLE_ENFORCE_EQ(
1917 1918
                 src->IsInitialized(),
                 true,
1919 1920 1921
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1922
             dst_->ShareDataTypeWith(*src);
1923 1924 1925
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1926
              std::shared_ptr<imperative::VarBase> &dst) {
1927 1928
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1929 1930 1931 1932
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1933
           })
1934 1935 1936
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1937 1938
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1939
             PADDLE_ENFORCE_EQ(
1940 1941
                 src->IsInitialized(),
                 true,
1942 1943 1944 1945 1946 1947 1948 1949 1950
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1951 1952
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1953 1954 1955 1956 1957
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1958 1959
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1960 1961
              int64_t begin_idx,
              int64_t end_idx) {
1962
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1963
             PADDLE_ENFORCE_EQ(
1964 1965
                 t->IsInitialized(),
                 true,
1966 1967
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1968 1969 1970 1971 1972 1973 1974
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
1975
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1976 1977
             return t->numel();
           })
1978 1979
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
1980

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2001 2002
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2003 2004 2005
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2006 2007
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2008
                    &imperative::VarBase::SetPersistable)
2009 2010 2011
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
2012
            if (self.Var().IsType<phi::DenseTensor>()) {
2013
              auto value = phi::vectorize<int>(
2014 2015
                  self.Var().Get<phi::DenseTensor>().dims());
              auto tensor = self.Var().Get<phi::DenseTensor>();
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

2032 2033
              if (change_dim &&
                  phi::DataLayoutToString(desired_layout) == "NCHW") {
2034 2035 2036 2037 2038 2039 2040 2041 2042
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
2043 2044
              } else if (change_dim &&
                         phi::DataLayoutToString(desired_layout) == "NHWC") {
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2072 2073 2074
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
2075 2076
            if (self.Var().IsType<phi::DenseTensor>()) {
              auto layout = self.Var().Get<phi::DenseTensor>().layout();
2077
              return phi::DataLayoutToString(layout);
2078 2079 2080
            }
            return std::string("");
          })
2081 2082
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2083 2084 2085
                             R"DOC(
      Whether a Tensor is leaf Tensor.

2086 2087
      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor.

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2111
      .def_property_readonly(
2112 2113
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2114
          py::return_value_policy::copy)
2115 2116 2117 2118 2119 2120
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2121
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2122
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2123

2124 2125 2126 2127 2128
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2129 2130 2131 2132 2133 2134 2135
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2136
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2137
      m, "Tracer", R"DOC()DOC")
2138
      .def("__init__",
J
Jiabin Yang 已提交
2139
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2140 2141 2142
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2143 2144
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2145
                    &imperative::Tracer::SetAmpLevel)
2146 2147
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2148
                    &imperative::Tracer::SetAmpDtype)
2149 2150
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2151
                    &imperative::Tracer::SetHasGrad)
2152 2153 2154 2155 2156 2157 2158 2159
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2160
              self.SetExpectedPlace(*p);
2161 2162
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2163 2164
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2165 2166 2167
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2168 2169
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2170 2171
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2172
              self.SetExpectedPlace(*p);
2173 2174
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2175 2176
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2177
              self.SetExpectedPlace(*p);
2178 2179
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2180 2181 2182 2183 2184
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2185 2186 2187 2188 2189
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2190 2191 2192 2193 2194
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2195 2196 2197 2198 2199
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2200
            } else {
L
Leo Chen 已提交
2201
              PADDLE_THROW(platform::errors::InvalidArgument(
2202
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
2203
                  "CPUPlace, NPUPlace, IPUPlace, MLUPlace"
L
Leo Chen 已提交
2204 2205
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2206 2207
            }
          })
2208 2209 2210
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2211 2212
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2213
           py::arg("key") = "dygraph_tmp")
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2230
             VLOG(5) << "AMP operators changed, "
2231 2232
                     << imperative::AmpOperators::Instance();
           })
2233 2234 2235
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2236 2237
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2238
           })
C
Chen Weihang 已提交
2239
      .def("_get_kernel_signature",
2240 2241 2242 2243
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2261 2262
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2263 2264 2265
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2266 2267
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2268 2269
             }
           })
2270
      .def("trace",
2271 2272 2273 2274 2275 2276
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2277 2278 2279 2280 2281 2282
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2283 2284 2285 2286 2287 2288 2289
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2290 2291
             }
           })
2292
      .def("trace",
2293 2294 2295 2296 2297 2298
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2299 2300
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2301 2302 2303 2304
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2305 2306 2307 2308 2309 2310 2311
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2312 2313
             }
           })
M
minqiyang 已提交
2314
      .def("trace",
2315 2316 2317 2318 2319 2320
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2321 2322
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2323 2324
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2325 2326
             {
               py::gil_scoped_release release;
2327 2328 2329 2330 2331 2332 2333
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2334
             }
M
minqiyang 已提交
2335
           })
2336
      .def("trace",
2337 2338 2339 2340 2341 2342
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::NPUPlace &place,
Z
zyfncg 已提交
2343 2344
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2345
             auto ins_map = ConvertToNameVarBaseMap(ins);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
             }
           })
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2368 2369 2370
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2371 2372 2373 2374 2375 2376 2377
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2378 2379
             }
           })
J
Jiabin Yang 已提交
2380
      .def("trace",
2381 2382 2383 2384 2385 2386
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2387 2388
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2389 2390 2391 2392
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2393 2394 2395 2396 2397 2398 2399
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2400 2401
             }
           });
2402 2403

