imperative.cc 128.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/pybind/imperative.h"
16

17
#include <Python.h>
18 19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif

23 24 25 26
#include <pybind11/chrono.h>
#include <pybind11/complex.h>
#include <pybind11/functional.h>
#include <pybind11/stl.h>
27

28
#include <algorithm>
29
#include <memory>
30
#include <set>
J
Jiabin Yang 已提交
31
#include <string>
32
#include <unordered_map>
33
#include <unordered_set>
34
#include <utility>
J
Jiabin Yang 已提交
35
#include <vector>
36

J
Jiabin Yang 已提交
37
#include "paddle/fluid/eager/api/all.h"
38
#include "paddle/fluid/framework/convert_utils.h"
39
#include "paddle/fluid/framework/scope_guard.h"
40
#include "paddle/fluid/imperative/all_reduce.h"
41
#include "paddle/fluid/imperative/amp_auto_cast.h"
42
#include "paddle/fluid/imperative/basic_engine.h"
43
#include "paddle/fluid/imperative/bkcl_context.h"
44
#include "paddle/fluid/imperative/data_loader.h"
45
#include "paddle/fluid/imperative/gloo_context.h"
K
kuizhiqing 已提交
46
#include "paddle/fluid/imperative/heter_ccl_context.h"
47
#include "paddle/fluid/imperative/hooks.h"
48
#include "paddle/fluid/imperative/layer.h"
J
Jiabin Yang 已提交
49
#include "paddle/fluid/imperative/nccl_context.h"
50
#include "paddle/fluid/imperative/partial_grad_engine.h"
51
#include "paddle/fluid/imperative/profiler.h"
52
#include "paddle/fluid/imperative/reducer.h"
53
#include "paddle/fluid/imperative/tracer.h"
M
minqiyang 已提交
54
#include "paddle/fluid/imperative/type_defs.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
56
#include "paddle/fluid/operators/utils.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/pybind/cuda_streams_py.h"
58
#include "paddle/fluid/pybind/eager_utils.h"
59
#include "paddle/fluid/pybind/pybind_variant_caster.h"
J
Jiabin Yang 已提交
60
#include "paddle/fluid/pybind/slice_utils.h"
L
Leo Chen 已提交
61
#include "paddle/fluid/pybind/tensor_py.h"
62
#include "paddle/fluid/pybind/uva_utils.h"
63
#include "paddle/phi/core/compat/arg_map_context.h"
64
#include "paddle/phi/core/type_defs.h"
65

66 67 68
namespace paddle {
namespace pybind {

69
std::atomic<int> VarBaseUniqueNameID{0};
70 71
PyTypeObject *g_varbase_pytype = nullptr;

72 73
namespace py = ::pybind11;

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s", typeid(T).name()));
  }
}

class PyVariableWrapperHook : public imperative::VariableWrapperHook {
 public:
  explicit PyVariableWrapperHook(PyObject *func) : py_func_(func) {
    Py_INCREF(py_func_);
  }

  ~PyVariableWrapperHook() {
    py::gil_scoped_acquire gil;
    Py_DECREF(py_func_);
  }

  std::shared_ptr<imperative::VariableWrapper> operator()(
      const std::shared_ptr<imperative::VariableWrapper> &var) override {
    py::gil_scoped_acquire gil;
    VLOG(3) << "Call PyVariableWrapperHook for var " << var->Name();

    // 1. unpack temp VarBase from VariableWrapper
    std::shared_ptr<imperative::VarBase> tmp_varbase =
        std::make_shared<imperative::VarBase>(var);

    // 2. call hook and return
    PyObject *res = nullptr;
    try {
107 108
      res = PyObject_CallFunctionObjArgs(
          py_func_, py::cast(tmp_varbase).ptr(), nullptr);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    } catch (platform::EnforceNotMet &e) {
      throw std::move(e);
    } catch (std::exception &e) {
      PADDLE_THROW(platform::errors::Unavailable(
          "Hook function of Tensor raises an exception: %s.", e.what()));
    } catch (...) {
      PADDLE_THROW(platform::errors::Fatal(
          "Hook function of Tensor raises an unknown exception."));
    }

    PADDLE_ENFORCE_NOT_NULL(res,
                            platform::errors::Unavailable(
                                "Hook function of Tensor return a nullptr."));
    if (res == Py_None) {
      return var;
    }

C
Chen Weihang 已提交
126 127 128 129 130
    auto res_varbase = PyObjectCast<std::shared_ptr<imperative::VarBase>>(res);
    // Here the reference count of `res` is 2, so we decreases the reference
    // count manually to avoid memory leaks
    Py_DECREF(res);
    return res_varbase->SharedVar();
131 132 133 134 135 136
  }

 private:
  PyObject *py_func_;
};

L
Leo Chen 已提交
137 138 139 140 141
static const platform::Place PyObjectToPlace(const py::object &place_obj) {
  if (py::isinstance<platform::CPUPlace>(place_obj)) {
    return place_obj.cast<platform::CPUPlace>();
  } else if (py::isinstance<platform::CUDAPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPlace>();
142 143
  } else if (py::isinstance<platform::XPUPlace>(place_obj)) {
    return place_obj.cast<platform::XPUPlace>();
L
Leo Chen 已提交
144 145
  } else if (py::isinstance<platform::CUDAPinnedPlace>(place_obj)) {
    return place_obj.cast<platform::CUDAPinnedPlace>();
146 147
  } else if (py::isinstance<platform::NPUPlace>(place_obj)) {
    return place_obj.cast<platform::NPUPlace>();
148 149
  } else if (py::isinstance<platform::IPUPlace>(place_obj)) {
    return place_obj.cast<platform::IPUPlace>();
150 151
  } else if (py::isinstance<platform::Place>(place_obj)) {
    return place_obj.cast<platform::Place>();
152 153
  } else if (py::isinstance<platform::CustomPlace>(place_obj)) {
    return place_obj.cast<platform::CustomPlace>();
L
Leo Chen 已提交
154 155
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
156
        "Place should be one of "
157
        "Place/CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"
张春乔 已提交
158
        "CustomPlace"));
L
Leo Chen 已提交
159 160 161
  }
}

L
Leo Chen 已提交
162
// only initialize varbase, but not its tensor.
163 164 165 166
static void InitVarBaseOnly(imperative::VarBase *self,
                            const std::string &name,
                            bool persistable = false,
                            int stop_gradient = -1) {
167 168 169
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
L
Leo Chen 已提交
170 171 172

  VLOG(5) << "Init Tensor as: / name: " << name_
          << " / persistable: " << persistable
173
          << " / stop_gradient: " << stop_gradient;
L
Leo Chen 已提交
174 175 176 177 178 179 180 181 182
  new (self) imperative::VarBase(name_);
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
  self->SetPersistable(persistable);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
}

// initialize varbase and its tensor.
183 184 185 186 187 188 189
static void InitVarBaseAndTensor(imperative::VarBase *self,
                                 const py::array &array,
                                 const platform::Place &place,
                                 const std::string &name,
                                 bool persistable = false,
                                 bool zero_copy = false,
                                 int stop_gradient = -1) {
L
Leo Chen 已提交
190
  InitVarBaseOnly(self, name, persistable, stop_gradient);
191
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
L
Leo Chen 已提交
192
  VLOG(4) << "zero_copy: " << zero_copy;
L
Leo Chen 已提交
193
  if (platform::is_cpu_place(place)) {
194
    SetTensorFromPyArray<platform::CPUPlace>(tensor, array, place, zero_copy);
195
  } else if (platform::is_xpu_place(place)) {
196
    SetTensorFromPyArray<platform::XPUPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
197
  } else if (platform::is_gpu_place(place)) {
198
    SetTensorFromPyArray<platform::CUDAPlace>(tensor, array, place, zero_copy);
L
Leo Chen 已提交
199
  } else if (platform::is_cuda_pinned_place(place)) {
200 201
    SetTensorFromPyArray<platform::CUDAPinnedPlace>(
        tensor, array, place, zero_copy);
202 203
  } else if (platform::is_ipu_place(place)) {
    SetTensorFromPyArray<platform::IPUPlace>(tensor, array, place, zero_copy);
204
  } else if (platform::is_custom_place(place)) {
205 206
    SetTensorFromPyArray<platform::CustomPlace>(
        tensor, array, place, zero_copy);
207
  } else {
L
Leo Chen 已提交
208
    PADDLE_THROW(platform::errors::InvalidArgument(
209
        "Place should be one of "
张春乔 已提交
210
        "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/NPUPlace/IPUPlace/"));
J
Jiabin Yang 已提交
211
  }
212
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
213 214 215 216
}

static void InitVarBaseFromNumpyWithKwargs(imperative::VarBase *self,
                                           const py::kwargs &kwargs) {
217
  VLOG(4) << "Init VarBase from kwargs: ";
L
Leo Chen 已提交
218 219 220 221 222 223
  auto persistable = kwargs.contains("persistable")
                         ? kwargs["persistable"].cast<bool>()
                         : false;
  auto zero_copy =
      kwargs.contains("zero_copy") ? kwargs["zero_copy"].cast<bool>() : false;
  auto name = kwargs.contains("name") ? kwargs["name"].cast<std::string>() : "";
224 225 226
  auto stop_gradient = kwargs.contains("stop_gradient")
                           ? kwargs["stop_gradient"].cast<int>()
                           : -1;
L
Leo Chen 已提交
227
  auto default_place = imperative::GetCurrentTracer()->ExpectedPlace();
L
Leo Chen 已提交
228 229 230 231 232 233 234

  if (kwargs.contains("value")) {
    auto array = kwargs["value"].cast<py::array>();
    // place is only used when array is given, otherwise, it is meaningless and
    // ignored
    auto place = kwargs.contains("place") ? PyObjectToPlace(kwargs["place"])
                                          : default_place;
235 236
    InitVarBaseAndTensor(
        self, array, place, name, persistable, zero_copy, stop_gradient);
L
Leo Chen 已提交
237 238 239
  } else {
    InitVarBaseOnly(self, name, persistable, stop_gradient);
  }
240
}
241

242 243
template <typename P>
static void InitVarBaseFromNumpyWithArg(imperative::VarBase *self,
244 245
                                        const py::array &array,
                                        const P &place,
L
Leo Chen 已提交
246 247
                                        bool persistable = false,
                                        bool zero_copy = false,
248 249 250 251 252
                                        std::string name = "",
                                        int stop_gradient = -1) {
  VLOG(4) << "Init VarBase from Arg: ";
  // 0: self, 1: value, 2: place, 3: persistable, 4: zero_copy, 5: name , 6:
  // stop_gradient
L
Leo Chen 已提交
253
  if (name == "") {
254 255
    name =
        imperative::GetCurrentTracer()->GenerateUniqueName("generated_tensor");
L
Leo Chen 已提交
256
  }
257 258
  VLOG(5) << "Init Tensor as: / name: " << name
          << " / persistable: " << persistable << " / zero_copy: " << zero_copy
259
          << " / stop_gradient: " << stop_gradient << " / at " << place;
L
Leo Chen 已提交
260
  new (self) imperative::VarBase(name);
261
  self->SetPersistable(persistable);
262
  auto *tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
263 264 265
  if (stop_gradient != -1) {
    self->SetOverridedStopGradient(stop_gradient);
  }
266 267
  SetTensorFromPyArray<P>(tensor, array, place, zero_copy);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
268
  self->SetDataType(framework::TransToProtoVarType(tensor->dtype()));
269 270 271
}

static void InitVarBaseFromNumpyWithArgDefault(imperative::VarBase *self,
L
Leo Chen 已提交
272 273
                                               const py::array &array) {
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
274
  VLOG(4) << "Init VarBase from numpy at " << place;
L
Leo Chen 已提交
275
  InitVarBaseAndTensor(self, array, place, "");
276
}
277

B
Baibaifan 已提交
278
static void InitVarBaseFromTensorWithArgDefault(imperative::VarBase *self,
279
                                                const phi::DenseTensor &tensor,
B
Baibaifan 已提交
280
                                                const std::string &name) {
281 282
  VLOG(4) << "Init VarBase";
  auto place = imperative::GetCurrentTracer()->ExpectedPlace();
283 284 285
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
286
  new (self) imperative::VarBase(name_);
287 288
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
289
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
290
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
291 292 293 294 295 296 297 298 299 300
  // Same place,share data directly
  if (place == tensor.place()) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

301 302
template <typename P>
static void InitVarBaseFromTensorWithArg(imperative::VarBase *self,
303
                                         const phi::DenseTensor &tensor,
B
Baibaifan 已提交
304 305
                                         const P &place,
                                         const std::string &name) {
306
  VLOG(4) << "Init VarBase";
307 308 309
  auto name_ = name == "" ? imperative::GetCurrentTracer()->GenerateUniqueName(
                                "generated_tensor")
                          : name;
B
Baibaifan 已提交
310
  new (self) imperative::VarBase(name_);
311 312
  self->SetPersistable(false);
  self->SetType(framework::proto::VarType::LOD_TENSOR);
313
  self->SetDataType(framework::TransToProtoVarType(tensor.dtype()));
314
  auto *new_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
315 316 317 318 319 320 321 322 323 324
  // Same place,share data directly
  if (platform::is_same_place(place, tensor.place())) {
    new_tensor->ShareDataWith(tensor);
    VLOG(4) << "Same place, do ShareDataWith";
  } else {
    framework::TensorCopy(tensor, place, new_tensor);
    VLOG(4) << "Different place, do TensorCopy";
  }
}

325 326 327 328 329
static std::string GetTypeName(const imperative::VarBase &var) {
  if (var.Type() == framework::proto::VarType::RAW) {
    return "RAW";
  } else if (!var.Var().IsInitialized()) {
    return "nullptr";
330
  } else {
331
    return framework::ToTypeName(var.Var().Type());
332 333
  }
}
L
Leo Chen 已提交
334