  // define parallel context
2404 2405 2406
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2407 2408
      .def_property(
          "nranks",
2409 2410
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2411 2412
            self.nranks_ = nranks;
          })
2413 2414 2415 2416 2417 2418 2419 2420
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2421 2422
      .def_property(
          "trainer_endpoints",
2423
          [](const imperative::ParallelStrategy &self) {
2424 2425
            return self.trainer_endpoints_;
          },
2426
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2427 2428
            self.trainer_endpoints_ = eps;
          })
2429 2430 2431 2432 2433 2434 2435 2436
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2437 2438 2439 2440 2441 2442
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2443

2444 2445 2446 2447
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2448
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2449
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
R
ronnywang 已提交
2450
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
2451

2452 2453 2454 2455 2456 2457 2458
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2473 2474 2475 2476 2477
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2478 2479 2480 2481
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2482 2483
         bool retain_graph,
         const imperative::Tracer &tracer) {
2484 2485 2486 2487 2488 2489 2490 2491
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

K
Kim Yann 已提交
2492 2493
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
2494 2495 2496 2497 2498 2499
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2500 2501 2502 2503
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2514 2515
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2516
        py::arg("tensor_indices") = std::vector<int64_t>{},
2517
        py::call_guard<py::gil_scoped_release>());
2518
#endif
2519

2520
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2521 2522
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2523 2524 2525 2526
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2527 2528 2529 2530
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2531 2532 2533
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2534 2535
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2536 2537 2538 2539
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2540 2541 2542 2543
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2544
#endif
2545 2546 2547

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2548 2549
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2550 2551 2552 2553 2554 2555 2556
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2557 2558 2559
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2560
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
张春乔 已提交
2561
    defined(PADDLE_WITH_XPU_BKCL)
2562 2563
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2564 2565 2566 2567 2568 2569
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

S
Siming Dai 已提交
2570
#if defined(PADDLE_WITH_CUDA)
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2592 2593
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2607 2608 2609 2610
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

2622
      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and
S
Siming Dai 已提交
2623 2624 2625 2626 2627 2628 2629 2630
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
2631

S
Siming Dai 已提交
2632 2633 2634 2635 2636 2637 2638
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2639 2640 2641
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2642 2643 2644 2645
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2646
        PADDLE_ENFORCE_EQ(
2647 2648
            platform::is_gpu_place(src.Place()),
            true,
2649 2650 2651 2652
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2653 2654
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2655 2656 2657 2658 2659
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2660 2661
            platform::is_cpu_place(offset.Place()),
            true,
2662 2663 2664 2665
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2666 2667
            platform::is_cpu_place(count.Place()),
            true,
2668 2669 2670 2671 2672 2673
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
2674 2675 2676 2677
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2678 2679
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2680 2681
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2682 2683
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2684 2685
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2686 2687
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2688 2689
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2690 2691 2692
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2693 2694
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2695 2696 2697 2698 2699
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2700 2701
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2702 2703 2704 2705 2706
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2707 2708
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2709 2710 2711 2712 2713 2714 2715 2716 2717