J
Jiabin Yang 已提交
335 336 337 338 339 340
Py_ssize_t GetSliceIndexFromPyObject(PyObject *obj) {
  if (py::isinstance<imperative::VarBase>(obj)) {
    VLOG(6) << "Call GetSliceIndexFromTensor in Imperative";
    return GetSliceIndexFromTensor(
        py::cast<std::shared_ptr<imperative::VarBase>>(obj)
            ->Var()
341
            .Get<phi::DenseTensor>());
J
Jiabin Yang 已提交
342 343
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
344
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
345 346 347 348
        "method, when you reach this means we got another type index."));
  }
}

349
using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;
350 351 352 353 354 355 356 357 358 359 360 361 362

// NOTE(zjl): py::handle is a very light wrapper of PyObject *.
// Unlike py::object, py::handle does not change reference count of PyObject *.
static std::vector<std::shared_ptr<imperative::VarBase>>
GetVarBaseListFromPyHandle(const py::handle &handle) {
  PyObject *py_obj = handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    return {};
  }

  std::vector<std::shared_ptr<imperative::VarBase>> result;

363
  if (PyList_Check(py_obj)) {  // List of VarBase
364 365 366
    size_t len = PyList_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
367 368 369
      PyObject *py_ivar = PyList_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
370 371 372
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
373
  } else if (PyTuple_Check(py_obj)) {  // Tuple of VarBase
374 375 376
    size_t len = PyTuple_GET_SIZE(py_obj);
    result.reserve(len);
    for (size_t i = 0; i < len; ++i) {
377 378 379
      PyObject *py_ivar = PyTuple_GET_ITEM(py_obj, i);
      PADDLE_ENFORCE_NOT_NULL(
          py_ivar, platform::errors::InvalidArgument("Python Object is NULL"));
380 381 382
      result.emplace_back(
          PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    }
383 384 385
  } else {  // VarBase
    result.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
386 387 388 389
  }

  return result;
}
390

J
Jiabin Yang 已提交
391 392 393
static imperative::NameVarBaseMap ConvertToNameVarBaseMap(
    const PyNameVarBaseMap &map) {
  imperative::NameVarBaseMap result;
394 395 396 397 398 399
  for (auto &pair : map) {
    auto var_vec = GetVarBaseListFromPyHandle(pair.second);
    if (!var_vec.empty()) {
      result.emplace(pair.first, std::move(var_vec));
    }
  }
J
Jiabin Yang 已提交
400

401
  PADDLE_ENFORCE_EQ(
402 403
      PyErr_Occurred(),
      nullptr,
404
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
405 406 407
  return result;
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
paddle::imperative::NameTensorMap ConvertToNameTensorMap(
    const PyNameVarBaseMap &map) {
  paddle::imperative::NameTensorMap result;
  for (auto &pair : map) {
    auto var_vec = CastPyArg2VectorOfTensor(pair.second.ptr(), 0);
    if (!var_vec.empty()) {
      // change vector<Tensor> -> vector<shared_ptr<Tensor>>
      std::vector<std::shared_ptr<egr::EagerVariable>> dst_var_vec;
      for (auto &v : var_vec) {
        dst_var_vec.emplace_back(
            std::make_shared<egr::EagerVariable>(std::move(v)));
      }
      result.emplace(pair.first, std::move(dst_var_vec));
    }
  }

  PADDLE_ENFORCE_EQ(
425 426
      PyErr_Occurred(),
      nullptr,
427 428 429 430
      platform::errors::InvalidArgument(py::str(py::handle(PyErr_Occurred()))));
  return result;
}

431
template <typename P>
432 433
static void VarBaseCopy(std::shared_ptr<imperative::VarBase> &src,  // NOLINT
                        imperative::VarBase &dst,                   // NOLINT
434 435
                        const P &dst_device,
                        const bool blocking) {
436 437 438 439 440 441 442 443
  if (dst.SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src->Name() << " to "
            << dst.Name();
    dst.SetPersistable(src->Persistable());
    dst.SetDataType(src->DataType());
    dst.SetType(src->Type());
    dst.SetOverridedStopGradient(src->OverridedStopGradient());
    if (!src->SharedVar()->IsEmpty()) {
444 445 446
      if (src->Var().IsType<phi::DenseTensor>()) {
        auto &src_tensor = src->Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
447 448 449 450 451 452 453 454 455
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, dst_device, dst_tensor);
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_tensor.place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
456 457
      } else if (src->Var().IsType<phi::SelectedRows>()) {
        auto &src_selected_rows = src->Var().Get<phi::SelectedRows>();
458
        auto *dst_selected_rows =
459
            dst.MutableVar()->GetMutable<phi::SelectedRows>();
460 461
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
462 463
        framework::TensorCopy(src_selected_rows.value(),
                              dst_device,
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                              dst_selected_rows->mutable_value());
        if (blocking) {
          platform::DeviceContextPool::Instance().Get(dst_device)->Wait();
          auto src_device = src_selected_rows.value().place();
          if (!(src_device == dst_device)) {
            platform::DeviceContextPool::Instance().Get(src_device)->Wait();
          }
        }
      }

      if (!blocking) {
        IncreaseVarbaseReferenceCountUntilCopyComplete(src, dst_device);
      }

    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The source Tensor(%s) can not copy when it is empty.", src->Name()));
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The destion Tensor(%s) can not copy when it is not empty.",
        dst.Name()));
  }
}

489
// Bind Methods
J
Jiabin Yang 已提交
490
void BindImperative(py::module *m_ptr) {
491 492
  auto &m = *m_ptr;

493 494
#ifndef _WIN32
  // Dygraph DataLoader signal handler
495 496
  m.def("_set_process_pids", [](int64_t key, py::object &obj) {
    PADDLE_ENFORCE_EQ(
497 498
        py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
        true,
499 500 501 502 503 504 505 506 507 508
        platform::errors::InvalidArgument(
            "The subprocess ids set in DataLoader is illegal."
            "Expected data type is tuple or list, but received %s",
            obj.get_type()));
    py::list pids = py::cast<py::list>(obj);
    std::set<pid_t> pids_set = {};
    for (size_t i = 0; i < pids.size(); i++) {
      pids_set.insert(pids[i].cast<pid_t>());
    }
    imperative::SetLoadProcessPIDs(key, pids_set);
509
  });
510 511
  m.def("_erase_process_pids",
        [](int64_t key) { imperative::EraseLoadProcessPIDs(key); });
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
  m.def("_set_process_signal_handler",
        []() { imperative::SetLoadProcessSignalHandler(); });
  m.def("_throw_error_if_process_failed",
        []() { imperative::ThrowErrorIfLoadProcessFailed(); });
  // Dygraph DataLoader reader process & thread related functions
  m.def(
      "_convert_to_tensor_list",
      [](py::object &obj) -> py::list {
        // 0. input data check
        PADDLE_ENFORCE(
            py::isinstance<py::tuple>(obj) || py::isinstance<py::list>(obj),
            platform::errors::InvalidArgument(
                "The batch data read into DataLoader is illegal."
                "Expected data type is tuple or list, but received %s",
                obj.get_type()));
        py::list batch = py::cast<py::list>(obj);
        py::list tensors;
        for (size_t i = 0; i < batch.size(); ++i) {
          // 1. cast to python array
          auto array = batch[i].cast<py::array>();
          PADDLE_ENFORCE_NE(
533 534
              string::Sprintf("%s", array.dtype()).compare("object"),
              0,
535
              platform::errors::InvalidArgument(
536
                  "Failed to convert input data to a regular ndarray.\n  * "
537 538 539 540 541
                  "Usually this means the input data contains nested "
                  "lists with different lengths.\n  * Check the reader "
                  "function passed to 'set_(sample/sample_list/batch)"
                  "_generator' to locate the data causes this issue."));
          // 2. construcct LoDTensor
542
          phi::DenseTensor t;
543 544
          SetTensorFromPyArray<platform::CPUPlace>(
              &t, array, platform::CPUPlace(), true);
545
          // 3. allocate shared memory
546
          void *data_ptr = t.data();
547
          size_t data_size = t.numel() * phi::SizeOf(t.dtype());
548 549 550 551 552 553
          auto shared_writer_holder =
              memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
          // 4. maintain mmap fd set & backup ipc_name
          const std::string &ipc_name = shared_writer_holder->ipc_name();
          memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
          // 5. copy data & reset holder
554 555 556 557 558
          memory::Copy(platform::CPUPlace(),
                       shared_writer_holder->ptr(),
                       platform::CPUPlace(),
                       data_ptr,
                       data_size);
559 560 561 562 563 564 565 566
          t.ResetHolder(shared_writer_holder);
          // 6. append to result list
          tensors.append(t);
        }
        return tensors;
      },
      py::return_value_policy::take_ownership);

567 568 569 570 571 572
  m.def(
      "_array_to_share_memory_tensor",
      [](py::object &obj) {
        // 1. cast to python array
        auto array = obj.cast<py::array>();
        PADDLE_ENFORCE_NE(
573 574
            string::Sprintf("%s", array.dtype()).compare("object"),
            0,
575
            platform::errors::InvalidArgument(
576
                "Failed to convert input data to a regular ndarray.\n  * "
577 578 579 580 581
                "Usually this means the input data contains nested "
                "lists with different lengths.\n  * Check the reader "
                "function passed to 'set_(sample/sample_list/batch)"
                "_generator' to locate the data causes this issue."));
        // 2. construcct LoDTensor
582
        phi::DenseTensor t;
583 584
        SetTensorFromPyArray<platform::CPUPlace>(
            &t, array, platform::CPUPlace(), true);
585 586
        // 3. allocate shared memory
        void *data_ptr = t.data();
587
        size_t data_size = t.numel() * phi::SizeOf(t.dtype());
588 589 590 591 592 593
        auto shared_writer_holder =
            memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
        // 4. maintain mmap fd set & backup ipc_name
        const std::string &ipc_name = shared_writer_holder->ipc_name();
        memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
        // 5. copy data & reset holder
594 595 596 597 598
        memory::Copy(platform::CPUPlace(),
                     shared_writer_holder->ptr(),
                     platform::CPUPlace(),
                     data_ptr,
                     data_size);
599 600 601 602 603
        t.ResetHolder(shared_writer_holder);

        return t;
      },
      py::return_value_policy::take_ownership);
K
Kaipeng Deng 已提交
604

605 606
  m.def("_remove_tensor_list_mmap_fds", [](py::list &tensor_list) {
    for (size_t i = 0; i < tensor_list.size(); ++i) {
607
      auto t = tensor_list[i].cast<phi::DenseTensor>();
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
      auto *mmap_writer_allocation =
          dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
              t.Holder().get());
      PADDLE_ENFORCE_NOT_NULL(
          mmap_writer_allocation,
          platform::errors::NotFound("The shared memory of LoDTensor in "
                                     "DataLoader's child process has been "
                                     "released."));
      memory::allocation::MemoryMapFdSet::Instance().Remove(
          mmap_writer_allocation->ipc_name());
    }
  });

  m.def("_cleanup_mmap_fds",
        []() { memory::allocation::MemoryMapFdSet::Instance().Clear(); });
623 624 625 626 627

  m.def("_set_max_memory_map_allocation_pool_size", [](int32_t size) {
    memory::allocation::MemoryMapAllocationPool::Instance().SetMaxPoolSize(
        size);
  });
628 629
#endif

630 631
  m.def("start_imperative_gperf_profiler",
        []() { imperative::StartProfile(); });
632 633 634 635
  m.def("_set_eager_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
          egr::Controller::Instance().SetCurrentTracer(tracer);
        });
636 637
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });

Z
Zeng Jinle 已提交
638 639 640
  m.def("_is_dygraph_debug_enabled",
        []() { return imperative::IsDebugEnabled(); });
  m.def("_dygraph_debug_level", []() { return imperative::GetDebugLevel(); });
641 642
  m.def("_switch_tracer",
        [](const std::shared_ptr<imperative::Tracer> &tracer) {
J
Jiabin Yang 已提交
643
          egr::Controller::Instance().SetCurrentTracer(tracer);
644
          imperative::SetCurrentTracer(tracer);
645
        });
646 647 648 649
  py::class_<imperative::VarBase, std::shared_ptr<imperative::VarBase>> varbase(
      m, "VarBase", R"DOC()DOC");
  g_varbase_pytype = (PyTypeObject *)varbase.ptr();  // NOLINT
  varbase.def_static("_alive_vars", &imperative::VarBase::AliveVarNames)
650 651 652 653 654 655 656
      .def("__init__",
           [](imperative::VarBase &self) {
             std::string name =
                 imperative::GetCurrentTracer()->GenerateUniqueName(
                     "generated_tensor");
             new (&self) imperative::VarBase(name);
           })
J
Jiabin Yang 已提交
657
      .def("__init__",
658 659
           [](imperative::VarBase &self,
              framework::proto::VarType::Type dtype,
660
              const std::vector<int64_t> &dims,
661 662 663
              const py::handle &name,
              framework::proto::VarType::Type type,
              bool persistable) {
664
             VLOG(4) << "Init VarBase";
665 666 667
             std::string act_name = "";
             if (!name.ptr() || name.ptr() == Py_None) {
               act_name = imperative::GetCurrentTracer()->GenerateUniqueName(
668
                   "generated_tensor");
669 670 671 672
             } else {
               act_name = name.cast<std::string>();
             }
             new (&self) imperative::VarBase(act_name);
J
Jiabin Yang 已提交
673 674 675 676
             self.SetPersistable(persistable);
             self.SetType(type);
             self.SetDataType(dtype);
             if (type == framework::proto::VarType::LOD_TENSOR) {
677
               auto *tensor = self.MutableVar()->GetMutable<phi::DenseTensor>();
678
               tensor->Resize(phi::make_ddim(dims));
J
Jiabin Yang 已提交
679 680
             }
           })
681 682 683 684 685 686 687
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
688
           py::arg("stop_gradient") = -1)
689 690 691 692 693 694 695
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::XPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
696
           py::arg("stop_gradient") = -1)
697 698 699 700 701 702 703
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
704
           py::arg("stop_gradient") = -1)
705 706 707 708 709 710 711
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CUDAPinnedPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
712
           py::arg("stop_gradient") = -1)
713 714 715 716 717 718 719
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::NPUPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
720
           py::arg("stop_gradient") = -1)
721 722 723 724 725 726 727
      .def("__init__",
           &InitVarBaseFromNumpyWithArg<platform::CustomPlace>,
           py::arg("value"),
           py::arg("place"),
           py::arg("persistable") = false,
           py::arg("zero_copy") = false,
           py::arg("name") = "",
728
           py::arg("stop_gradient") = -1)
L
Leo Chen 已提交
729
      .def("__init__", &InitVarBaseFromNumpyWithArgDefault, py::arg("value"))
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
      .def("__init__",
           &InitVarBaseFromTensorWithArgDefault,
           py::arg("tensor"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::XPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CUDAPinnedPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::NPUPlace>,
           py::arg("tensor"),
           py::arg("place"),
           py::arg("name") = "")
      .def("__init__",
           &InitVarBaseFromTensorWithArg<platform::CustomPlace>,
           py::arg("tensor"),
           py::arg("place"),
B
Baibaifan 已提交
763
           py::arg("name") = "")
764
      .def("__init__", &InitVarBaseFromNumpyWithKwargs)
765 766
      .def(
          "__setitem_varbase__",
767 768
          [](std::shared_ptr<imperative::VarBase> &self,
             py::handle _index,
769 770 771 772
             py::object &value_obj) {
            VLOG(4) << "Call __setitem_varbase__";

            auto self_tensor =
773
                self->MutableVar()->GetMutable<phi::DenseTensor>();
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
            // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
            // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
            PyObject *index_ptr = !PyTuple_Check(_index.ptr())
                                      ? PyTuple_Pack(1, _index.ptr())
                                      : _index.ptr();
            DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
              if (!PyTuple_Check(_index.ptr())) {
                Py_DECREF(index_ptr);
                VLOG(4) << "Call Py_DECREF";
              }
            });

            auto is_tensor = [](py::handle var) {
              if (!var.ptr() || var.ptr() == Py_None) {
                return false;
              }
              try {
                py::cast<std::shared_ptr<imperative::VarBase>>(var);
                return true;
              } catch (py::cast_error &) {
                return false;
              }
            };

798 799 800 801 802
            // NOTE(liym27):
            // Increase the version of VarBase self because __setitem__ is an
            // inplace operator for the VarBase self.
            self->BumpInplaceVersion();

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
            // 1. Check argumnets
            bool parse_index = true;

            // Check whether _index can be parsed.
            const int size = PyTuple_GET_SIZE(index_ptr);
            for (int dim = 0; dim < size; ++dim) {
              PyObject *slice_item = PyTuple_GetItem(index_ptr, dim);
              if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
                    slice_item == Py_Ellipsis || slice_item == Py_None)) {
                parse_index = false;
                break;
              }
            }

            // 2. Call op set_value to speed up if the condition is met,
            // otherwise call TensorToPyArray.
            // TODO(liym27): Try not to call TensorToPyArray because it always
            // copys data to cpu place, which reduces performance.
            if (parse_index) {
              std::vector<int> axes, starts, ends, steps, decrease_axes,
                  none_axes, infer_flags, list_select_idxs;
              // if index is a list, list_select_flag will be true
              bool list_select_flag = false;
826 827 828 829 830 831 832 833 834 835
              ParseIndexingSlice(self_tensor,
                                 index_ptr,
                                 &axes,
                                 &starts,
                                 &ends,
                                 &steps,
                                 &decrease_axes,
                                 &none_axes,
                                 &infer_flags,
                                 &list_select_idxs,
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
                                 &list_select_flag);

              framework::AttributeMap attrs = {{"axes", axes},
                                               {"starts", starts},
                                               {"ends", ends},
                                               {"steps", steps},
                                               {"decrease_axes", decrease_axes},
                                               {"none_axes", none_axes}};

              imperative::NameVarBaseMap ins = {{"Input", {self}}};
              imperative::NameVarBaseMap outs = {{"Out", {self}}};

              const auto &tracer = imperative::GetCurrentTracer();

              if (tracer->HasGrad()) {
                PADDLE_ENFORCE_EQ(
852 853
                    self->IsLeaf() && !self->OverridedStopGradient(),
                    false,
854 855 856 857 858 859
                    platform::errors::InvalidArgument(
                        "Leaf Tensor (%s) that doesn't stop gradient can't use "
                        "inplace strategy.",
                        self->Name()));
              }

860
              if (py::isinstance<imperative::VarBase>(value_obj.ptr())) {
861 862 863
                auto value_tensor =
                    value_obj.cast<std::shared_ptr<imperative::VarBase>>();
                ins.insert({"ValueTensor", {value_tensor}});
864 865 866 867 868 869

                // pass the stop_gradient from value to tensor
                if (!value_tensor->OverridedStopGradient() &&
                    self->OverridedStopGradient()) {
                  self->SetOverridedStopGradient(false);
                }
870 871 872 873 874 875 876
              } else if (py::isinstance<py::array>(value_obj)) {
                auto value_tensor = std::shared_ptr<imperative::VarBase>(
                    new imperative::VarBase(false,
                                            tracer->GenerateUniqueName()));
                py::object value = value_obj;
                if (self->DataType() == framework::proto::VarType::FP32) {
                  if (!py::isinstance<py::array_t<float>>(value_obj)) {
W
wanghuancoder 已提交
877
                    value = pybind11::detail::CastNumpyArray<float>(value_obj);
878 879 880 881
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::FP64) {
                  if (!py::isinstance<py::array_t<double>>(value_obj)) {
W
wanghuancoder 已提交
882
                    value = pybind11::detail::CastNumpyArray<double>(value_obj);
883 884 885 886
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT32) {
                  if (!py::isinstance<py::array_t<int32_t>>(value_obj)) {
W
wanghuancoder 已提交
887 888
                    value =
                        pybind11::detail::CastNumpyArray<int32_t>(value_obj);
889 890 891 892
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::INT64) {
                  if (!py::isinstance<py::array_t<int64_t>>(value_obj)) {
W
wanghuancoder 已提交
893 894
                    value =
                        pybind11::detail::CastNumpyArray<int64_t>(value_obj);
895 896 897 898
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::BOOL) {
                  if (!py::isinstance<py::array_t<bool>>(value_obj)) {
W
wanghuancoder 已提交
899
                    value = pybind11::detail::CastNumpyArray<bool>(value_obj);
900
                  }
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX64) {
                  if (!py::isinstance<py::array_t<std::complex<float>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<float>>(
                            value_obj);
                  }
                } else if (self->DataType() ==
                           framework::proto::VarType::COMPLEX128) {
                  if (!py::isinstance<py::array_t<std::complex<double>>>(
                          value_obj)) {
                    value =
                        pybind11::detail::CastNumpyArray<std::complex<double>>(
                            value_obj);
                  }
917 918 919 920
                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "When assign a numpy.np value to a paddle.Tensor, "
                      "the data type of the paddle.Tensor must be bool, "
921 922
                      "float32, float64, complex64, complex128, int32 or "
                      "int64, "
923 924 925
                      "please check the type of tensor."));
                }

926 927 928 929 930
                SetTensorFromPyArray(
                    value_tensor->MutableVar()->GetMutable<phi::DenseTensor>(),
                    value,
                    self->Place(),
                    false);
931 932 933 934 935 936
                ins.insert({"ValueTensor", {value_tensor}});

              } else {
                // convert the value to self data type
                if (py::isinstance<py::float_>(value_obj) ||
                    py::isinstance<py::int_>(value_obj) ||
937 938
                    py::isinstance<py::bool_>(value_obj) ||
                    PyComplex_Check(value_obj.ptr())) {
939
                  if (self->DataType() == framework::proto::VarType::FP32) {
940 941
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
942 943
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP64) {
944 945
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<double>()};
946 947
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT32) {
948 949
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int32_t>()};
950 951
                  } else if (self->DataType() ==
                             framework::proto::VarType::INT64) {
952 953
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<int64_t>()};
954 955
                  } else if (self->DataType() ==
                             framework::proto::VarType::BOOL) {
956 957
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<bool>()};
958 959
                  } else if (self->DataType() ==
                             framework::proto::VarType::FP16) {
960 961 962 963 964 965 966 967 968 969
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<float>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX64) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<float>>()};
                  } else if (self->DataType() ==
                             framework::proto::VarType::COMPLEX128) {
                    attrs["values"] = std::vector<paddle::experimental::Scalar>{
                        value_obj.cast<std::complex<double>>()};
970 971 972 973
                  } else {
                    PADDLE_THROW(platform::errors::InvalidArgument(
                        "When assign a value to a paddle.Tensor, "
                        "the data type of the paddle.Tensor must be bool, "
974 975
                        "float32, float64, complex64, complex128, int32, int64 "
                        "or float16, "
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
                        "please check the type of tensor."));
                  }
                  attrs["shape"] = std::vector<int64_t>{1};

                } else {
                  PADDLE_THROW(platform::errors::InvalidArgument(
                      "Value type error. The assign value allows "
                      "numpy.ndarray, integer, float or bool, "
                      "but received %s.",
                      Py_TYPE(value_obj.ptr())));
                }
              }

              {
                // Release gil and do tracing
                py::gil_scoped_release release;
992 993 994 995
                tracer->TraceOp("set_value",
                                ins,
                                outs,
                                std::move(attrs),
996 997 998 999 1000 1001 1002 1003 1004 1005
                                {{"Input", "Out"}});
              }
            } else {
              auto self_numpy = TensorToPyArray(*self_tensor);
              VLOG(4) << "parse_index is false";
              if (is_tensor(_index)) {
                VLOG(4) << "index is tensor";
                auto index_var =
                    py::cast<std::shared_ptr<imperative::VarBase>>(_index);
                auto index_tensor =
1006
                    index_var->MutableVar()->GetMutable<phi::DenseTensor>();
1007 1008 1009 1010 1011 1012
                auto index_numpy = TensorToPyArray(*index_tensor);
                self_numpy[index_numpy] = value_obj;
              } else {
                VLOG(4) << "index is not tensor";
                self_numpy[_index] = value_obj;
              }
1013 1014
              SetTensorFromPyArray(
                  self_tensor, self_numpy, self_tensor->place(), false);
1015 1016
            }
          })
1017
      .def("_getitem_index_not_tensor",
S
songyouwei 已提交
1018
           [](std::shared_ptr<imperative::VarBase> &self, py::handle _index) {
1019
             VLOG(4) << "Call _getitem_index_not_tensor";
1020
             std::vector<int> slice_axes, slice_starts, slice_ends,
Z
zyfncg 已提交
1021 1022 1023 1024
                 slice_strides, decrease_axis, none_axes, infer_flags,
                 list_select_idxs;
             // if index is a list, list_select_flag will be true
             bool list_select_flag = false;
1025
             auto tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
             ParseIndexingSlice(tensor,
                                _index.ptr(),
                                &slice_axes,
                                &slice_starts,
                                &slice_ends,
                                &slice_strides,
                                &decrease_axis,
                                &none_axes,
                                &infer_flags,
                                &list_select_idxs,
                                &list_select_flag);
1037 1038 1039
             // release gil and do tracing
             py::gil_scoped_release release;
             const auto &tracer = imperative::GetCurrentTracer();
1040

Z
zyfncg 已提交
1041
             auto out = slice_axes.empty() && !list_select_flag
1042 1043 1044 1045
                            ? self
                            : std::shared_ptr<imperative::VarBase>(
                                  new imperative::VarBase(
                                      tracer->GenerateUniqueName()));
Z
zyfncg 已提交
1046

1047
             if (!slice_axes.empty()) {
S
songyouwei 已提交
1048
               imperative::NameVarBaseMap ins = {{"Input", {self}}};
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
               framework::AttributeMap attrs = {
                   {"axes", slice_axes},
                   {"starts", slice_starts},
                   {"ends", slice_ends},
                   {"infer_flags", infer_flags},
                   {"decrease_axis", decrease_axis}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               std::string op_type = "slice";
               for (auto stride : slice_strides) {
                 if (stride != 1) {
                   op_type = "strided_slice";
                   attrs.insert({"strides", slice_strides});
                   attrs.erase("decrease_axis");
                   break;
                 }
               }
               tracer->TraceOp(op_type, ins, outs, std::move(attrs));
             }
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
             if (!none_axes.empty()) {
               if (!none_axes.empty()) {
                 // Deal with cases that decrease_axes is not empty
                 // For example:
                 // # x.shape: (2,3,4)
                 // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
                 for (auto &axis : none_axes) {
                   int len = 0;
                   for (int da : decrease_axis) {
                     if (da < axis) {
                       len++;
                     }
                   }
                   axis -= len;
                 }

                 imperative::NameVarBaseMap ins = {{"X", {out}}};
                 framework::AttributeMap attrs = {{"axes", none_axes}};
                 auto new_out = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 auto out_xshape = std::shared_ptr<imperative::VarBase>(
                     new imperative::VarBase(tracer->GenerateUniqueName()));
                 imperative::NameVarBaseMap outs = {{"Out", {new_out}},
                                                    {"XShape", {out_xshape}}};
                 tracer->TraceOp("unsqueeze2", ins, outs, std::move(attrs));

                 return new_out;
               }
             }

Z
zyfncg 已提交
1097 1098 1099 1100
             // the index is a list
             if (list_select_flag) {
               auto select_index = std::shared_ptr<imperative::VarBase>(
                   new imperative::VarBase(tracer->GenerateUniqueName()));
1101 1102
               auto *idx_tensor =
                   select_index->MutableVar()->GetMutable<phi::DenseTensor>();
Z
zyfncg 已提交
1103 1104
               auto *dev_ctx = platform::DeviceContextPool::Instance().Get(
                   tracer->ExpectedPlace());
1105 1106
               paddle::framework::TensorFromVector(
                   list_select_idxs, *dev_ctx, idx_tensor);
Z
zyfncg 已提交
1107 1108 1109 1110 1111 1112 1113

               imperative::NameVarBaseMap ins = {{"X", {self}},
                                                 {"Index", {select_index}}};
               imperative::NameVarBaseMap outs = {{"Out", {out}}};
               tracer->TraceOp("index_select", ins, outs, {{"dim", 0}});
             }