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2718 2719
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2720 2721
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2722 2723
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2724 2725
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2726 2727 2728 2729 2730
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2731 2732 2733 2734
          src_offset += c;
        }
      },
      R"DOC(
2735 2736 2737 2738 2739
  This api provides a way to write pieces of source tensor to destination tensor
  inplacely and asynchronously. In which, we use `offset` and `count` to determine
  where to copy. `offset` means the begin points of the copy pieces of `src`, and
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process
  will run asynchronously from cuda to pin memory. We can simply remember this as
2740
  "gpu async_write to pin_memory".
2741

2742
  Arguments:
2743 2744

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2745 2746
                  Besides, `src` should be placed on CUDAPlace.

2747 2748 2749
    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst`
                  should be the same with `src` except for the first dimension.
2750

2751 2752 2753 2754 2755 2756 2757
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
                    should be one-dimensinal.
2758 2759 2760 2761 2762 2763

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
2764
          from paddle.fluid import core
2765
          from paddle.device import cuda
2766

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2787 2788 2789 2790 2791 2792 2793 2794
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2795 2796 2797 2798 2799
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2800 2801
            platform::is_gpu_place(dst.Place()),
            true,
2802 2803 2804 2805
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2806 2807
            platform::is_cpu_place(index.Place()),
            true,
2808 2809 2810 2811
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2812 2813
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2814 2815 2816 2817 2818
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2819 2820
            platform::is_cpu_place(offset.Place()),
            true,
2821 2822 2823 2824
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2825 2826
            platform::is_cpu_place(count.Place()),
            true,
2827 2828 2829 2830
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

2831 2832 2833
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &index_tensor = index.Var().Get<phi::DenseTensor>();
2834
        auto *buffer_tensor =
2835 2836 2837
            buffer.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2838 2839 2840
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2841 2842
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2843 2844 2845 2846
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2847 2848
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2849 2850 2851 2852 2853
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2854 2855
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2856 2857 2858 2859
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2860 2861
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2862 2863 2864 2865
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2866 2867
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2868 2869 2870
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
2871 2872
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2873 2874 2875 2876 2877 2878

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2879 2880
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2881 2882
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2883 2884
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2885 2886
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2887 2888
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2900 2901
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2902 2903 2904 2905 2906 2907 2908
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2909 2910
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2911 2912
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2913 2914
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2915 2916
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2917 2918 2919 2920 2921
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
2922 2923 2924
            dst_offset += c;
          }
        } else {
2925 2926
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
2927 2928 2929 2930 2931
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
2932 2933 2934
        auto index_select = [](const phi::DenseTensor &src_tensor,
                               const phi::DenseTensor &index_tensor,
                               phi::DenseTensor *buffer_tensor) {
2935 2936 2937 2938 2939 2940 2941 2942 2943
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
2944 2945
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
2946 2947 2948 2949 2950 2951
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
2952 2953
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
2954
                        index_tensor.numel() * size * sizeof(float),
2955 2956
                        cudaMemcpyHostToDevice,
                        stream);
2957 2958
      },
      R"DOC(
2959 2960 2961 2962 2963
  This api provides a way to read from pieces of source tensor to destination tensor
  asynchronously. In which, we use `index`, `offset` and `count` to determine where
  to read. `index` means the index position of src tensor we want to read. `offset`
  and count means the begin points and length of pieces of src tensor we want to read.
  To be noted, the copy process will run asynchronously from pin memory to cuda place.
2964 2965 2966
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
2967 2968

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2969
                  Besides, `src` should be placed on CUDAPinnedPlace.
2970 2971 2972

    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should
2973 2974
                  be the same with `src` except for the first dimension.

2975 2976
    index (Tensor): The index tensor, and the data type should be `int64` currently.
                    Besides, `index` should be on CPUplace. The shape of `index` should
2977 2978
                    be one-dimensional.

2979 2980
    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily.
                     The data type should be `float32` currently, and should be placed
2981 2982
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

2983 2984
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
2985 2986
                     should be one-dimensional.

2987 2988
    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
2989
                    should be one-dimensinal.
2990

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
3009

3010 3011 3012
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
3013

3014 3015
)DOC");
#endif
3016 3017 3018 3019
}

}  // namespace pybind
}  // namespace paddle