1114
             return out;
1115
           })
1116 1117 1118
      .def(
          "_getitem_from_offset",
          [](std::shared_ptr<imperative::VarBase> &self, const py::args &args) {
1119
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1120
            PADDLE_ENFORCE_EQ(
1121 1122
                tensor.IsInitialized(),
                true,
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self->Name()));

            const auto &tensor_dims = tensor.dims();

            std::vector<size_t> dims(tensor_dims.size());
            std::vector<size_t> strides(tensor_dims.size());

            size_t numel = 1;
            for (int i = tensor_dims.size() - 1; i >= 0; --i) {
              strides[i] = numel;
              dims[i] = static_cast<size_t>(tensor_dims[i]);
              numel *= dims[i];
            }
            size_t offset = 0;
            if (args.empty()) {
              PADDLE_ENFORCE_EQ(
1141 1142
                  numel,
                  1,
1143 1144 1145 1146 1147 1148
                  platform::errors::InvalidArgument(
                      "only one element tensors can be converted to Python "
                      "scalars when no input coordinates"));
            } else if (args.size() == 1) {
              offset = args[0].cast<size_t>();
              PADDLE_ENFORCE_LT(
1149 1150
                  offset,
                  numel,
1151 1152 1153
                  platform::errors::InvalidArgument(
                      "index %d is out of bounds for size %d", offset, numel));
            } else {
1154 1155
              PADDLE_ENFORCE_EQ(args.size(),
                                dims.size(),
1156 1157 1158 1159 1160 1161
                                platform::errors::InvalidArgument(
                                    "incorrect number of indices for Tensor"));

              for (size_t i = 0; i < args.size(); ++i) {
                size_t index = args[i].cast<size_t>();
                PADDLE_ENFORCE_LT(
1162 1163
                    index,
                    dims[i],
1164 1165
                    platform::errors::InvalidArgument(
                        "index %d is out fo bounds for axis %d with size %d",
1166 1167 1168
                        index,
                        i,
                        dims[i]));
1169 1170 1171 1172
                offset += index * strides[i];
              }
            }
#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
1173
  if (framework::TransToProtoVarType(tensor.dtype()) == proto_type) {        \
1174 1175
    std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(proto_type); \
    T b = TensorGetElement<T>(tensor, offset);                               \
1176 1177
    return py::array(                                                        \
        py::dtype(py_dtype_str.c_str()), {}, {}, static_cast<void *>(&b));   \
1178 1179 1180 1181 1182
  }

            _ForEachDataType_(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
            PADDLE_THROW(platform::errors::Unimplemented(
1183
                "Unsupported tensor data type: %s", tensor.dtype()));
1184 1185
          },
          py::return_value_policy::copy)
1186 1187 1188 1189
      .def("_inplace_version",
           [](imperative::VarBase &self) -> uint32_t {
             const auto &var = self.MutableVar();
             PADDLE_ENFORCE_EQ(
1190 1191
                 var->IsInitialized(),
                 true,
1192 1193 1194 1195 1196
                 platform::errors::InvalidArgument(
                     "Tensor of %s is Empty, please check if it has no data.",
                     self.Name()));
             return var->CurrentInplaceVersion();
           })
1197 1198 1199 1200 1201 1202 1203 1204
      .def(
          "_bump_inplace_version",
          [](std::shared_ptr<imperative::VarBase> &self) {
            // NOTE(liym27): _bump_inplace_version is only used for inplace
            // operation
            self->BumpInplaceVersion();
          },
          R"DOC(
1205 1206 1207 1208 1209
        **Notes**:
            **This API is ONLY available in Dygraph mode.**
            **This is a very low level API. Users should not use it directly. **
         Bump the version whenever the Tensor is modified through an inplace operation.
            )DOC")
1210 1211
      .def(
          "numpy",
1212

1213
          [](imperative::VarBase &self) -> py::array {
1214
            const auto &tensor = self.MutableVar()->Get<phi::DenseTensor>();
1215
            PADDLE_ENFORCE_EQ(
1216 1217
                tensor.IsInitialized(),
                true,
1218 1219 1220 1221 1222 1223
                platform::errors::InvalidArgument(
                    "Tensor of %s is Empty, please check if it has no data.",
                    self.Name()));
            return TensorToPyArray(tensor, true);
          },
          R"DOC(
Z
Zhou Wei 已提交
1224
        Returns a numpy array shows the value of current Tensor.
1225

1226
        Returns:
Z
Zhou Wei 已提交
1227
            ndarray: The numpy value of current Tensor.
1228 1229

        Returns type:
Z
Zhou Wei 已提交
1230
            ndarray: dtype is same as current Tensor
1231 1232 1233 1234

        Examples:
            .. code-block:: python

Z
Zhou Wei 已提交
1235
                import paddle
1236 1237
                import numpy as np
                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
Z
Zhou Wei 已提交
1238 1239 1240 1241
                linear = paddle.nn.Linear(32, 64)
                data = paddle.to_tensor(data)
                x = linear(data)
                print(x.numpy())
1242
       )DOC")
1243 1244 1245 1246 1247
      .def(
          "detach",
          [](const imperative::VarBase &self)
              -> std::shared_ptr<imperative::VarBase> {
            PADDLE_ENFORCE_EQ(
1248 1249
                self.Var().IsInitialized(),
                true,
1250 1251
                platform::errors::InvalidArgument(
                    "Tensor %s has not been initialized!", self.Name()));
1252

1253
            PADDLE_ENFORCE_EQ(
1254
                self.Var().IsType<phi::DenseTensor>() ||
1255 1256 1257 1258 1259
                    self.Var().IsType<phi::SelectedRows>(),
                true,
                platform::errors::InvalidArgument(
                    "Type of Tensor[%s] must be LoDTensor or SelectedRows!",
                    self.Name()));
1260

1261 1262
            auto detach_var = std::make_shared<imperative::VarBase>(
                true, "detach_" + self.Name());
1263

1264 1265 1266
            detach_var->SetPersistable(self.Persistable());
            detach_var->SetType(self.Type());
            detach_var->SetDataType(self.DataType());
1267

1268 1269
            if (self.Var().IsType<phi::DenseTensor>()) {
              const auto &origin_tensor = self.Var().Get<phi::DenseTensor>();
1270
              PADDLE_ENFORCE_EQ(
1271 1272
                  origin_tensor.IsInitialized(),
                  true,
1273 1274 1275 1276
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_tensor =
1277
                  detach_var->MutableVar()->GetMutable<phi::DenseTensor>();
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
              detach_tensor->ShareDataWith(origin_tensor);
              // NOTE(liym27): Call ShareInplaceVersionCounterWith to share the
              // same TensorInplaceVersion, which is used to check whether
              // inplace
              // operations are correct.
              detach_tensor->ShareInplaceVersionCounterWith(origin_tensor);
            } else {
              const auto &origin_selected_rows =
                  self.Var().Get<phi::SelectedRows>();
              PADDLE_ENFORCE_EQ(
1288 1289
                  origin_selected_rows.value().IsInitialized(),
                  true,
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
                  platform::errors::InvalidArgument(
                      "Tensor %s has not been initialized!", self.Name()));

              auto *detach_selected_rows =
                  detach_var->MutableVar()->GetMutable<phi::SelectedRows>();
              detach_selected_rows->set_height(origin_selected_rows.height());
              detach_selected_rows->set_rows(origin_selected_rows.rows());
              detach_selected_rows->mutable_value()->ShareDataWith(
                  origin_selected_rows.value());
              detach_selected_rows->mutable_value()
                  ->ShareInplaceVersionCounterWith(
                      origin_selected_rows.value());
            }
            VLOG(3) << "The detached Tensor(" << detach_var->Name()
                    << ") share data with " << self.Name();
            return detach_var;
          },
1307 1308
          py::return_value_policy::take_ownership,
          R"DOC(
1309

1310
        Returns a new Tensor, detached from the current graph.
Z
Zhou Wei 已提交
1311 1312
        It will share data with origin Tensor and always doesn't have a Tensor copy.
        In addition, the detached Tensor doesn't provide gradient propagation.
1313

1314
        Returns: The detached Tensor.
1315 1316 1317 1318

        Examples:
            .. code-block:: python

1319
                import paddle
Z
Zhou Wei 已提交
1320

1321
                x = paddle.to_tensor([1.0], stop_gradient=False)
Z
Zhou Wei 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
                detach_x = x.detach()
                detach_x[:] = 10.0
                print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                          #        [10.])
                y = x**2
                y.backward()
                print(x.grad)         # [20.0]
                print(detach_x.grad)  # None, 'stop_gradient=True' by default

                detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
                z = detach_x**3
                z.backward()

                print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
                print(detach_x.grad)  # [300.0], detach_x has its own graph

                # Due to sharing of data with origin Tensor, There are some unsafe operations:
                y = 2 * x
                detach_x[:] = 5.0
1341
                y.backward()
Z
Zhou Wei 已提交
1342 1343
                # It will raise Error:
                #   one of the variables needed for gradient computation has been modified by an inplace operation.
1344

1345
       )DOC")
1346 1347 1348 1349
      .def("clear_gradient",
           &imperative::VarBase::ClearGradient,
           py::arg("set_to_zero") = true,
           R"DOC(
1350

1351
        Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen't has gradient.
1352

1353
        The Gradient of current Tensor will be set to ``0`` .
1354 1355 1356 1357 1358 1359

        Returns:  None

        Examples:
             .. code-block:: python

1360
                import paddle
Z
Zhou Wei 已提交
1361 1362 1363 1364 1365 1366 1367
                input = paddle.uniform([10, 2])
                linear = paddle.nn.Linear(2, 3)
                out = linear(input)
                out.backward()
                print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
                linear.weight.clear_gradient()
                print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
1368
      )DOC")
1369 1370
      .def("_gradient_set_empty",
           &imperative::VarBase::_GradientSetEmpty,
1371 1372
           py::arg("set_is_empty") = true)
      .def("_is_gradient_set_empty", &imperative::VarBase::_IsGradientSetEmpty)
1373 1374 1375
      .def(
          "clone",
          [](std::shared_ptr<imperative::VarBase> &self) {
1376
            const auto &tensor = self->Var().Get<phi::DenseTensor>();
1377 1378
            PADDLE_ENFORCE_EQ(tensor.IsInitialized(),
                              true,
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
                              platform::errors::InvalidArgument(
                                  "%s has not been initialized", self->Name()));
            auto tracer = imperative::GetCurrentTracer();
            auto new_var = std::make_shared<imperative::VarBase>(
                true, tracer->GenerateUniqueName(self->Name() + "_clone"));
            framework::AttributeMap attrs;
            imperative::NameVarBaseMap ins = {{"X", {self}}};
            imperative::NameVarBaseMap outs = {{"Out", {new_var}}};
            tracer->TraceOp("assign", ins, outs, attrs);
            return new_var;
          },
1390 1391
          py::return_value_policy::copy,
          R"DOC(
Z
Zhou Wei 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

        Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
        It will always have a Tensor copy.
        Tn addition, the cloned Tensor provides gradient propagation.

        Returns: The cloned Tensor.

        Examples:
            .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.0, stop_gradient=False)
              clone_x = x.clone()
              y = clone_x**2
              y.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [2.0], support gradient propagation
              print(x.stop_gradient)       # False
              print(x.grad)                # [2.0], clone_x support gradient propagation for x

              x = paddle.to_tensor(1.0)
              clone_x = x.clone()
              clone_x.stop_gradient = False
              z = clone_x**3
              z.backward()
              print(clone_x.stop_gradient) # False
              print(clone_x.grad)          # [3.0], support gradient propagation
              print(x.stop_gradient) # True
              print(x.grad)          # None
       )DOC")
L
Leo Chen 已提交
1423
      .def("_grad_name", &imperative::VarBase::GradVarName)
1424 1425 1426
      .def(
          "_grad_value",
          [](imperative::VarBase &self) {
1427
            return self.MutableGradVar()->Get<phi::DenseTensor>();
1428 1429
          },
          py::return_value_policy::reference)
1430 1431 1432 1433
      .def("_set_grad_type",
           [](imperative::VarBase &self, framework::proto::VarType::Type type) {
             self.MutableGradVarBase()->SetType(type);
           })
1434
      .def("_reset_grad_inplace_version",
1435
           [](imperative::VarBase &self, bool set_to_zero) {
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
             /*
             *** This interfaceis a complete hack ***
             reset_grad_inplace_version removes all inplace related records to
             Grad VarBase/VariableWrapper,
             the essential purpose of which is to let you use inplace operations
             as if using its non-inplaced version,
             which of course will cause unexpected consequences if not used with
             care.
             Make sure you fully understand what you're doing before make use of
             this interface, and prepare for the worst.
             */
1447 1448
             py::gil_scoped_release release;

1449 1450 1451
             if (self.HasGradVar()) {
               auto grad_var = self.GradVarBase();
               auto var_wrapper = grad_var->SharedVar();
1452 1453 1454
               if (var_wrapper) {
                 var_wrapper->ResetInplaceVersion(set_to_zero);
               }
1455 1456
             }
           })
1457 1458 1459 1460 1461 1462 1463
      .def(
          "_grad_ivar",
          [](const imperative::VarBase &self) {
            auto &grad_var = self.GradVarBase();

            if (grad_var && grad_var->Var().IsInitialized()) {
              auto *tensor =
1464 1465
                  grad_var->MutableVar()->IsType<phi::DenseTensor>()
                      ? grad_var->MutableVar()->GetMutable<phi::DenseTensor>()
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
                      : grad_var->MutableVar()
                            ->GetMutable<phi::SelectedRows>()
                            ->mutable_value();

              if (tensor->IsInitialized()) {
                return grad_var;
              }
            }
            return std::shared_ptr<imperative::VarBase>(nullptr);
          },
          py::return_value_policy::copy)
C
chentianyu03 已提交
1477 1478 1479 1480
      .def("_set_grad_ivar",
           [](imperative::VarBase &self, imperative::VarBase &grad) {
             self.SetGradVarBase(grad);
           })
1481 1482
      .def("_is_sparse",
           [](imperative::VarBase &self) {
1483
             return self.Var().IsType<phi::SelectedRows>();
1484
           })
1485 1486 1487 1488 1489
      .def(
          "_allreduce",
          [](imperative::VarBase &self,
             const imperative::ParallelStrategy &strategy) {
            if (strategy.nranks_ > 1) {
1490
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1491
#if NCCL_VERSION_CODE >= 2212
1492
              imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
1493
#else
1494
               if (!self.Var().IsType<phi::SelectedRows>()) {
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
                 imperative::AllReduce(self.Var(), self.MutableVar(), strategy);
               } else {
                 PADDLE_THROW(platform::errors::Unimplemented(
                     "Imperative SelectedRows allreduce is not supported when "
                     "paddle is compiled with NCCL verison lower than v2.2.12. "
                     "You can set is_sparse=False for the Layer containing "
                     "this argument, such as Embedding(is_sparse=False)."));
               }
#endif  // NCCL_VERSION_CODE
#else
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Imperative allreduce is not supported when paddle is "
                   "not compiled with NCCL."));
1508
#endif  // PADDLE_WITH_NCCL or PADDLE_WITH_RCCL
1509 1510 1511
            }
          },
          py::call_guard<py::gil_scoped_release>())
1512 1513 1514
      .def("_register_grad_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1515 1516
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1517
                 platform::errors::InvalidArgument(
1518 1519 1520
                     "Cannot register gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->AddVariableWrapperHook(
1521 1522 1523 1524 1525
                 std::make_shared<PyVariableWrapperHook>(hook.ptr()));
           })
      .def("_remove_grad_hook",
           [](imperative::VarBase &self, int64_t hook_id) {
             PADDLE_ENFORCE_EQ(
1526 1527
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1528
                 platform::errors::InvalidArgument(
1529 1530 1531
                     "Cannot remove gradient hook on a Tensor that stop "
                     "gradient or without gradient."));
             return self.GradVarBase()->RemoveVariableWrapperHook(hook_id);
1532
           })
1533 1534 1535
      .def("_register_void_function_post_hook",
           [](imperative::VarBase &self, const py::handle &hook) {
             PADDLE_ENFORCE_EQ(
1536 1537
                 !self.OverridedStopGradient() && self.HasGradVar(),
                 true,
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
                 platform::errors::InvalidArgument(
                     "Cannot register void function post hook on a Tensor that "
                     "stop "
                     "gradient or without gradient."));
             auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
             auto grad_node = self.MutableGradVarBase()->GradNode();
             for (auto &cur_op : *grad_node) {
               cur_op.AddVoidFunctionPostHook(
                   std::make_shared<std::function<void()>>(py_func));
             }
           })
1549 1550 1551 1552
      .def(
          "_register_backward_hook",
          [](imperative::VarBase &self, const py::handle &hook) {
            PADDLE_ENFORCE_EQ(
1553 1554
                self.IsLeaf(),
                true,
1555 1556 1557
                platform::errors::InvalidArgument(
                    "Only can register backward hook for leaf Tensor."));
            PADDLE_ENFORCE_EQ(
1558 1559
                !self.OverridedStopGradient() && self.HasGradVar(),
                true,
1560 1561 1562 1563 1564 1565 1566 1567
                platform::errors::InvalidArgument(
                    "Cannot register backward hook on a Tensor that stop "
                    "gradient or without gradient."));
            auto py_func = PyObjectCast<std::function<void()>>(hook.ptr());
            self.GradVarBase()->AddVoidHook(
                std::make_shared<std::function<void()>>(py_func));
          },
          R"DOC(
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
             Registers a backward hook for current Tensor.

             This hook will be called every time the gradient of current Tensor has been fully calculated.

             There are two differences with `_register_grad_hook`:
             1. This backward hook will be executed after the gradient accumulation completed across batchs,
                but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
                completed in current batch.
             2. This backward hook function should have the following signature:

                  hook() -> None

                It requires no input and no return value.

             Args:
                 hook(function): A backward hook to be registered for Tensor.gradient

             Returns:
                 None
           )DOC")
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
      .def(
          "cpu",
          [](const std::shared_ptr<imperative::VarBase> &self) {
            if (platform::is_cpu_place(self->Place())) {
              return self;
            } else {
              auto new_var = self->NewVarBase(platform::CPUPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
        Returns a copy of this Tensor in CPU memory.

        If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)    # CUDAPlace(0)
1610

1611 1612 1613 1614
              y = x.cpu()
              print(y.place)    # CPUPlace

              )DOC")
1615 1616 1617
      .def(
          "pin_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
1618
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1619 1620 1621 1622
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to pinned memory in CPU version "
                "Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1623
#endif
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
            if (platform::is_cuda_pinned_place(self->Place())) {
              return self;
            } else {
              auto new_var =
                  self->NewVarBase(platform::CUDAPinnedPlace(), true);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
          },
          R"DOC(
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
        Returns a copy of this Tensor in pin memory.

        If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.

        Examples:
            .. code-block:: python

              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0))
              print(x.place)      # CUDAPlace(0)

              y = x.pin_memory()
              print(y.place)      # CUDAPinnedPlace

      )DOC")
1649 1650 1651
      .def(
          "cuda",
          [](const std::shared_ptr<imperative::VarBase> &self,
1652 1653
             py::handle &handle,
             bool blocking) {
1654
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1655 1656 1657
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot copy this Tensor to GPU in CPU version Paddle, "
                "Please recompile or reinstall Paddle with CUDA support."));
1658
#else
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
            int device_count = platform::GetGPUDeviceCount();
            int device_id = 0;
            if (handle == py::none()) {
              auto default_place =
                  imperative::GetCurrentTracer()->ExpectedPlace();
              device_id = default_place.GetDeviceId();
            } else {
              PyObject *py_obj = handle.ptr();
              PADDLE_ENFORCE_EQ(
                  PyCheckInteger(py_obj), true,
                  platform::errors::InvalidArgument(
                      " 'device_id' must be a positive integer"));
              device_id = py::cast<int>(handle);
            }
            PADDLE_ENFORCE_GE(
                device_id, 0,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            PADDLE_ENFORCE_LT(
                device_id, device_count,
                platform::errors::InvalidArgument(
                    "Can not copy Tensor to Invalid CUDAPlace(%d), device id "
                    "must inside [0, %d)",
                    device_id, device_count));
            platform::CUDAPlace place = platform::CUDAPlace(device_id);
            if (platform::is_same_place(self->Place(), place)) {
              return self;
            } else {
              auto new_var = self->NewVarBase(place, blocking);
              new_var->SetOverridedStopGradient(self->OverridedStopGradient());
              return new_var;
            }
1693
#endif
1694
          },
1695 1696 1697
          py::arg("device_id") = py::none(),
          py::arg("blocking") = true,
          R"DOC(
1698 1699
        Returns a copy of this Tensor in GPU memory.

1700
        If this Tensor is already in GPU memory and device_id is default,
1701
        then no copy is performed and the original Tensor is returned.
1702

1703
        Args:
1704
            device_id(int, optional): The destination GPU device id. Default: None, means current device.
1705
            blocking(bool, optional): If False and the source is in pinned memory, the copy will be
1706 1707 1708 1709 1710
              asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.

        Examples:
            .. code-block:: python

1711
              # required: gpu
1712 1713
              import paddle
              x = paddle.to_tensor(1.0, place=paddle.CPUPlace())
1714
              print(x.place)        # Place(cpu)
1715 1716

              y = x.cuda()
1717
              print(y.place)        # Place(gpu:0)
1718

1719
              y = x.cuda(None)
1720
              print(y.place)        # Place(gpu:0)
1721

1722 1723 1724
              paddle.device.set_device("gpu:1")
              y = x.cuda(None)
              print(y.place)        # Place(gpu:1)
1725
       )DOC")
1726 1727 1728
      .def(
          "_share_memory",
          [](const std::shared_ptr<imperative::VarBase> &self) {
K
Kaipeng Deng 已提交
1729
#ifndef _WIN32
1730
            PADDLE_ENFORCE_EQ(
1731 1732
                platform::is_cpu_place(self->Place()),
                true,
1733 1734 1735
                platform::errors::InvalidArgument(
                    "Sharing memory only support CPU Tensor currently"));
            // 1. get LoDTensor
1736
            auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
            // 2. allocate shared memory
            void *data_ptr = t->data();
            size_t data_size =
                t->numel() * framework::SizeOfType(
                                 framework::TransToProtoVarType(t->dtype()));
            auto shared_writer_holder =
                memory::allocation::AllocateMemoryMapWriterAllocation(
                    data_size);
            // 3. maintain mmap fd set & backup ipc_name
            const std::string &ipc_name = shared_writer_holder->ipc_name();
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
            // 4. copy data & reset holder
1749 1750 1751 1752 1753
            memory::Copy(platform::CPUPlace(),
                         shared_writer_holder->ptr(),
                         platform::CPUPlace(),
                         data_ptr,
                         data_size);
1754 1755
            t->ResetHolder(shared_writer_holder);
            return *t;
K
Kaipeng Deng 已提交
1756 1757 1758 1759
#else
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Sharing memory in Windows OS is not supported currently"));
#endif
1760 1761
          },
          py::return_value_policy::reference)
1762
#if defined(PADDLE_WITH_CUDA)
1763 1764 1765
      .def(
          "_uva",
          [](const std::shared_ptr<imperative::VarBase> &self, int device_id) {
1766 1767
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->Place()),
                              true,
1768 1769 1770 1771
                              platform::errors::InvalidArgument(
                                  "Unified virtual addressing only support "
                                  "CPU Tensor currently."));
            auto *self_tensor =
1772
                self->MutableVar()->GetMutable<phi::DenseTensor>();
1773 1774
            tensor_uva(self_tensor, device_id);
          },
1775 1776 1777
          py::arg("device_id") = 0,
          py::return_value_policy::reference,
          R"DOC(
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
       )DOC")
#endif
1793
      .def("copy_", &imperative::VarBase::CopyFrom)
1794 1795 1796
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1797 1798
             const platform::CPUPlace &place,
             bool blocking) {
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
            auto new_var = self->NewVarBase(place, blocking);
            // Note(zhiqiu): Since NewVarBase may use GpuCopyAsync to
            // copy data from the tensor of self to the tensor of new varbase,
            // we need to ensure that the varbase self is not destructed until
            // the GpuCopyAsync is completed. Otherwise, the memory may be
            // freed
            // when varbase self is destructed.
            // To do that, we increase the reference count of self by 1 and
            // add a cuda event to wait the GpuCopyAsync's completion.
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1817 1818
             const platform::CUDAPinnedPlace &place,
             bool blocking) {
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1829 1830
             const platform::XPUPlace &place,
             bool blocking) {
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1841 1842
             const platform::CUDAPlace &place,
             bool blocking) {
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1853 1854
             const platform::NPUPlace &place,
             bool blocking) {
1855 1856 1857 1858 1859 1860 1861
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
             const platform::IPUPlace &place,
             bool blocking) {
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1874 1875 1876
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1877 1878
             const platform::CustomPlace &place,
             bool blocking) {
1879 1880 1881 1882 1883 1884 1885
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
1886 1887 1888
      .def(
          "_copy_to",
          [](const std::shared_ptr<imperative::VarBase> &self,
1889 1890
             const platform::Place &place,
             bool blocking) {
1891 1892 1893 1894 1895 1896 1897 1898
            auto new_var = self->NewVarBase(place, blocking);
            if (!blocking) {
              IncreaseVarbaseReferenceCountUntilCopyComplete(self, place);
            }
            return new_var;
          },
          py::return_value_policy::copy)
      .def(
1899 1900
          "value",
          [](imperative::VarBase &self) { return self.MutableVar(); },
1901
          py::return_value_policy::reference)
1902 1903
      .def("_clear",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1904
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1905
             PADDLE_ENFORCE_EQ(
1906 1907
                 t->IsInitialized(),
                 true,
1908 1909
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1910 1911 1912 1913
             t->clear();
           })
      .def("_offset",
           [](const std::shared_ptr<imperative::VarBase> &self) {
1914
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1915
             PADDLE_ENFORCE_EQ(
1916 1917
                 t->IsInitialized(),
                 true,
1918 1919
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1920 1921
             return t->offset();
           })
1922
      .def("_share_buffer_to",
1923
           [](const std::shared_ptr<imperative::VarBase> &self,
1924
              std::shared_ptr<imperative::VarBase> &dst) {
1925 1926
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1927
             PADDLE_ENFORCE_EQ(
1928 1929
                 src->IsInitialized(),
                 true,
1930 1931 1932
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
B
Baibaifan 已提交
1933
             dst_->ShareDataTypeWith(*src);
1934 1935 1936
           })
      .def("_is_shared_buffer_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
1937
              std::shared_ptr<imperative::VarBase> &dst) {
1938 1939
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1940 1941 1942 1943
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
1944
           })
1945 1946 1947
      .def("_share_underline_tensor_to",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1948 1949
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1950
             PADDLE_ENFORCE_EQ(
1951 1952
                 src->IsInitialized(),
                 true,
1953 1954 1955 1956 1957 1958 1959 1960 1961
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
             dst_->ShareBufferWith(*src);
             dst_->ShareDataTypeWith(*src);
             dst_->Resize(src->dims());
           })
      .def("_is_shared_underline_tensor_with",
           [](const std::shared_ptr<imperative::VarBase> &self,
              std::shared_ptr<imperative::VarBase> &dst) {
1962 1963
             auto *src = self->MutableVar()->GetMutable<phi::DenseTensor>();
             auto *dst_ = dst->MutableVar()->GetMutable<phi::DenseTensor>();
1964 1965 1966 1967 1968
             if (!src->IsInitialized() || !dst_->IsInitialized()) {
               return false;
             }
             return dst_->IsSharedBufferWith(*src);
           })
1969 1970
      .def("_slice",
           [](const std::shared_ptr<imperative::VarBase> &self,
1971 1972
              int64_t begin_idx,
              int64_t end_idx) {
1973
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1974
             PADDLE_ENFORCE_EQ(
1975 1976
                 t->IsInitialized(),
                 true,
1977 1978
                 platform::errors::InvalidArgument(
                     "Tensor %s has not been initialized!", self->Name()));
1979 1980 1981 1982 1983 1984 1985
             return t->Slice(begin_idx, end_idx);
           })
      .def("_copy_gradient_from",
           [](std::shared_ptr<imperative::VarBase> &self,
              const imperative::VarBase &src) { self->_CopyGradientFrom(src); })
      .def("_numel",
           [](std::shared_ptr<imperative::VarBase> &self) {
1986
             auto *t = self->MutableVar()->GetMutable<phi::DenseTensor>();
1987 1988
             return t->numel();
           })
1989 1990
      .def("element_size", &imperative::VarBase::ElementSize, R"DOC(
        Returns the size in bytes of an element in the Tensor.
1991

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
        Examples:
          .. code-block:: python

            import paddle

            x = paddle.to_tensor(1, dtype='bool')
            x.element_size() # 1

            x = paddle.to_tensor(1, dtype='float16')
            x.element_size() # 2

            x = paddle.to_tensor(1, dtype='float32')
            x.element_size() # 4

            x = paddle.to_tensor(1, dtype='float64')
            x.element_size() # 8

            x = paddle.to_tensor(1, dtype='complex128')
            x.element_size() # 16
       )DOC")
2012 2013
      .def_property(
          "name", &imperative::VarBase::Name, &imperative::VarBase::SetName)
L
Leo Chen 已提交
2014 2015 2016
      .def_property("stop_gradient",
                    &imperative::VarBase::OverridedStopGradient,
                    &imperative::VarBase::SetOverridedStopGradient)
2017 2018
      .def_property("persistable",
                    &imperative::VarBase::Persistable,
L
Leo Chen 已提交
2019
                    &imperative::VarBase::SetPersistable)
2020 2021 2022
      .def_property_readonly(
          "shape",
          [](imperative::VarBase &self) {
2023
            if (self.Var().IsType<phi::DenseTensor>()) {
2024
              auto value = phi::vectorize<int>(
2025 2026
                  self.Var().Get<phi::DenseTensor>().dims());
              auto tensor = self.Var().Get<phi::DenseTensor>();
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
              auto tmp_value = value;
              auto desired_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDesiredLayout();
              auto default_layout =
                  paddle::imperative::LayoutAutoTune::Instance()
                      .GetDefaultLayout();
              bool change_dim =
                  (desired_layout != default_layout &&
                   tensor.layout() == desired_layout && value.size() == 4);
              VLOG(6) << "'Shape' method, layout autotune,"
                      << " desired_layout: " << desired_layout
                      << " default_layout: " << default_layout
                      << " tensor layout: " << tensor.layout()
                      << " tensor's shape size is : " << value.size();

2043 2044
              if (change_dim &&
                  phi::DataLayoutToString(desired_layout) == "NCHW") {
2045 2046 2047 2048 2049 2050 2051 2052 2053
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[3] << " "
                        << tmp_value[1] << " " << tmp_value[2] << " "
                        << tmp_value[1];
                // NCHW -> NHWC
                value[1] = tmp_value[2];
                value[2] = tmp_value[3];
                value[3] = tmp_value[1];
2054 2055
              } else if (change_dim &&
                         phi::DataLayoutToString(desired_layout) == "NHWC") {
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
                VLOG(6) << "layout autotune get Shape from NHWC -> NCHW "
                        << value[0] << " " << value[1] << " " << value[2] << " "
                        << value[3] << " to " << tmp_value[0] << " "
                        << tmp_value[3] << " " << tmp_value[1] << " "
                        << tmp_value[2];
                // NHWC -> NCHW
                value[1] = tmp_value[3];
                value[2] = tmp_value[1];
                value[3] = tmp_value[2];
              }
              return value;
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
            } else if (self.Var().IsType<phi::SelectedRows>()) {
              return phi::vectorize<int>(
                  self.Var().Get<phi::SelectedRows>().value().dims());
            } else if (self.Var().IsType<framework::Strings>()) {
              return std::vector<int>{static_cast<int>(
                  self.Var().Get<framework::Strings>().size())};
            } else if (self.Var().IsType<framework::Vocab>()) {
              return std::vector<int>{
                  static_cast<int>(self.Var().Get<framework::Vocab>().size())};
            } else {
              VLOG(2) << "It is meaningless to get shape of "
                         "variable type "
                      << GetTypeName(self);
              return std::vector<int>();
            }
          })
2083 2084 2085
      .def_property_readonly(
          "layout",
          [](imperative::VarBase &self) {
2086 2087
            if (self.Var().IsType<phi::DenseTensor>()) {
              auto layout = self.Var().Get<phi::DenseTensor>().layout();
2088
              return phi::DataLayoutToString(layout);
2089 2090 2091
            }
            return std::string("");
          })
2092 2093
      .def_property_readonly("is_leaf",
                             &imperative::VarBase::IsLeaf,
2094 2095 2096
                             R"DOC(
      Whether a Tensor is leaf Tensor.

2097 2098
      For the Tensor whose stop_gradient is ``True`` , it will be leaf Tensor.

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
      For the Tensor whose stop_gradient is ``False`` , it will be leaf Tensor too if it is created by user.

      Returns:
          bool: Whether a Tensor is leaf Tensor.

      Examples:
          .. code-block:: python

              import paddle

              x = paddle.to_tensor(1.)
              print(x.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=True)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # True

              x = paddle.to_tensor(1., stop_gradient=False)
              y = x + 1
              print(x.is_leaf) # True
              print(y.is_leaf) # False
       )DOC")
2122
      .def_property_readonly(
2123 2124
          "place",
          [](imperative::VarBase &self) { return self.Place(); },
2125
          py::return_value_policy::copy)
2126 2127 2128 2129 2130 2131
      .def_property_readonly("_place_str",
                             [](imperative::VarBase &self) {
                               std::stringstream ostr;
                               ostr << self.Place();
                               return ostr.str();
                             })
J
Jiabin Yang 已提交
2132
      .def_property_readonly("type", &imperative::VarBase::Type)
L
Leo Chen 已提交
2133
      .def_property_readonly("dtype", &imperative::VarBase::DataType);
2134

2135 2136 2137 2138 2139
  py::class_<imperative::jit::ProgramDescTracer>(m, "ProgramDescTracer", "")
      .def("create_program_desc",
           &imperative::jit::ProgramDescTracer::CreateProgramDesc)
      .def("reset", &imperative::jit::ProgramDescTracer::Reset);

L
Leo Chen 已提交
2140 2141 2142 2143 2144 2145 2146
  py::enum_<paddle::imperative::AmpLevel>(m, "AmpLevel", py::arithmetic())
      .value("O0", paddle::imperative::AmpLevel::O0)
      .value("O1", paddle::imperative::AmpLevel::O1)
      .value("O2", paddle::imperative::AmpLevel::O2)
      .value("O3", paddle::imperative::AmpLevel::O3)
      .export_values();

2147
  py::class_<imperative::Tracer, std::shared_ptr<imperative::Tracer>>(
2148
      m, "Tracer", R"DOC()DOC")
2149
      .def("__init__",
J
Jiabin Yang 已提交
2150
           [](imperative::Tracer &self) { new (&self) imperative::Tracer(); })
2151 2152 2153
      .def_property("_enable_program_desc_tracing",
                    &imperative::Tracer::IsProgramDescTracingEnabled,
                    &imperative::Tracer::SetEnableProgramDescTracing)
2154 2155
      .def_property("_amp_level",
                    &imperative::Tracer::GetAmpLevel,
L
Leo Chen 已提交
2156
                    &imperative::Tracer::SetAmpLevel)
2157 2158
      .def_property("_amp_dtype",
                    &imperative::Tracer::GetAmpDtype,
2159
                    &imperative::Tracer::SetAmpDtype)
2160 2161
      .def_property("_has_grad",
                    &imperative::Tracer::HasGrad,
2162
                    &imperative::Tracer::SetHasGrad)
2163 2164 2165 2166 2167 2168 2169 2170
      .def_property(
          "_expected_place",
          [](const imperative::Tracer &self) -> py::object {
            return py::cast(self.ExpectedPlace());
          },
          [](imperative::Tracer &self, const py::object &obj) {
            if (py::isinstance<platform::CUDAPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPlace *>();
L
Leo Chen 已提交
2171
              self.SetExpectedPlace(*p);
2172 2173
              // TODO(jiabin): Support eager here when we need to make all
              // dygraph in eager mode
2174 2175
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2176 2177 2178
            } else if (py::isinstance<platform::XPUPlace>(obj)) {
              auto p = obj.cast<platform::XPUPlace *>();
              self.SetExpectedPlace(*p);
2179 2180
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2181 2182
            } else if (py::isinstance<platform::CPUPlace>(obj)) {
              auto p = obj.cast<platform::CPUPlace *>();
L
Leo Chen 已提交
2183
              self.SetExpectedPlace(*p);
2184 2185
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2186 2187
            } else if (py::isinstance<platform::CUDAPinnedPlace>(obj)) {
              auto p = obj.cast<platform::CUDAPinnedPlace *>();
L
Leo Chen 已提交
2188
              self.SetExpectedPlace(*p);
2189 2190
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2191 2192 2193 2194 2195
            } else if (py::isinstance<platform::NPUPlace>(obj)) {
              auto p = obj.cast<platform::NPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2196 2197 2198 2199 2200
            } else if (py::isinstance<platform::IPUPlace>(obj)) {
              auto p = obj.cast<platform::IPUPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2201 2202 2203 2204 2205
            } else if (py::isinstance<platform::CustomPlace>(obj)) {
              auto p = obj.cast<platform::CustomPlace *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2206 2207 2208 2209 2210
            } else if (py::isinstance<platform::Place>(obj)) {
              auto p = obj.cast<platform::Place *>();
              self.SetExpectedPlace(*p);
              VLOG(4) << "Tracer(" << &self << ")"
                      << " set expected place " << *p;
2211
            } else {
L
Leo Chen 已提交
2212
              PADDLE_THROW(platform::errors::InvalidArgument(
2213
                  "Incompatible Place Type: supports XPUPlace, CUDAPlace, "
张春乔 已提交
2214
                  "CPUPlace, NPUPlace, IPUPlace"
L
Leo Chen 已提交
2215 2216
                  "and CUDAPinnedPlace, "
                  "but got Unknown Type!"));
2217 2218
            }
          })
2219 2220 2221
      .def("_get_program_desc_tracer",
           &imperative::Tracer::GetProgramDescTracer,
           py::return_value_policy::reference)
2222 2223
      .def("_generate_unique_name",
           &imperative::Tracer::GenerateUniqueName,
2224
           py::arg("key") = "dygraph_tmp")
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
      .def("_set_amp_op_list",
           [](imperative::Tracer &self,
              std::unordered_set<std::string> &allow_ops,
              std::unordered_set<std::string> &block_ops) {
             // NOTE(zhiqiu): The automatic conversion in pybind11 between
             // c++
             // STL and python set/list/dict involve a copy operation that
             // prevents pass-by-reference semantics, so it is ok to swap.
             // The reaseon why not directly pass
             // std::shared_ptr<std::unordered_set<std::string>>
             // is that pybind11 forbid shared_ptr<T> where T is not custom
             // type.
             imperative::AmpOperators::Instance().GetMutableAllowOps()->swap(
                 allow_ops);
             imperative::AmpOperators::Instance().GetMutableBlockOps()->swap(
                 block_ops);
2241
             VLOG(5) << "AMP operators changed, "
2242 2243
                     << imperative::AmpOperators::Instance();
           })
2244 2245 2246
      .def("_get_amp_op_list",
           [](imperative::Tracer &self) {
             return std::make_tuple(
2247 2248
                 *(imperative::AmpOperators::Instance().GetMutableAllowOps()),
                 *(imperative::AmpOperators::Instance().GetMutableBlockOps()));
2249
           })
C
Chen Weihang 已提交
2250
      .def("_get_kernel_signature",
2251 2252 2253 2254
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
C
Chen Weihang 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
              framework::AttributeMap attrs) {
             // TODO(xiongkun): move this function outside of tracer.
             auto ins_map = ConvertToNameTensorMap(ins);
             auto outs_map = ConvertToNameTensorMap(outs);
             {
               auto input_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto output_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
               auto attr_to_vector =
                   [](paddle::small_vector<const char *> &vec) {
                     return std::vector<std::string>(vec.begin(), vec.end());
                   };
2272 2273
               auto ret = self.GetExpectedKernelSignature(
                   type, ins_map, outs_map, attrs);
C
Chen Weihang 已提交
2274 2275 2276
               auto kernelsig_ins = input_to_vector(ret.input_names);
               auto kernelsig_attrs = attr_to_vector(ret.attr_names);
               auto kernelsig_outs = output_to_vector(ret.output_names);
2277 2278
               return std::make_tuple(
                   kernelsig_ins, kernelsig_attrs, kernelsig_outs);
C
Chen Weihang 已提交
2279 2280
             }
           })
2281
      .def("trace",
2282 2283 2284 2285 2286 2287
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CustomPlace &place,
2288 2289 2290 2291 2292 2293
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2294 2295 2296 2297 2298 2299 2300
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2301 2302
             }
           })
2303
      .def("trace",
2304 2305 2306 2307 2308 2309
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::XPUPlace &place,
Z
zyfncg 已提交
2310 2311
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2312 2313 2314 2315
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2316 2317 2318 2319 2320 2321 2322
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2323 2324
             }
           })
M
minqiyang 已提交
2325
      .def("trace",
2326 2327 2328 2329 2330 2331
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CUDAPlace &place,
Z
zyfncg 已提交
2332 2333
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2334 2335
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
2336 2337
             {
               py::gil_scoped_release release;
2338 2339 2340 2341 2342 2343 2344
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2345
             }
M
minqiyang 已提交
2346
           })
2347
      .def("trace",
2348 2349 2350 2351 2352 2353
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::NPUPlace &place,
Z
zyfncg 已提交
2354 2355
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
2356
             auto ins_map = ConvertToNameVarBaseMap(ins);
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
             }
           })
      .def("trace",
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::IPUPlace &place,
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
             auto ins_map = ConvertToNameVarBaseMap(ins);
2379 2380 2381
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2382 2383 2384 2385 2386 2387 2388
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
2389 2390
             }
           })
J
Jiabin Yang 已提交
2391
      .def("trace",
2392 2393 2394 2395 2396 2397
           [](imperative::Tracer &self,
              const std::string &type,
              const PyNameVarBaseMap &ins,
              const PyNameVarBaseMap &outs,
              framework::AttributeMap attrs,
              const platform::CPUPlace &place,
Z
zyfncg 已提交
2398 2399
              bool trace_backward,
              const std::map<std::string, std::string> &inplace_map = {}) {
J
Jiabin Yang 已提交
2400 2401 2402 2403
             auto ins_map = ConvertToNameVarBaseMap(ins);
             auto outs_map = ConvertToNameVarBaseMap(outs);
             {
               py::gil_scoped_release release;
2404 2405 2406 2407 2408 2409 2410
               self.TraceOp<imperative::VarBase>(type,
                                                 std::move(ins_map),
                                                 std::move(outs_map),
                                                 std::move(attrs),
                                                 place,
                                                 trace_backward,
                                                 inplace_map);
J
Jiabin Yang 已提交
2411 2412
             }
           });
2413 2414

  // define parallel context
2415 2416 2417
  py::class_<imperative::ParallelStrategy> parallel_strategy(
      m, "ParallelStrategy", "");
  parallel_strategy.def(py::init())
2418 2419
      .def_property(
          "nranks",
2420 2421
          [](const imperative::ParallelStrategy &self) { return self.nranks_; },
          [](imperative::ParallelStrategy &self, int nranks) {
2422 2423
            self.nranks_ = nranks;
          })
2424 2425 2426 2427 2428 2429 2430 2431
      .def_property(
          "local_rank",
          [](const imperative::ParallelStrategy &self) {
            return self.local_rank_;
          },
          [](imperative::ParallelStrategy &self, int local_rank) {
            self.local_rank_ = local_rank;
          })
2432 2433
      .def_property(
          "trainer_endpoints",
2434
          [](const imperative::ParallelStrategy &self) {
2435 2436
            return self.trainer_endpoints_;
          },
2437
          [](imperative::ParallelStrategy &self, std::vector<std::string> eps) {
2438 2439
            self.trainer_endpoints_ = eps;
          })
2440 2441 2442 2443 2444 2445 2446 2447
      .def_property(
          "current_endpoint",
          [](const imperative::ParallelStrategy &self) {
            return self.current_endpoint_;
          },
          [](imperative::ParallelStrategy &self, const std::string &ep) {
            self.current_endpoint_ = ep;
          })
2448 2449 2450 2451 2452 2453
      .def_property(
          "nrings",
          [](const imperative::ParallelStrategy &self) { return self.nrings_; },
          [](imperative::ParallelStrategy &self, int nrings) {
            self.nrings_ = nrings;
          });
2454

2455 2456 2457 2458
  m.def("varbase_copy", &VarBaseCopy<platform::Place>);
  m.def("varbase_copy", &VarBaseCopy<platform::CPUPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPlace>);
  m.def("varbase_copy", &VarBaseCopy<platform::XPUPlace>);
2459
  m.def("varbase_copy", &VarBaseCopy<platform::CUDAPinnedPlace>);
2460
  m.def("varbase_copy", &VarBaseCopy<platform::NPUPlace>);
R
ronnywang 已提交
2461
  m.def("varbase_copy", &VarBaseCopy<platform::CustomPlace>);
2462

2463 2464 2465 2466 2467 2468 2469
  m.def(
      "dygraph_partial_grad",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &input_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>>
             &output_targets,
         const std::vector<std::shared_ptr<imperative::VarBase>> &output_grads,
         const std::vector<std::shared_ptr<imperative::VarBase>> &no_grad_vars,
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
         const platform::Place &place,
         bool create_graph,
         bool retain_graph,
         bool allow_unused,
         bool only_inputs) {
        imperative::PartialGradEngine engine(input_targets,
                                             output_targets,
                                             output_grads,
                                             no_grad_vars,
                                             place,
                                             create_graph,
                                             retain_graph,
                                             allow_unused,
                                             only_inputs);
2484 2485 2486 2487 2488
        engine.Execute();
        return engine.GetResult();
      },
      py::call_guard<py::gil_scoped_release>());

2489 2490 2491 2492
  m.def(
      "dygraph_run_backward",
      [](const std::vector<std::shared_ptr<imperative::VarBase>> &tensors,
         const std::vector<std::shared_ptr<imperative::VarBase>> &grad_tensors,
2493 2494
         bool retain_graph,
         const imperative::Tracer &tracer) {
2495 2496 2497 2498 2499 2500 2501 2502
        auto *engine = tracer.GetEngine();
        engine->Init(tensors, grad_tensors, retain_graph);
        VLOG(3) << "Start backward";
        engine->Execute();
        VLOG(3) << "Finish backward";
      },
      py::call_guard<py::gil_scoped_release>());

K
Kim Yann 已提交
2503 2504
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
    defined(PADDLE_WITH_XPU_BKCL) || defined(PADDLE_WITH_GLOO)
2505 2506 2507 2508 2509 2510
  py::class_<imperative::ParallelContext,
             std::shared_ptr<imperative::ParallelContext>>(m,
                                                           "ParallelContext");

  py::class_<imperative::Reducer, std::shared_ptr<imperative::Reducer>>(
      m, "Reducer", R"DOC()DOC")
S
ShenLiang 已提交
2511 2512 2513 2514
      .def(py::init<const std::vector<std::shared_ptr<imperative::VarBase>> &,
                    const std::vector<std::vector<size_t>> &,
                    const std::vector<bool> &,
                    std::shared_ptr<imperative::ParallelContext>,
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
                    const std::vector<size_t> &,
                    bool>())
      .def("prepare_for_backward",
           &imperative::Reducer::PrepareForBackward,
           py::arg("vars"),
           py::call_guard<py::gil_scoped_release>());

  m.def("assign_group_by_size",
        &imperative::AssignGroupBySize,
        py::arg("vars"),
2525 2526
        py::arg("is_sparse_gradient"),
        py::arg("group_size_limits") = std::vector<size_t>{25 * 1024 * 1024},
2527
        py::arg("tensor_indices") = std::vector<int64_t>{},
2528
        py::call_guard<py::gil_scoped_release>());
2529
#endif
2530

2531
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
2532 2533
  py::class_<imperative::NCCLParallelContext,
             imperative::ParallelContext,
2534 2535 2536 2537
             std::shared_ptr<imperative::NCCLParallelContext>>(
      m, "NCCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CUDAPlace &>())
K
kuizhiqing 已提交
2538 2539 2540 2541
      .def("init", [](imperative::NCCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::NCCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2542 2543 2544
#endif

#if defined(PADDLE_WITH_XPU_BKCL)
2545 2546
  py::class_<imperative::BKCLParallelContext,
             imperative::ParallelContext,
2547 2548 2549 2550
             std::shared_ptr<imperative::BKCLParallelContext>>(
      m, "BKCLParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::XPUPlace &>())
K
kuizhiqing 已提交
2551 2552 2553 2554
      .def("init", [](imperative::BKCLParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::BKCLParallelContext::InitWithRingID,
           py::arg("ring_id"));
2555
#endif
2556 2557 2558

#if defined(PADDLE_WITH_GLOO)
  // xiongkun
2559 2560
  py::class_<imperative::GLOOParallelContext,
             imperative::ParallelContext,
2561 2562 2563 2564 2565 2566 2567
             std::shared_ptr<imperative::GLOOParallelContext>>(
      m, "GLOOParallelContext")
      .def(py::init<const imperative::ParallelStrategy &,
                    const platform::CPUPlace &>())
      .def("init", [](imperative::GLOOParallelContext &self) { self.Init(); })
      .def("init_with_ring_id",
           &imperative::GLOOParallelContext::InitWithRingID,
2568 2569 2570
           py::arg("ring_id"));
#endif

K
kuizhiqing 已提交
2571
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
张春乔 已提交
2572
    defined(PADDLE_WITH_XPU_BKCL)
2573 2574
  py::class_<imperative::HeterParallelContext,
             imperative::ParallelContext,
K
kuizhiqing 已提交
2575 2576 2577 2578 2579 2580
             std::shared_ptr<imperative::HeterParallelContext>>(
      m, "HeterParallelContext")
      .def(py::init<const imperative::ParallelStrategy &, const int &>())
      .def("init", [](imperative::HeterParallelContext &self) { self.Init(); });
#endif

S
Siming Dai 已提交
2581
#if defined(PADDLE_WITH_CUDA)
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
  m.def(
      "to_uva_tensor",
      [](const py::object &obj, int device_id) {
        const auto &tracer = imperative::GetCurrentTracer();
        auto new_tensor = std::shared_ptr<imperative::VarBase>(
            new imperative::VarBase(tracer->GenerateUniqueName()));
        auto array = obj.cast<py::array>();
        if (py::isinstance<py::array_t<int32_t>>(array)) {
          SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int64_t>>(array)) {
          SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<float>>(array)) {
          SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<double>>(array)) {
          SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int8_t>>(array)) {
          SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<int16_t>>(array)) {
          SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
        } else if (py::isinstance<py::array_t<paddle::platform::float16>>(
                       array)) {
2603 2604
          SetUVATensorFromPyArray<paddle::platform::float16>(
              new_tensor, array, device_id);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
        } else if (py::isinstance<py::array_t<bool>>(array)) {
          SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
        } else {
          // obj may be any type, obj.cast<py::array>() may be failed,
          // then the array.dtype will be string of unknown meaning.
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Input object type error or incompatible array data type. "
              "tensor.set() supports array with bool, float16, float32, "
              "float64, int8, int16, int32, int64,"
              "please check your input or input array data type."));
        }
        return new_tensor;
      },
2618 2619 2620 2621
      py::arg("obj"),
      py::arg("device_id") = 0,
      py::return_value_policy::reference,
      R"DOC(
S
Siming Dai 已提交
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
  Returns tensor with the UVA(unified virtual addressing) created from numpy array.

  Args:
      obj(numpy.ndarray): The input numpy array, supporting bool, float16, float32,
                          float64, int8, int16, int32, int64 dtype currently.

      device_id(int, optional): The destination GPU device id.
                                Default: 0, means current device.

  Returns:

2633
      new_tensor(paddle.Tensor): Return the UVA Tensor with the sample dtype and
S
Siming Dai 已提交
2634 2635 2636 2637 2638 2639 2640 2641
                                 shape with the input numpy array.

  Examples:
      .. code-block:: python

        # required: gpu
        import numpy as np
        import paddle
2642

S
Siming Dai 已提交
2643 2644 2645 2646 2647 2648 2649
        data = np.random.randint(10, size=(3, 4))
        tensor = paddle.fluid.core.to_uva_tensor(data)
        print(tensor)
)DOC");

#endif

2650 2651 2652
#if defined(PADDLE_WITH_CUDA)
  m.def(
      "async_write",
2653 2654 2655 2656
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
2657
        PADDLE_ENFORCE_EQ(
2658 2659
            platform::is_gpu_place(src.Place()),
            true,
2660 2661 2662 2663
            platform::errors::InvalidArgument(
                "Required `src` device should be CUDAPlace, but received %d. ",
                src.Place()));
        PADDLE_ENFORCE_EQ(
2664 2665
            platform::is_cuda_pinned_place(dst.Place()),
            true,
2666 2667 2668 2669 2670
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPinnedPlace, "
                "but received %d. ",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2671 2672
            platform::is_cpu_place(offset.Place()),
            true,
2673 2674 2675 2676
            platform::errors::InvalidArgument("Required `offset` device should "
                                              "be CPUPlace, but received %d. ",
                                              offset.Place()));
        PADDLE_ENFORCE_EQ(
2677 2678
            platform::is_cpu_place(count.Place()),
            true,
2679 2680 2681 2682 2683 2684
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d. ",
                count.Place()));

        // TODO(daisiming): In future, add index as arguments following
        // async_read.
2685 2686 2687 2688
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2689 2690
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2691 2692
        PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                          1,
2693 2694
                          platform::errors::InvalidArgument(
                              "`offset` tensor should be one-dimensional."));
2695 2696
        PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                          1,
2697 2698
                          platform::errors::InvalidArgument(
                              "`count` tensor should be one-dimensional."));
2699 2700
        PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                          count_tensor.numel(),
2701 2702 2703
                          platform::errors::InvalidArgument(
                              "`offset` and `count` tensor size dismatch."));
        PADDLE_ENFORCE_EQ(
2704 2705
            src_tensor.dims().size(),
            dst_tensor->dims().size(),
2706 2707 2708 2709 2710
            platform::errors::InvalidArgument(
                "`src` and `dst` should have the same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2711 2712
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2713 2714 2715 2716 2717
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
        }

L
Leo Chen 已提交
2718 2719
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2720 2721 2722 2723 2724 2725 2726 2727 2728

        int64_t size = src_tensor.numel() / src_tensor.dims()[0];
        auto *src_data = src_tensor.data<float>();
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const int64_t *offset_data = offset_tensor.data<int64_t>();
        const int64_t *count_data = count_tensor.data<int64_t>();
        int64_t src_offset = 0, dst_offset, c;
        for (int64_t i = 0; i < offset_tensor.numel(); i++) {
          dst_offset = offset_data[i], c = count_data[i];
2729 2730
          PADDLE_ENFORCE_LE(src_offset + c,
                            src_tensor.dims()[0],
2731 2732
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2733 2734
          PADDLE_ENFORCE_LE(dst_offset + c,
                            dst_tensor->dims()[0],
2735 2736
                            platform::errors::InvalidArgument(
                                "Invalid offset or count index"));
2737 2738 2739 2740 2741
          cudaMemcpyAsync(dst_data + (dst_offset * size),
                          src_data + (src_offset * size),
                          c * size * sizeof(float),
                          cudaMemcpyDeviceToHost,
                          stream);
2742 2743 2744 2745
          src_offset += c;
        }
      },
      R"DOC(
2746 2747 2748 2749 2750
  This api provides a way to write pieces of source tensor to destination tensor
  inplacely and asynchronously. In which, we use `offset` and `count` to determine
  where to copy. `offset` means the begin points of the copy pieces of `src`, and
  `count` means the lengths of the copy pieces of `src`. To be noted, the copy process
  will run asynchronously from cuda to pin memory. We can simply remember this as
2751
  "gpu async_write to pin_memory".
2752

2753
  Arguments:
2754 2755

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2756 2757
                  Besides, `src` should be placed on CUDAPlace.

2758 2759 2760
    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPinnedPlace. The shape of `dst`
                  should be the same with `src` except for the first dimension.
2761

2762 2763 2764 2765 2766 2767 2768
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
                     should be one-dimensional.

    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
                    should be one-dimensinal.
2769 2770 2771 2772 2773 2774

  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
2775
          from paddle.fluid import core
2776
          from paddle.device import cuda
2777

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50])
              dst = paddle.emtpy(shape=[200, 50, 50]).pin_memory()
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())

              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_write(src, dst, offset, count)

              offset_a = paddle.gather(dst, paddle.to_tensor(np.arange(0, 40)))
              offset_b = paddle.gather(dst, paddle.to_tensor(np.arange(60, 120)))
              offset_array = paddle.concat([offset_a, offset_b], axis=0)
              print(np.allclose(src.numpy(), offset_array.numpy())) # True
)DOC");

  m.def(
      "async_read",
2798 2799 2800 2801 2802 2803 2804 2805
      [](const imperative::VarBase &src,
         imperative::VarBase &dst,
         const imperative::VarBase &index,
         imperative::VarBase &buffer,
         const imperative::VarBase &offset,
         const imperative::VarBase &count) {
        PADDLE_ENFORCE_EQ(platform::is_cuda_pinned_place(src.Place()),
                          true,
2806 2807 2808 2809 2810
                          platform::errors::InvalidArgument(
                              "Required `src` device should be "
                              "CUDAPinnedPlace, but received %d.",
                              src.Place()));
        PADDLE_ENFORCE_EQ(
2811 2812
            platform::is_gpu_place(dst.Place()),
            true,
2813 2814 2815 2816
            platform::errors::InvalidArgument(
                "Required `dst` device should be CUDAPlace, but received %d.",
                dst.Place()));
        PADDLE_ENFORCE_EQ(
2817 2818
            platform::is_cpu_place(index.Place()),
            true,
2819 2820 2821 2822
            platform::errors::InvalidArgument(
                "Required `index` device should be CPUPlace, but received %d.",
                index.Place()));
        PADDLE_ENFORCE_EQ(
2823 2824
            platform::is_cuda_pinned_place(buffer.Place()),
            true,
2825 2826 2827 2828 2829
            platform::errors::InvalidArgument(
                "Required `buffer` device should be CUDAPinnedPlace, "
                "but received %d.",
                buffer.Place()));
        PADDLE_ENFORCE_EQ(
2830 2831
            platform::is_cpu_place(offset.Place()),
            true,
2832 2833 2834 2835
            platform::errors::InvalidArgument(
                "Required `offset` device should be CPUPlace, but received %d.",
                offset.Place()));
        PADDLE_ENFORCE_EQ(
2836 2837
            platform::is_cpu_place(count.Place()),
            true,
2838 2839 2840 2841
            platform::errors::InvalidArgument(
                "Required `count` device should be CPUPlace, but received %d.",
                count.Place()));

2842 2843 2844
        auto &src_tensor = src.Var().Get<phi::DenseTensor>();
        auto *dst_tensor = dst.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &index_tensor = index.Var().Get<phi::DenseTensor>();
2845
        auto *buffer_tensor =
2846 2847 2848
            buffer.MutableVar()->GetMutable<phi::DenseTensor>();
        auto &offset_tensor = offset.Var().Get<phi::DenseTensor>();
        auto &count_tensor = count.Var().Get<phi::DenseTensor>();
2849 2850 2851
        auto *dst_data = dst_tensor->mutable_data<float>(dst.Place());
        const auto &deviceId = paddle::platform::GetCurrentDeviceId();

2852 2853
        PADDLE_ENFORCE_EQ(src_tensor.dims().size(),
                          dst_tensor->dims().size(),
2854 2855 2856 2857
                          platform::errors::InvalidArgument(
                              "`src` and `dst` should have same tensor shape, "
                              "except for the first dimension."));
        PADDLE_ENFORCE_EQ(
2858 2859
            src_tensor.dims().size(),
            buffer_tensor->dims().size(),
2860 2861 2862 2863 2864
            platform::errors::InvalidArgument(
                "`src` and `buffer` should have same tensor shape, "
                "except for the first dimension."));
        for (int i = 1; i < src_tensor.dims().size(); i++) {
          PADDLE_ENFORCE_EQ(
2865 2866
              src_tensor.dims()[i],
              dst_tensor->dims()[i],
2867 2868 2869 2870
              platform::errors::InvalidArgument(
                  "`src` and `dst` should have the same tensor shape, "
                  "except for the first dimension."));
          PADDLE_ENFORCE_EQ(
2871 2872
              src_tensor.dims()[i],
              buffer_tensor->dims()[i],
2873 2874 2875 2876
              platform::errors::InvalidArgument(
                  "`src` and `buffer` should have the same tensor shape, "
                  "except for the first dimension."));
        }
2877 2878
        PADDLE_ENFORCE_EQ(index_tensor.dims().size(),
                          1,
2879 2880 2881
                          platform::errors::InvalidArgument(
                              "`index` tensor should be one-dimensional."));

L
Leo Chen 已提交
2882 2883
        auto stream =
            paddle::platform::get_current_stream(deviceId)->raw_stream();
2884 2885 2886 2887 2888 2889

        int64_t numel = 0;  // total copy length
        int64_t copy_flag = offset_tensor.dims()[0];
        int64_t size = src_tensor.numel() / src_tensor.dims()[0];

        if (copy_flag != 0) {
2890 2891
          PADDLE_ENFORCE_EQ(offset_tensor.dims().size(),
                            1,
2892 2893
                            platform::errors::InvalidArgument(
                                "`offset` tensor should be one-dimensional."));
2894 2895
          PADDLE_ENFORCE_EQ(count_tensor.dims().size(),
                            1,
2896 2897
                            platform::errors::InvalidArgument(
                                "`count` tensor should be one-dimensional."));
2898 2899
          PADDLE_ENFORCE_EQ(offset_tensor.numel(),
                            count_tensor.numel(),
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
                            platform::errors::InvalidArgument(
                                "`offset` and `count` tensor size dismatch."));
          auto *offset_data = offset_tensor.data<int64_t>();
          auto *count_data = count_tensor.data<int64_t>();
          for (int64_t i = 0; i < count_tensor.numel(); i++) {
            numel += count_data[i];
          }
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            buffer_tensor->dims()[0],
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
2911 2912
          PADDLE_ENFORCE_LE(numel + index_tensor.numel(),
                            dst_tensor->dims()[0],
2913 2914 2915 2916 2917 2918 2919
                            platform::errors::InvalidArgument(
                                "Target tensor size is too small."));

          int64_t src_offset, dst_offset = 0, c;
          auto *src_data = src_tensor.data<float>();
          for (int64_t i = 0; i < offset_tensor.numel(); i++) {
            src_offset = offset_data[i], c = count_data[i];
2920 2921
            PADDLE_ENFORCE_LE(src_offset + c,
                              src_tensor.dims()[0],
2922 2923
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2924 2925
            PADDLE_ENFORCE_LE(dst_offset + c,
                              dst_tensor->dims()[0],
2926 2927
                              platform::errors::InvalidArgument(
                                  "Invalid offset or count index."));
2928 2929 2930 2931 2932
            cudaMemcpyAsync(dst_data + (dst_offset * size),
                            src_data + (src_offset * size),
                            c * size * sizeof(float),
                            cudaMemcpyHostToDevice,
                            stream);
2933 2934 2935
            dst_offset += c;
          }
        } else {
2936 2937
          PADDLE_ENFORCE_LE(index_tensor.numel(),
                            buffer_tensor->dims()[0],
2938 2939 2940 2941 2942
                            platform::errors::InvalidArgument(
                                "Buffer tensor size is too small."));
        }

        // Select the index data to the buffer
2943 2944 2945
        auto index_select = [](const phi::DenseTensor &src_tensor,
                               const phi::DenseTensor &index_tensor,
                               phi::DenseTensor *buffer_tensor) {
2946 2947 2948 2949 2950 2951 2952 2953 2954
          auto *src_data = src_tensor.data<float>();
          auto *index_data = index_tensor.data<int64_t>();
          auto *buffer_data =
              buffer_tensor->mutable_data<float>(buffer_tensor->place());
          const int &slice_size = src_tensor.numel() / src_tensor.dims()[0];
          const int &copy_bytes = slice_size * sizeof(float);
          int64_t c = 0;
          for (int64_t i = 0; i < index_tensor.numel(); i++) {
            std::memcpy(buffer_data + c * slice_size,
2955 2956
                        src_data + index_data[i] * slice_size,
                        copy_bytes);
2957 2958 2959 2960 2961 2962
            c += 1;
          }
        };
        index_select(src_tensor, index_tensor, buffer_tensor);

        // Copy the data to device memory
2963 2964
        cudaMemcpyAsync(dst_data + (numel * size),
                        buffer_tensor->data<float>(),
2965
                        index_tensor.numel() * size * sizeof(float),
2966 2967
                        cudaMemcpyHostToDevice,
                        stream);
2968 2969
      },
      R"DOC(
2970 2971 2972 2973 2974
  This api provides a way to read from pieces of source tensor to destination tensor
  asynchronously. In which, we use `index`, `offset` and `count` to determine where
  to read. `index` means the index position of src tensor we want to read. `offset`
  and count means the begin points and length of pieces of src tensor we want to read.
  To be noted, the copy process will run asynchronously from pin memory to cuda place.
2975 2976 2977
  We can simply remember this as "cuda async_read from pin_memory".

  Arguments:
2978 2979

    src (Tensor): The source tensor, and the data type should be `float32` currently.
2980
                  Besides, `src` should be placed on CUDAPinnedPlace.
2981 2982 2983

    dst (Tensor): The destination tensor, and the data type should be `float32` currently.
                  Besides, `dst` should be placed on CUDAPlace. The shape of `dst` should
2984 2985
                  be the same with `src` except for the first dimension.

2986 2987
    index (Tensor): The index tensor, and the data type should be `int64` currently.
                    Besides, `index` should be on CPUplace. The shape of `index` should
2988 2989
                    be one-dimensional.

2990 2991
    buffer (Tensor): The buffer tensor, used to buffer index copy tensor temporarily.
                     The data type should be `float32` currently, and should be placed
2992 2993
                     on CUDAPinnedPlace. The shape of `buffer` should be the same with `src` except for the first dimension.

2994 2995
    offset (Tensor): The offset tensor, and the data type should be `int64` currently.
                     Besides, `offset` should be placed on CPUPlace. The shape of `offset`
2996 2997
                     should be one-dimensional.

2998 2999
    count (Tensor): The count tensor, and the data type should be `int64` currently.
                    Besides, `count` should be placed on CPUPlace. The shape of `count`
3000
                    should be one-dimensinal.
3001

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
  Examples:
      .. code-block:: python

          import numpy as np
          import paddle
          from paddle.fluid import core
          from paddle.device import cuda

          if core.is_compiled_with_cuda():
              src = paddle.rand(shape=[100, 50, 50], dtype="float32").pin_memory()
              dst = paddle.empty(shape=[100, 50, 50], dtype="float32")
              offset = paddle.to_tensor(
                  np.array([0, 60], dtype="int64"), place=paddle.CPUPlace())
              count = paddle.to_tensor(
                  np.array([40, 60], dtype="int64"), place=paddle.CPUPlace())
              buffer = paddle.empty(shape=[50, 50, 50], dtype="float32").pin_memory()
              index = paddle.to_tensor(
                  np.array([1, 3, 5, 7, 9], dtype="int64")).cpu()
3020

3021 3022 3023
              stream = cuda.Stream()
              with cuda.stream_guard(stream):
                  core.async_read(src, dst, index, buffer, offset, count)
3024

3025 3026
)DOC");
#endif
3027 3028 3029 3030
}

}  // namespace pybind
}  // namespace paddle